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Abstract: With the growing cost of carbon emissions reduction, the application of industrial restruc-
turing to suppress carbon emissions is becoming more attractive. By constructing an input-output
optimization model, this study explored how industrial restructuring helps megacities synergistically
achieve carbon peak and high-quality development. The results showed that through contributing
164.4% of the reduction in emissions from 2020 to 2025, industrial structure optimization significantly
inhibited the growth of carbon emissions; From 2020 to 2025, the manufacturing structure continued
to be high-end, which resulted in a reduction in industrial carbon emissions by 10.3%; through
vigorous development of the low-carbon service industry, the carbon emission of the service industry
would continue to slow down at an average annual rate of 2.4%. Industrial premiumization and the
low-carbonization of the modern service sector are the key driving forces for Shenzhen to achieve
low-carbon transformation. The results also showed that the power and retail sectors are the most
important for emissions reduction. This study can provide a roadmap for megacities on how to
explore potential emission reduction via optimizing their economic structure to help them achieve
their carbon emissions peak.

Keywords: I-O optimization model; industrial restructuring; emission reduction potential

1. Introduction

Cities are widely believed to be the world’s biggest energy consumers and carbon
dioxide emitters and are the main targets for achieving carbon peaking and neutrality
in the world [1,2]. In China, more than 60% of the population lives in urban areas, and
that figure is expected to climb to 70% by 2030 [3]. Further, as cities consume 80% of
the Chinese energy and generate approximately 85% of emissions they play an increas-
ingly important role in addressing the challenges of climate change [4]. Technological
revolution and structural adjustment are the two main means of inhibiting the increase
in emissions [5,6]. Technological progress has been the main driving force behind the
decline in carbon emissions in China over the past 20 years [7–9]. With the increasing
marginal cost of technology emission reduction [10,11], the cost, speed, and effect of emis-
sion reduction should be considered for the construction of low-carbon cities. Relying on
technological progress alone to reduce emissions makes it difficult for megacities to reach
their carbon peaking and carbon neutrality goals. Thus, from the perspective of industrial
restructuring, research on carbon emissions reduction is essential. Research on the impact
of economic restructuring on carbon peak mostly remains at the national and regional
levels, while such research at the city level is relatively scarce. Su et al. (2021) took social
welfare maximization as the objective function, optimized the parameters of technological
progress, and implemented the I-O comprehensive optimization model to explore the
socio-economic impact of industrial structure adjustment [12]. The study found that the
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emission reduction effect of structural change is better than that of technological progress.
Liu et al. (2020) found that structural adjustment improves the utilization efficiency of
water and energy by planning and adjusting the economic structure within the industrial
sector. This study attempted to find the potential path of industrial structure optimization
and adjustment under the constraint of water-energy, taking Hebei province as the case
study [13]. In their study of the differences in economic growth, energy consumption,
and carbon emissions following the optimization of cross-regional and single-regional
industrial structures, Zhu et al. (2021) demonstrated that provinces can optimize the in-
dustrial structure through industrial transfer, realizing the rational layout of the industry
and achieving the planning goals of emission, economy, and energy [14]. At the city level,
Su et al. (2020) estimated the energy-related emission reduction potential for 2030 for four
different types of urban agglomerations (including energy production, light, and heavy
manufacturing, and high-tech development) through improved scenario design, and the
results showed that the optimization of economic structures can promote energy-related
emissions to peak before 2030 [15].

To quantify the impact of industrial restructuring on peak carbon emissions, different
approaches have been applied, including I-O optimization and scenario analysis models.
Taking total social welfare maximization as the objective function, Mi et al. (2017) proposed
a comprehensive optimization model based on the IO model, which aimed to evaluate
the effect of China’s industrial restructuring and determine how energy intensity reduc-
tion can simultaneously achieve economic growth and emission reduction targets [16].
Through constructing a dynamic IO optimization model with the economy, carbon emis-
sions, and employment as the multi-objectives, Yu et al. (2018) indicated that China can
make energy-related emissions peak in 2022–2025 by adjusting the industrial structure of
energy-intensive and heavy chemical industries [17]. Analyzing the impact of different
driving factors on CO2 emissions in China from 2000 to 2016, Zhang et al. (2019) pro-
posed a combination of the logarithmic mean divisor index (LMDI) method and scenario
analysis to explore the impact of industrial structure changes on China’s carbon intensity
reduction potential under different scenarios [18]. The results indicated that, from 2020
to 2030, the influence of industrial structure optimization on CO2 emission changes from
the promotion of emissions to their suppression and the inhibition effects are increasing
over time. Under the scenario of rapid economic growth, industrial structure optimization
showed the greatest potential for emission reduction, indicating that the 65% emission re-
duction target would be fully achieved by 2030. The input-output optimization analysis can
more accurately predict the impact of changes and interactions between various industries
on carbon emissions peaking, while the combination of LMDI and scenario analysis can
evaluate the impact of changes in industrial structure factors on carbon emissions under
different scenarios. Based on the input-output optimization model, this study qualitatively
and quantitatively analyzes the impact of industrial structure on carbon peak targets and
evaluates the emission reduction potential of industrial restructuring, which can provide a
detailed roadmap for megacities structure adjustment.

Due to the incompleteness of the input-output data, most existing studies focus on
analyzing the impact of industrial structure adjustment on carbon emissions at the national,
provincial, or key industries level [19,20]. By constructing an I-O optimization model and
combining scenario analysis, this study was extended to the analysis of industries (includ-
ing 12 sectors) at the city level; the impact of changes in an industry’s structure and its
associated emission reduction potential were quantitatively evaluated, addressing the gaps
in the existing research. Meanwhile, according to the economic structure characteristics
of megacities, the constraints in the input-output optimization model at the regional level
are supplemented and modified. For example, in the constraints of industrial structure,
our research accurately screened out industries that are encouraged and limited from
developing. Regarding employment constraints, this paper considered the employment
opportunities provided by the unit added value may change with the development of
low-carbon technologies, which was different from the existing research. Finally, this study
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provides a roadmap for exploring how megacities can synergistically achieve carbon peak
goals and high-quality development through economic restructuring.

2. Methods

This section explains the main differences in the methods used in this study from
those of previous national- and provincial- level studies [Mi et al. (2017) and Su et al.
(2020)], highlighting the improvements and contributions of this paper to the city-level
input-output table and constraints of the optimization model. In terms of the city-level
input-output model (Section 2.1), the final demand section of the urban input-output table is
composed of final consumption, capital formation, net export, out-of-province net transfers
out in domestic, and out-of-city net transfers out in province. Compared with a regional
input-output table (Region refers to nation and province in this study), the variables ‘out-
of-province net transfers out in domestic’ and ‘out-of-city net transfers out in province’
are unique to the urban level input-output table. Hence, applying the I-O optimization
model at the city level could provide an important and analyzable perspective. As shown
in Table 1 and Equation 1, the following two variables are added: the out-of-province
net transfers in domestic and out-of-city net transfers out in province. Regarding the
optimization model, parameters such as energy consumption per unit of value added (bikt),
carbon emissions per unit of value added (dikt) and employment opportunities attained by
per unit of value added (mit) in the energy consumption (Section 2.2.1), carbon emissions
(Section 2.2.2), and employment constraints (Section 2.2.3) need to be optimized for the case
of Shenzhen city. In addition, further equations to encourage or restrict sectors in the model
are added in the industrial structure adjustment constraints (Section 2.2.3). Full details
of the input-output model and socio-economic constraints of the optimization model are
as follows:

Table 1. Simplified version of I-O table.

Final Demand (yit)

Intermediate
Matrix Consum-Ption Capital

Formation Net Export OP-OD OC-OP Total
Output

Intermediate Matrix zit sit fit oit pdit cpit xi
Value Added vi
Total Input xj

2.1. Input-Output Model

To ensure the balance of the social and economic system, the input-output analysis
takes the establishment of a series of linear equations as the constraint condition of model
optimization. The city-level input-output table is different from the national and provincial
input-output tables. To distinguish them, the simplified version of the urban input-output
table is shown in Table 1:

In Table 1, the final demand can be expressed as:

yit = sit + fit + oit + pdit + cpit (1)

where yit, sit, fit, oit, pdit, and cpit are n-dimensional column vectors, which represent final
demand, consumption, capital formation, net export, out-of-province net transfers out
in domestic (OP-OD), and out-of-city net transfers out in province (OC-OP), respectively.
Among them, pdit and cpit are unique at the city level, which is different from the research
of Mi et al. (2017) and Su et al. (2020).

zij = aij · xj (2)

zij is an n-dimensional matrix, indicating the consumption of products from sector j to
sector i; aij represents the direct consumption coefficient; vj is an n-dimensional column



Energies 2022, 15, 6932 4 of 24

vector and represents the added value of the sector j; xi represents total output; and xj
represents total input.

The adjustment of the industrial structure needs to meet the balance of the economic
system, that is, the input-output balance constraint, which is expressed as follows:

X = (I − A)−1 Y (3)

X = (I − Ac)
−1V (4)

where X is the total output of sector i, I is the identity matrix A is the direct consumption
coefficient matrix composed of aij; Y is the final demand; Ac is the diagonal matrix, which
represents the direct distribution coefficient matrix, and the value of the diagonal matrix is
each column direction in A.

This study assumed that the direct consumption coefficient of Shenzhen in 2030 is the
same as that in 2019, the technical coefficient matrix (the I-O structure) would not change
in a short time.

2.2. Optimization Model

Based on Section 2.1, this section details the construction of an input-output opti-
mization model. Seven constraints were introduced to the model to enhance the realism
of results, mainly including economic level, energy consumption, carbon emission, em-
ployment level, industrial structure adjustment, consumption level, and non-negative
constraints. The details of the constraints of the model are as follows:

2.2.1. Economic Development Constraints

Under the background of the impact of the epidemic and the increasing economic
uncertainties in the world, the adjustment of the urban economic structure must be based
on the stable operation of the macro-economy, so it is necessary to ensure a certain GDP
growth rate.

GDPt =

n

∑
i=1

vit (5)

(1 + αt) ≤
GDPt

GDPt−1
(6)

where GDPt represents the total added value of the economy in the year t; vit represents
the added value of the sector i in the year t; and αt represents the GDP growth rate in the
year t, which is a given exogenous parameter.

2.2.2. Energy Constraints

Economic development cannot be separated from the support of energy. However,
for most fields, the energy supply is limited. In order to control energy consumption and
intensity, the annual growth of energy consumption needs to be limited. The total energy
consumption can be expressed as:

Et =

n

∑
i=1

m

∑
k=1

bikt·vit +

m

∑
k=1

ehp
kt·popt (7)

Et ≤ (1 + βt)Et−1 (8)

Et

Gt
≤ (1− γt)

Et−1

Gt−1
(9)

where bikt represents the energy consumption per unit of added value in sector i during the
year t for fuel type k; vit is the added value of sector i in year t; ehp

kt represents the energy
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consumption per capita of the residents during year t for fuel type k; popt represents the
resident population of the city in year t; ∑m

k=1 ehp
kt·popt represents the total amount of m

kinds of energy consumed by residents in period t; βt represents the growth rate of energy
consumption; and γt represents the rate of decline in energy intensity.

2.2.3. Carbon Emission Constraints

For Shenzhen, controlling the growth rate of CO2 is a prerequisite that can help it
simultaneously achieve carbon peak targets and high-quality development:

Ct =

n

∑
i=1

m

∑
k=1

dikt·bikt·vit +

m

∑
k=1

chp
kt·popt (10)

Ct ≤ (1 + εt)Ct−1 (11)

εt ≤ 0, t > t (12)

where dikt is the carbon emissions per unit of added value in sector i during the year t for
fuel type k; chp

kt represents direct household carbon emissions generated by energy activities
in year t; εt represents the growth rate of carbon emissions in year t; and t indicates the
peak time.

2.2.4. Employment Constraints

When labor productivity increases, the employment proportion of the labor force
in the manufacturing industry decreases correspondingly [21]. With the increase in the
proportion of advanced manufacturing industries, the employment opportunities driven
by the unit value added of the manufacturing industry in Shenzhen decreased in 2015,
2017, and 2019, which are 5.41, 4.66, and 4.41 jobs per million yuan, respectively. Those
figures indicate that the employment opportunities brought by the unit manufacturing
value added will decrease with the adjustment of its internal structure. Therefore, we
assumed that the employment provided by the unit manufacturing value added changes
over time:

Mt =

n

∑
i=1

mit · vit (13)

Mt

Mt−1
≥ (1 +

popt

popt−1
) (14)

where Mt represents the total employment opportunities in year t; mit refers to the employ-
ment opportunities attained by unit added value in sector i in period t; and popt refers to
the resident population in period t.

2.2.5. Industrial Structure Adjustment Constraints

The studies by Mi et al. (2017) and Su et al. (2020) did not indicate the development
of which sectors need to be encouraged or restricted. Considering the different resource
endowments of each city, screening the encouraged and restricted sectors of the city is
necessary to realize precise industrial restructuring.

Chang et al. (2015) introduced the industrial linkage method to screen encouraged
and restricted industries. However, this approach was based on historical data and only
focused on past industrial development, excluding the future trend analysis of strategic
emerging industries [22].

This problem was solved in three steps: Firstly, Screening encouraged industries ac-
cording to government planning. Secondly, referring to the research by Chang et al. (2015),
we introduced the industrial linkage coefficient and eliminated the restricted industries.
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Finally, referring to the methods of Mi et al. (2017) and Su et al. (2021), the upper and lower
limits of structural changes were set for unrestricted industries.

According to the planning document of Shenzhen Municipal Government, this study
set sector l as an encouraged industry, as shown by Equation (15):

vlt−1
Gt−1

≤ vlt
Gt
≤ (1 + qt)vlt−1

Gt−1
(l = 1, 2, . . . , L) (15)

According to the analysis of industrial linkage, this study set sector j as a limited sector,
which satisfies Equations (16)–(18):

(1 + ρt)vjt−1

Gt−1
≤

vjt

Gt
≤

vjt−1

Gt−1
(j = 1, 2, . . . , J) (16)

vit
Gt
≥ (1 + ηt)

vit−1

Gt−1
(i = 1, 2, . . . , n, i 6= l, j) (17)

vit
Gt
≤ (1 + µt)

vit−1

Gt−1
(i = 1, 2, . . . , n, i 6= l, j) (18)

where vlt is the added value of sector l in year t; Gt represents the added value in year t;
qt represents the upper limit of the structural adjustment of encouraged sectors, and ρt
represents the lower limit of the structural adjustment of limited sectors; ηt, µt represent
the given exogenous parameters.

2.2.6. Consumption Constraints

Promoting the upgrading of residents’ consumption is the most important goal of
urban economic restructuring. Strengthening residents’ consumption will help protect the
economy from the impact of fluctuations in external demand.

Following the research of Mi et al. (2021) and Su et al. (2017), we assumed that the
proportion of consumption, capital formation, and net exports in final demand in period t
is the same as that in the year 2019. At the same time, consumption needs to meet:

θ1 ≤
∑n

i=1 sit

Gt
≤ θ2 (19)

where sit refers to the consumption of sector i in year t; St = ∑n
i=1 sit represents the total

consumption in year t; and θ1 and θ2 are the given exogenous parameters.

2.2.7. Nonnegative Constraints

Supposing that the value added and a total output of sector i in year t are not less than 0:

vit ≥ 0 (20)

Xt ≥ 0 (21)

2.2.8. Objective Function

Industrial structure optimization is a problem of sustainable development, the core of
which is to coordinate the relationship between economic interests and ecological environ-
ment protection [23]. Even when the primary influence of industrial structure optimization
is the economy, carbon emissions, energy consumption, or employment, its most important
purpose is to realize the maximum whole social welfare [24].

To distinguish it from the multi-objective input-output optimization model [25], this
study used the optimal economic growth theory for reference, and only took the maximiza-
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tion of the welfare of the whole society as the objective function [26], with the equation
as follows:

W =

T

∑
t=1

Htlog(
ct

Ht
)

1

(1 + ρ)t−1 (22)

where W represents the total social welfare level; Ht represents the resident population in
year t; ct represents the consumption in year t; ρ represents the pure rate of time preference.

3. Study Area and Data
3.1. Study Area

As a special economic zone in China, Shenzhen is located in the Pearl River Delta
on the southeastern coast of China and is regarded as China’s ‘Silicon Valley’. As the
first Chinese megacity among C40 Cities Climate Leadership Group members, Shenzhen
has been leading in economic growth and environmental improvement. In the process of
Shenzhen’s rapid social and economic development, its carbon emissions per capita have
always been at a low level [27].

By 2021, with a resident population of 17.6 million and an urbanization rate of 100%,
it became China’s economic center city and one of the mega-cities with the best economic
benefits. According to the China Net Zero Carbon City Development Report (2022) [28],
Shenzhen leads China in the net zero carbon index, which shows that Shenzhen has actively
become a low-carbon pioneer city with the theme of innovation leading the sustainable
development of megacities, and has made great efforts in protecting the ecological en-
vironment, promoting green and low-carbon development, and enhancing the balanced
development between the environment, economy, and society in recent years.

3.2. City Input-Output Tables

Shenzhen has not published its I-O table. Applying a non-survey method by
Zheng et al. (2021) [29], we have harnessed the relevant economic data, treating the
Guangdong provincial IO tables as a benchmark to expand, estimate, and compile the I-O
table of Shenzhen. The data were obtained from the Guangdong IO table, and the city and
Guangdong statistical yearbooks [30]. When estimating the inflow and outflow of each
region in the province, it was assumed that the trade pattern of the inflow and outflow of
each region in the province is equal and that that outside the province is also applied to
the trade pattern of each region in the province. The column coefficient decomposition
method was used to decompose the inflow and outflow data of each region, and then the
decomposed results were adjusted and modified by RAS (also known as a “biproportional”
matrix balancing technique; the R is referred to as a diagonal matrix of elements modifying
rows, the A as the coefficient matrix being modified, and the S as a diagonal matrix of
column modifiers.) [31] until the equal requirements of inflow and outflow between regions
in the province were met.

We used the Guangdong province IO table in 2017 to prepare the Shenzhen IO Table
2017 and updated it to obtain the IO tables in 2015 and 2019. Further, according to the
method by Liu and Peng (2010) [32], we deflated the updated price city I-O tables. The
price indices used in the deflation process came from the Shenzhen Statistical Yearbook [33].
The final step was to aggregate sector classifications in various data into 12 sectors shown
in Table 2 based on the characteristics of the industrial structure of Shenzhen.

3.3. Energy Data

According to the energy consumption structure of Shenzhen, we utilized the terminal
energy consumption data to represent that of various sub-sectors and aggregate different
types of energy into five fuel types (including coal, oil, gas, external power supply, and
primary electricity, in a unit of tons of coal equivalent). The data on energy consumption in
Shenzhen came from the Shenzhen Statistical Yearbook [33] and other public data. In detail,
the industrial energy data came from the data released by the Shenzhen Bureau of Statistics.
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Applying the proportional conversion method referred to that used by Shan et al. (2017) [34],
we constructed the provincial-city index based on the Guangdong Statistical Yearbook [30]
to obtain the energy data of other sectors. In addition, the sectoral classification of energy
data needed to be consistent with the sectoral classification of urban IO tables.

Table 2. Sector Information.

Sectors

s1 Agriculture, forestry, hunting, and fishery
s2 Mining industry
s3 Other manufacturing industries
s4 General equipment manufacturing
s5 Special equipment manufacturing
s6 Electrical machinery and equipment manufacturing
s7 Communication, computer, and other electronic equipment manufacturing
s8 Electricity, gas, and water supply
s9 Construction

s10 Transportation, warehousing, and postal
s11 Wholesale and retail accommodation and catering
s12 Other services

3.4. City Carbon Dioxide Emissions

We calculated urban carbon emissions from energy activities according to the “top-down”
reference approach proposed by Liu et al. (2018) [35,36]. Because the data of the Scope
3 emissions were not available, we only calculated the carbon emissions of Shenzhen in
Scope 1 and 2.

As for emission factors, sector-specific factors in Shenzhen were obtained from guide-
lines for the compilation of provincial greenhouse gas inventories [37] and guidelines for
the compilation of greenhouse gas inventory in cities and counties (districts) of Guangdong
Province [38]. More than 60% of Shenzhen’s power consumption comes from external
power supplied by the southern power grid. As the emission factor of the Southern Power
Grid varies with the proportion of installed capacity of non-fossil energy, this study pre-
dicted the factor from 2019 to 2030 based on the social responsibility report of Southern
Power Grid 2020 [39]. Moreover, adjustments were made based on industrial structure
characteristics, so that the sectoral classification of the adjusted urban carbon emissions
inventory was consistent with that of the city IO table.

4. Scenario Analysis
4.1. Scenario Definition

In this study, a scenario analysis was conducted to measure the impact of industrial
structure adjustment on carbon emissions and evaluate the emission reduction potential of
industrial structure optimization. For convenient analysis, we took 2019 and 2030 as the
reference and target years, respectively. Specific scenario design details are as follows:

(1) Business as usual scenario (BAU). This study set Shenzhen’s GDP growth rate from
2019 to 2030 to decrease by 0.1% per year based on Shenzhen’s GDP growth rate of 6.9%
in 2019. From 2019 to 2030, Shenzhen’s industrial structure remained unchanged, that is,
it kept the same structure as that in 2019. From 2019 to 2030, based on the growth rate of
energy consumption of 3.8% in 2019, this paper set the growth rate of energy consumption
to decrease by 0.1% every year. Meanwhile, based on the growth rate of carbon emissions
of 2.8% in 2019, the growth rate of carbon emissions was set to decrease by 0.4% per
year, and decrease by 0.3% per year after it was less than 0 between 2019 and 2030. The
details of Shenzhen’s economic growth rate and other parameter settings are shown in
Appendix A, Table A1. (2) Structure optimization scenario (OPT). Compared with the BAU
scenario, the only difference is that to better evaluate the emission reduction potential
generated by the optimization of industrial structure, we adjusted the industrial structure
of Shenzhen in the model, such as screening industries that are encouraged and limited to
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develop and setting growth restrictions on all industries. Finally, the details of industrial
restructuring are shown in Section 4.2.

Finally, three main research stages were included in this study: 2019–2020, 2021–2025,
and 2026–2030; the difference in carbon emissions between BAU and OPT is defined as the
emission reduction potential of industrial restructuring.

4.2. Sectors Screening

By introducing the industrial linkage approach, Chang et al. (2015) screened encour-
aged and limited sectors based on historical and existing data. However, the above method
can analyze the development of industries in the past and cannot predict the development
trend of emerging industries.

To fill the gap, this study first screened out the encouraged sectors based on
government planning and other public documents; then, referring to the research by
Chang et al. (2015) [22], we introduced the industrial linkage coefficient and eliminated
the sectors closely related to residents’ lives to determine the restricted sectors. Finally, for
encouraged industries, the upper limit of structural adjustment is assumed to be 4% in
2019 and will increase linearly by 0.2% per year, the lower limit is 0; for limited industries,
the lower limit of structural adjustment is assumed to be −4% and will decrease linearly by
0.2% per year, the upper limit is 0; for other industries, the lower limit of structural adjust-
ment is assumed to be −4.7% in 2019 and will decrease linearly by 0.2% per year, the upper
limit of structural adjustment is assumed to be 4.7% in 2019 and will increase linearly by
0.2% per year (Figure A1). The details of the parameter settings are shown in Appendix A,
Table A1. According to the 14th Five-Year Plan of Scientific and Technological Innovation
in Shenzhen [40], the sectors encouraged by Shenzhen were selected, which included:
high-end manufacturing equipment (S4–S6), new generation electronic information (S7),
and modern service (S12). As shown in Figure A2, the restricted sectors in which both
the influence coefficient and the sensitivity coefficient are less than 1 are Agriculture,
Forestry, Hunting and Fishery (S1), Mining (S2), Electricity, Gas, and Water Supply (S8),
Transportation, Warehousing and Postal (S10), and Wholesale and Retail Accommodation
and Catering (S11); among these, S8, 10, and 11 are all public basic industries related to
people’s livelihoods, so they were excluded from the restricted development sectors. In
Other Manufacturing (S3), the papermaking and metal manufacturing industries belong
to high energy consumption, heavy pollution, and high emissions, which account for a
relatively high proportion of S3, and their development should be restricted. Meanwhile, to
rectify the disorderly expansion of the construction industry (S9) to suppress the demand
for high energy-consuming raw materials, its rapid development should be limited. Finally,
we determined four industries that need to be restricted (S1–3, S9) and five industries that
need to be encouraged (S4–7, S12).

5. Results and Discussion
5.1. Pathway to Peak CO2 Emissions

The results show that Shenzhen has formed a characteristic industrial structure and
mode of economic development, which is dominated by the tertiary industry and driven
by advanced manufacturing and modern service industries (Figure 1). Shenzhen’s GDP is
predicted to grow at an average annual rate of 6.5% between 2019 and 2030 and become
the third city in China to exceed CNY 4 trillion ($500 billion at 2019 price levels) in 2026.
During the study period, the secondary industry will grow at an average annual rate of
5.2%, the added value will reach CNY 1.9 trillion, and its proportion in GDP will drop from
41.4 to 36.3%, of which the proportion of high-end manufacturing will increase sharply by
nearly 7%. Meanwhile, the tertiary industry will grow at an average annual rate of 7.33%,
and its added value will increase by 1.2 times to CNY 3.4 trillion, rising from 58.5% in 2019
to 63.7% in 2030.
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Figure 1. The carbon peak path of economic structure adjustment in Shenzhen from 2019 to 2030.
The X-axis represents the added value of industries (in units of CNY 1 trillion); the Y-axis represents
the relative value of carbon emissions with 2019 as the base year; the direction of the solid triangle
highlights the trend of emissions growth, and the inverted diamond indicates that carbon emissions
have reached the peak level.

In 2026, the CO2 peak level will increase by 6.8% and the average annual growth rate
of CO2 will drop to 0.9%. Carbon emissions will decline rapidly after a period of peak
“plateau”, and the cumulative emissions will reach 934.2 Mt CO2 by 2030. From 2019 to
2030, Shenzhen’s land space and environmental resources will gradually become saturated,
the population growth trend will continue to slow down, and the direct household carbon
emission increment will show an accelerated downward trend, with an average annual
growth rate of only 1.8%, increasing from 13.2 to 15.7%. The carbon intensity of Shenzhen
will drop by 48.8%, from 0.28 tons/ten thousand yuan to 0.20 tons/ten thousand yuan in
2025 and 0.14 tons/ten thousand yuan in 2030, which can meet the emission reduction
targets of Guangdong Province.

5.2. Industrial Restructuring Helps to Achieve a Carbon Peak

Shenzhen’s economic restructuring is mainly a process of “Substituting high-carbon
and low-value-added industries for low-carbon and high-value-added industries”, as
shown in Figure 2. With the upgrading of industrial structure, carbon emissions can
reach the peak level in 2025, with the peak level increasing by 5.4%. The GDP of the
primary industry decreased by CNY 220 billion, and the structural proportion decreased
by 0.1 percentage points; With the adjustment of industrial structure, the carbon emission
of the primary industry showed an accelerated downward trend, and the carbon emission
intensity decreased by 21.7%; the influence of industrial structure on carbon peak goals
gradually increased. Dominating by strategic emerging industries, the accelerated develop-
ment of the advanced manufacturing industry helped the GDP of the secondary industry
increase by CNY 41.61 billion, and the structural proportion decreased by 2.8 percentage
points. Among them, other manufacturing industries with high emissions and low added
value have the largest structural decline, and their structural proportion has decreased by
1.6 percentage points. From 2019 to 2025, the carbon emission of the secondary industry
increased by 1.0 Mt, and the carbon emission intensity decreased from 0.34 in 2019 to
0.24 in 2025, with a decrease of 29.6%. Shenzhen has made great efforts to develop its dis-
tinctive low-carbon service industry, the added value of the tertiary industry has increased
rapidly, by CNY 85.24 billion, and its structure ratio has increased by 3.3%. Meanwhile,
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the growth rate of carbon emissions in the tertiary industry has been slowing down, and
the carbon emission intensity has decreased by 18.4%. In particularly, the carbon emission
intensity of the modern service industry with “low emissions and high added value” has
dropped the fastest among all industries, reaching 31.2%.
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Shenzhen will accelerate the structural adjustment of the industrial sector and phase
out the disqualified production capacity of other manufacturing (S3) (including low added
value, high energy consumption, and high emissions sub-sectors), and the structural
proportion of S3 will decline by 1.6%, with a cumulative increase of−0.6 Mt CO2. Advanced
manufacturing (S4–7) sectors are the leading sectors in Shenzhen. By 2025, the added
value will increase by 47.4%, accounting for a significant increase in the proportion of the
manufacturing industry, with a cumulative contribution of 0.2 Mt CO2. The unprecedented
development of new energy projects, such as roof photovoltaic, gas, nuclear power, and
hydrogen energy, will increase the demand for power generation equipment and products,
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which will increase the added value of electrical machinery (S6) by 54.0%, contributing to
the increment of 0.1 Mt CO2. As the growth trend of S6 emissions is ”U”-shaped, its carbon
emissions have the potential for further growth from 2025–2030. By 2025, the added value
of electronic communication (S7) will increase by 47.5%. However, due to the high degree
of electrification and the application of energy-saving technology, the growth rate of power
demand will slow down, and the emission factor of the China Southern Power Grid will
decline rapidly, resulting in a reduction in the growth rate of emissions, with an average
annual growth rate of only 0.2%.

Notably, the Electric power (S8) and Transportation industries (S10) have the high-
est carbon emissions and the largest carbon intensity, making them the two most critical
sectors for achieving a carbon peak. The share of value added in these two sectors re-
mained virtually unchanged between 2019 and 2021, contributing 85.5% of the incremental
emissions (2.1 Mt CO2). From the 14th FYP (referring specifically to the 14th five-year
plan of the national economy), with the upgrading of industrial structure, the structural
proportion of Electricity (S8) will change by −0.2%, which will exert a significant “forced”
effect on the optimization of energy structure. The relevant policies of the 14th FYP will
promote the coal-fired power generation in Mawan Power Plant to upcycle, as well as
the unprecedented development of nuclear and gas power. The local power supply struc-
ture will be cleaner and low-carbon, and the carbon emissions of the power industry will
also decrease at an accelerated trend, decreasing by 1.1 Mt CO2. By phasing out high
energy-consuming vehicles, vigorously promoting new energy vehicles, promoting the
construction of low-carbon logistics systems [30], intelligent transportation information sys-
tems, unprecedentedly developing the modern logistics industry [41], and other structural
adjustment measures, the carbon emission increment of the Transportation sector (S10) will
drop rapidly, and the carbon emission increment will decrease by 72.0% by 2024. However,
due to the improvement in household income and living standards, Shenzhen’s number
of private cars will continue to increase sharply. From 2024 to 2025, carbon emissions
from the transport sector will increase by 1.4 Mt, but the emission reduction in the power
sector will offset the increase. During the 14th FYP period, the added value of other service
industries (S12) will increase by more than 8% annually, while its carbon emissions will
grow smoothly. By developing industries such as characteristic low-carbon tourism and
exhibition services, other service (S12) will become the leading industry to realize the peak
goal (See Figure A3). To summarize, the substitution of low-carbon and high-value-added
industries for high-carbon and low-value-added industries has played a key role in the
decrease in carbon emissions per unit GDP in Shenzhen. See LMDI analysis (Section 5.3)
for detailed quantitative analysis.

Following the approach by Su et al. (2021), the logarithmic mean divisor index (LMDI)
was used to test the main driving factors of CO2 emissions in Shenzhen from 2020 to 2030.
To briefly explain the role of industrial structure adjustment, from the perspective of the
five decomposition factors in the figure, this paper only analyzes the carbon emissions
from 2020 to 2025 and from 2025 to 2030. According to the results of the LMDI analysis, the
economic structure adjustment effect contributed 164.4% of emission reductions between
2020–2025 and 33.4% between 2025–2030. As seen in Figure 3a, the restructuring effect on
the emission reduction of the secondary industry has been gradually enhanced, which will
lead to a remarkable reduction in carbon emissions in both periods. As shown in Figure 3b,
from 2025 to 2030, the industrial structure adjustment alone will have little impact on
the tertiary industry. As seen in Figure 3c, with the demand for transportation services
increasing, the activity effect will significantly promote the growth of carbon emissions
in the tertiary industry, but the improvement of energy efficiency in the tertiary industry
caused by the upgrading of industrial structure will inhibit the greater growth of emissions.
Finally, industrial transformation and upgrading have a significant inhibitory effect on the
growth of urban carbon emissions.
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5.3. Industrial Restructuring Balances Carbon Peak and Economic Growth

Under the BAU scenario, carbon emissions will increase with economic growth, and
conflicts exist between economic development and carbon peak goals. Without adjusting
the industrial structure, environmental protection is sacrificed to promote economic growth
to some extent. Compared with the BAU scenario, the added value in the OPT scenario
grows faster, with the difference reaching CNY 59.1 billion, and the emission level is much
lower than that in the BAU scenario.

The secondary and tertiary industrial structure will be remarkably adjusted from 2019
to 2030. The secondary industry is developing toward high-end, low-carbon, and clean,
with the proportion of structure falling from 41.4 to 36.3%, and the share of emissions from
57.6 to 35.8%. The decline in the proportion of emissions is 4.3 times that of the proportion
of structure. In the tertiary industry, the modern service industry is characterized by low
emissions and high value added. Between 2019 and 2030, the proportion of such industry
in total added value will rise from 45.2 to 52.0%, an increase of 6.8%, but the proportion of
emissions will only rise from 8.6 to 9.8%, an increase of 1.3%, and the increase in structure
is 5.3 times that of emissions.

Thus, the optimization of industrial structure promotes economic growth, provides
the feasibility for reducing carbon emissions, and can cooperate to achieve low-carbon
transformation and high-quality development. The industrial restructuring will not only
maintain a high level of economic growth but also promote the continuous narrowing of
the growth rate of emissions, which will successfully resolve the conflicts between carbon
peak and economic growth.
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5.4. Potential Carbon Emission Reduction of Industrial Restructuring

The emission reduction potential of structural adjustment increases marginally over
time, as shown in Figure 4. The potential in the first stage is 0.1 Mt CO2, in the second
stage increases to 2.4 Mt CO2, and in the third stage reaches 5.6 Mt CO2. Between 2025
and 2030, the total emission reduction potential will reach 31.5 Mt, accounting for 79.6%
of the total emission reduction potential between 2019 and 2030, which shows that the
adjustment of the industrial structure still has important implications for the realization
of carbon neutrality after helping Shenzhen achieve carbon peak. From 2019 to 2030, the
industries with emission reduction potential exceeding 5.0 Mt CO2 are Electricity (S8),
Wholesale and Retail, Accommodation and Catering (S11), Other Manufacturing (S3), and
Mining (S2). Among them, the mining industry is energy-intensive. With the continuous
upgrading of the industry, the emission reduction potential before reaching the peak level
can reach 0.9 Mt CO2. Then, the emission reduction potential of industrial restructuring
will increase fourfold. Industries with low added value and high energy consumption
account for a relatively high proportion in Other Manufacturing (S3). By phasing out these
industries, the emission reduction potential will reach 2.4 Mt CO2. From 2025 to 2030, by
continuously reducing the proportion of low and medium value-added manufacturing
industries, the potential of 3.3 Mt CO2 emission reduction can be further achieved, which
can not only ensure high-quality growth but also achieve the goal of green and low-carbon
transformation of society.
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Electricity (S8) has the greatest carbon emission reduction potential, with an average
annual emission reduction of 5.9 Mt CO2. The underlying causes may be that with the
advanced manufacturing industry, the development and application of energy-saving
technologies and the implementation of strict green building energy conservation and
environmental protection standards in the construction industry will greatly reduce power
demand. In addition, in the urban power supply structure, local coal-fired power will
gradually withdraw, the proportion of clean power (including gas and external power
supplies) will rise dramatically, and the power industry will attain a substantial amount of
carbon emission reduction potential. From 2020 to 2025, the emission reduction potential
of Wholesale, Retail, Accommodation and Catering (S11) will be 0.6 Mt CO2, while in
2025–2030, the emission reduction potential will increase nine-fold, reaching 5.7 Mt CO2,
which may be due to the surge in green and low-carbon consumption demand from 2025
to 2030.

The optimization of the industrial structure will have a measurable suppression effect
on carbon emissions. Electricity (S8), Wholesale and Retail, Accommodation and Catering
(S11) will contribute 83.5% of the emission reduction potential, making them the two sectors
that are benefitting the most from structural adjustment. Meanwhile, the emission reduction
potential of Mining (S2), Special equipment manufacturing (S5), Communication electronics
(S7), and Electricity (S8) in 2025–2030 is far greater than that in 2020–2025, which indicates
that these sectors are the key driving forces for carbon emission reduction in 2025–2030. By
optimizing the structure of these sectors, considerable potential can be attained.

Based on the results of model optimization, this section further analyzes which in-
dustries can tap the emission reduction potential. Figure 5 shows the industrial structure
change and its carbon emission reduction potential in Shenzhen from 2019 to 2030. From
the perspective of industrial structure adjustment, the adjustment of industrial structure
mainly showed that the proportion of other manufacturing industries decreased, and the
proportion of modern service industries increased in 2019–2025, while the proportion of
accommodation and catering in the service industry decreased, and the modern service
industry increased further in 2026–2030.

From 2019 to 2021, the proportion of power industry (S8) structure decreased by
0.02%, and its emission reduction potential was 0.55 Mt CO2, while the proportion of
transportation industry (S10) structure increased by 0.06%, and its emission reduction
potential was −0.79 Mt CO2. During this period, the power industry had the greatest
emission reduction potential, while the transportation industry could achieve the greatest
emission reduction through structural optimization. In 2021–2023 and 2023–2025, electric
power decreased by 0.19%, and the emission reduction potential could reach 6.58 Mt CO2;
The modern service industry has increased by 2.55%, and its emission reduction potential is
−1.25 Mt CO2. In these two periods, the power industry has the largest emission reduction
potential, while the modern service industry has the largest emission reduction space. From
2026 to 2030, the electric power decreased by 0.76%, and the emission reduction potential
reached 57.61 Mt CO2, while the transportation industry and the electrical machinery and
equipment manufacturing industry (s6) increased by 1.05% and 1.53%, respectively, and
the emission reduction potentials were −33.49 Mt CO2 and −3.53 Mt CO2, respectively.
At this stage, the structural optimization of the transportation industry and the electrical
machinery and equipment manufacturing industry can be maximized.

To summarize, from 2019 to 2030, the electric power industry and the transportation
industry are the two most important and core sectors. Shenzhen can realize its emis-
sion reduction potential through the electric power industry, transportation industry, and
communication and electronics industry (after realizing the carbon peak goals) through
industrial structure adjustment. As shown in Figure 3, after 2023, with the development of
digital agricultural services, the emission reduction potential of the agriculture industry
has been released, and it has become one of the important sectors for emission reduction.

Overall, we can concentrate on exploring the emission reduction potential of the elec-
tric power, transportation, communications, and electronics industries through industrial
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structure adjustment between 2019 and 2023. After 2023, with the rapid development of
digital agricultural services, carbon emission reduction potential will be released making it
one of the important sectors of emission reduction.
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5.5. Validation of the Industrial Restructuring Reliability

When applying the I-O optimization model at the city level, setting different economic
parameters may lead to unreliable analysis results in terms of GDP, economic structure,
energy consumption, carbon emission intensity, etc. Generally, qualitative and quantitative
methods can be used to validate the reliability of the model operation results. To enhance
the reliability of industrial restructuring analysis results, this study explained the reliability
of the application of the input-output optimization model at the city level from two perspec-
tives. The first is comparing the model results with government planning. In terms of GDP,
Shenzhen’s 14th five-year plan clearly stated that the GDP growth rate would reach 6%
and the total added value would exceed CNY 4 trillion by 2025; Our model results showed
that the GDP growth rate of Shenzhen would reach 6.5% by 2025 (without considering the
impact of the COVID-19), and the difference between them was 2.3%, which met the gov-
ernment planning. In terms of economic structure, Shenzhen strives to develop advanced
manufacturing, especially strategic emerging industries; the model results show that the
proportion of advanced manufacturing would rapidly increase from 61.6% in 2019 to 65.8%
in 2025 and 68.4% in 2030. The rapid development of strategic emerging industries is in line
with Shenzhen’s development plan; meanwhile, according to the 14th Five-Year Plan of
Shenzhen’s service industry development [42], the added value of the service industry will
exceed CNY 2.5 trillion in 2025, of which the added value of the modern service industry
will account for 77%; the model results showed that the added value of the service industry
would be CNY 2.4 trillion in 2025, and the added value of the modern service industry
would account for 79.0%, which is in line with the government’s planning goal. In terms
of energy consumption, the energy growth rate in the 13th Five-Year Plan period was as
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high as 3.8%, while our model results showed that the energy growth rate was only 2.7% in
the 14th Five-Year Plan period and 1.7% in the 15th Five-Year Plan period; the significant
drop in energy consumption met the requirements of Shenzhen’s energy development
plan. In terms of carbon emission intensity, China’s emission reduction target during the
14th Five-Year Plan period is to reduce carbon emission intensity by 18%, while the model
results showed that Shenzhen’s carbon emission intensity decreased by 20.6% during the
14th Five-Year Plan period, and Shenzhen completed the emission reduction target.

By comparing the model results with similar megacities, it can be seen that among
the global megacities, Shenzhen’s economic development level is similar to that of Singa-
pore. The model results showed that the per capita GDP of Shenzhen from 2020 to 2030
is $23,274–38,250 (based on 2019), and the service industry accounts for 58.8–63.7% of
GDP; From 1999 to 2009, Singapore’s per capita GDP was $21796–38927, with the service
industry accounting for 62.1–68.0% of GDP, hence the structure of Shenzhen’s economic
development is reasonable (63.7% < 68.0%). Among China’s megacities, Hong Kong’s
per capita GDP was $24,655–38,403 from 2002 to 2013. As an economy dominated by the
financial industry, Hong Kong’s service industry accounted for 85.6–91.1%. The model
results showed that, as a postindustrial city, the economic structure of Shenzhen would be
reasonable (63.7% < 85.6%).

6. Conclusions

Through applying the I-O optimization model, we have explored how megacities
can achieve peak carbon emissions and high-quality development in synergy through eco-
nomic restructuring, and qualitatively and quantitatively estimated its emission reduction
potential. The upgrading of the industrial structure can help Shenzhen achieve its carbon
peak. The advanced manufacturing industry with high added value, low carbon, and
clean in the secondary industry is growing steadily, and the economic development model
of the tertiary industry is maintaining high growth, high efficiency, and low emission,
which makes Shenzhen maintain an average annual growth rate of 6.5%, while the carbon
emissions can quickly reach the peak level. Among them, industrial restructuring will force
the upgrading of energy structure, reduce energy intensity, and improve energy efficiency.
Electricity (S8) will become the most critical sector in reducing emissions by gradually
phasing out local coal-fired units, increasing the power generation time of gas-fired power
plants, and building new gas-fired units. Overall, to thoroughly develop the emission
reduction potential of industrial structure adjustment, it is necessary to rectify and eliminate
the disqualified production capacity with high energy consumption and high pollution in
traditional manufacturing industries, deploy seven strategic emerging industries (includ-
ing new generation information technology industry, digital economy industry, high-end
equipment manufacturing industry, green low-carbon industry, marine economy industry,
new material industry, and biomedical industry), facilitate the rapid transformation of the
power industry structure, and dramatically develop low-carbon service industries.

The structural emission reduction potential shows a marginal increasing trend, with
four industries, Electricity (S8), Wholesale and Retail, Accommodation and Catering (S11),
Mining (S2), and Other manufacturing (S3) accounting for 96.74% of the total emission
reduction potential. At the same time, as the industry with the largest and fastest car-
bon emission growth, the transportation industry has substantial potential for emission
reduction. Its emission reduction potential can be developed through restructuring and
technical innovation, such as speeding up the replacement of oil for trucks with gas, elimi-
nating small-scale and low-end freight logistics, developing low-carbon logistics systems,
restraining the growth of total demand in the transportation sector, adjusting the fuel struc-
ture for private vehicles, increasing investment in public transportation, and encouraging
green commutes.

This study assumes that the technical coefficient matrix will remain unchanged in
the short term; it can be revised and updated through the RAS method in the future.
Additionally, China recently proposed the construction of the “dual circulation” high-
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quality development paradigm based on domestic demand, which will have an impact
on the final consumption ratio of Shenzhen, and then affect the model results. Moreover,
due to the diversity and complexity of carbon dioxide emission sources, it is insufficient to
rely on restructuring alone to reduce emissions; in the long run, relevant policy strategies
for structural adjustments of energy, consumption, and exports are worthy of further
study. Finally, the socio-economic impact of different peak years can be further analyzed to
provide policymakers with research programs on different peak paths.
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Appendix A

Appendix A.1. Industrial Linkage Analysis

Due to the complexity of the economic system and the correlation between industries,
to realize the green and low-carbon transformation, the industrial structure adjustment
needs to consider the inhibitory effect of industrial linkage and needs to identify the
restricted and encouraged industries to make precise adjustments to various industries.
Based on the urban input-output table, this study screened restricted and encouraged
industries by calculating the influence coefficient and sensitivity coefficient of each industry.

Appendix A.1.1. Influence Coefficient

Rasmussen et al. (1956) proposed the influence coefficient (also known as backward
linkage coefficient) based on the Leontief inverse matrix, which measures the pulling ability
of a department on the economy and indicates the influence of products that increase per
unit output value of a certain industry on the production demand of other industries [43]. If
the value is greater than 1, it indicates that the influence of the development of the industry
on other industries exceeds the average level of the economic system. The calculation
formula is as follows:

BLj =
1
n ∑n

i=1 bij
1

n2 ∑n
i=1 ∑n

j=1 bij
(j = 1, 2, . . . , n) (A1)

where BLj represents the influence coefficient of sector j, bij is an element in Leontief inverse
matrix (B = (I − A)−1). The larger the influence coefficient, the greater the pulling effect
of this industry on other industries.

Appendix A.1.2. Sensitivity Coefficient

Jones et al. (1976) proposed the induction coefficient (forward linkage coefficient)
based on the Ghosh inverse matrix to measure the driving ability of a certain department
to the economy, indicating the demand induction degree of a certain industry when each
industry increases products per unit output value [44]. If the value is greater than 1, it
indicates that the demand sensing ability of the industry to the development of other
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industries exceeds the average level of the economic system. The calculation formula is
as follows:

FLi =
1
n ∑n

j=1 gij
1

n2 ∑n
i=1 ∑n

j=1 gij
(i = 1, 2, . . . , n) (A2)

where FLi represents the sensitivity coefficient of industry i, and gij is an element in Ghosh
inverse matrix (G = (1− H)−1)). The larger the sensitivity coefficient, the greater the
promotion effect of this industry on other industries.

Appendix A.2. Logarithmic Mean Divisor Index Analysis

In this study, logarithmic mean divisor index (LMDI) approach was used to test the
main driving factors of CO2 emissions in Shenzhen from 2020 to 2030. Changes in carbon
emissions can be decomposed into the sum of five influencing factors: economic activity,
industrial structure, energy intensity, energy structure and CO2 emission factor:

∆C = ∆Cact + ∆Cstr + ∆Cint + ∆Cmix + ∆Ce f (A3)

where δc represents total changes in carbon emissions; ∆Cact represents industrial activity
level; ∆Cint represents energy intensity; ∆Cmix indicates energy mix structure; ∆Ce f represents
CO2 emission factor.

The industrial structure effect can be expressed as follows:

∆Cstr = ∑
ij

ct
ij − ct0

ij

lnct
ij − lnc0

ij
ln

strt
i

str0
i

(A4)

Appendix A.3. Data Setting

Appendix A.3.1. Sectoral Classification

In 2019, the primary industry in Shenzhen accounted for a relatively low proportion.
The primary industry was merged into agriculture, forestry, animal husbandry, and fishery
(S1) (agriculture for short). In the secondary industry, coal, oil and gas, metal, non-metallic,
and other mining products account for less than 1% of the total structure, and they are
merged into the mining industry (S2).

Among the secondary industries, general equipment manufacturing (S4), special
equipment manufacturing (S5), electrical machinery and equipment manufacturing (S6),
communication equipment, computer, and other electronic equipment manufacturing (S7)
(Abbreviated as Communication electronics) account for nearly 70% of the manufacturing
industry and are closely related to eight strategic emerging industries. In the secondary
industry—besides Mining (S2), Other manufacturing (S3), Advanced manufacturing (S4–7),
and Construction (S9)—Electricity, Heat, Water, and Gas production and supply industries
were merged into Electricity, Heat, Gas, and Water supply (S8) (Abbreviated as Electricity)
to highlight the characteristics of Shenzhen’s industrial structure,.

The tertiary industry can be divided into Transport, Postal and Warehousing (S10)
(Abbreviated as Transportation), wholesale and retail, accommodation and catering (S11),
Other services (S12). Detailed sectoral classification information can be found in Table 2.

Appendix A.3.2. Exogenous Parameter Setting

Table A1 shows the setting of a series of parameters in the model.
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Table A1. The settings of exogenous parameters in the model.

Para-Meter Parameter Definition Data Sources Parameter Setting

αt
Average annual growth

rate of GDP
Shenzhen 14th Five-Year Plan [41],

Reasonable assumption

GDP growth rate was 6.9% in 2019 and actual
growth rate was 6.7% in 2021. Shenzhen plans
to reach CNY 4 trillion at the end of the 14th
Five-Year Plan. Based on this, it is reasonably

assumed that the added value will linearly
decrease by 0.1% every year.

bikt Energy structure Guangdong 14th Five-Year Energy
Plan [45], reasonable assumption —

βt
Energy consumption

growth rate
Mi et al. (2017) and

Su et al. (2020) studies

It was 3.8% in 2019, and it is assumed that it
will decrease linearly by 0.1% every

year thereafter.

γt
Energy intensity

decline rate
Shenzhen 14th Five-Year Plan,

reasonable assumption

It was 2.8% in 2019, and it is assumed that it
will decrease linearly by 0.1% every

year thereafter.

dikt Emission factor Existing data, China Southern Power
Grid Report [39] _

εt
Carbon emission

growth rate Historical data
It was 2.8% in 2019, and it is assumed that it

will decrease linearly by 0.1% every year
thereafter and reach zero in 2026.

εt
Carbon intensity

decline rate
Shenzhen 14th Five-Year Plan,

reasonable assumption

The carbon emission intensity reduction target
in the 14th FYP is 18%, and it is assumed that

in the 15th FYP it is also 18%.

mit

Employment
opportunities brought
about by unit added
value in sector i in

period t

Historical data

During 2015–2019, the employment
opportunities provided by a unit of

manufacturing added value were 4.98%
annually. It is assumed that it will decrease
linearly by 0.2% annually during 2019–2030,

assuming that the added value employment of
other industries remains unchanged.

popt

Average annual growth
rate of the resident

population
Shenzhen 14th Five-Year Plan —

qt

Structural adjustment
cap for encouraged

industries

Mi et al. (2017) and Su et al. (2020)
studies, reasonable assumption

The upper limit of structural adjustment is
assumed to be 4% in 2019 and will increase

linearly by 0.2% per year.

ρt

Structure adjustment
floor for

limited industries

Mi et al. (2017) and
Su et al. (2020) studies

The upper limit of structural adjustment is
assumed to be −4% in 2019 and will decrease

linearly by 0.2% per year.

µt
Structural adjustment

cap for other industries
Mi et al. (2017) and Su et al. (2020)

studies, reasonable assumption

The average growth rate of industrial structure
adjustment in 2015–2019 was 4.7% and is

assumed that it will increase linearly by 0.2%
every year thereafter.

ηt
Structural adjustment

floor for other industries
Mi et al. (2017) and Su et al. (2020)

studies, reasonable assumption

The average growth rate of industrial structure
adjustment in 2015–2019 was −4.7% and is

assumed that it will decrease linearly by 0.2%
every year thereafter.

θ1
Lower limit of

consumption in GDP Historical data Between 2015 and 2019, the minimum
consumption proportion was 35%.

θ2
Upper limit of

consumption in GDP Historical data Between 2015 and 2019, the maximum
consumption proportion was 45%.
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Appendix A.4. Additional Results
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rate from 2015 to 2019; The line represents the average change rate of industrial structure from 2015 
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Figure A1. The proportion of industrial structure of 12 sectors in Shenzhen and their average change
rate from 2015 to 2019; The line represents the average change rate of industrial structure from 2015
to 2019, the highest value is 4.7%, and the lowest is −4.5%; The structure proportion of 12 industries
in 2019 is marked.
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