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Abstract: To enhance the stable performance of wind farm (WF) equivalent models in uncertain
operating scenarios, a model-data-driven equivalent modeling method for doubly-fed induction
generator (DFIG)-based WFs is proposed. Firstly, the aggregation-based WF equivalent models and
the equivalent methods for aggregated parameters are analyzed and compared. Two mechanism
models are selected from the perspective of practicality and complementarity of simulation accuracy.
Secondly, the simulation parameters are set through two sampling methods to construct a training
database. Next, the whole fault process is divided into five phases, and the weight coefficient opti-
mization model is established according to the data-driven idea to achieve the adaptive configuration
of the weight. Finally, the electromechanical transient simulations of the power systems with a DFIG-
based WF is carried out by using the MATLAB/Simulink platform. Compared with the detailed WF
model, the simulation time of the WF equivalent proposed in this paper can be significantly reduced
by about 87%, and simulation results show that the proposed method can effectively improve the
adaptability of the WF equivalent model in different wind scenarios and voltage dips.

Keywords: DFIG-based wind farm; general equivalent modeling; mechanism model; data-driven;
weight coefficient

1. Introduction

Increasing the penetration of large-scale wind farms (WFs), wind power has become
an important power source in power systems [1,2]. Wind power has randomness and
volatility, which brings deep changes in the operation mechanism [3–5]. To support rapid
development and reduce the operation risks, simulation technology is increasingly indis-
pensable to reflect the behavior of the actual power systems and lead scientific construction
of new-type electric power systems. Large-scale WFs may consist of hundreds or even
thousands of wind turbines (WTs), which could significantly enlarge the size of A model
and then cause the “curse of dimensionality” [6]. Therefore, the equivalent model, on the
basis of reasonable reduction from the detailed model, is essential to be developed.

Currently, the aggregation-based method, which was originally used in synchronous
generators, is widely applied to model a large-scale WF in the literature [7,8]. The ag-
gregated model can be divided into a single-machine equivalent model (SEM) and a
multi-machine equivalent model (MEM) [9]. The single-machine equivalent method, which
aggregates the whole WF into one equivalent WT, requires a small amount of calculation,
but it is hard to represent dynamic behaviors of a whole WF due to the distribution of
collector cables and wind speed differences across the WF. The multi-machine equivalent
method, which separates WTs of a WF into several clusters and aggregates each cluster
into one equivalent WT, generally represents WF characteristics better and has wider ap-
plications in practice [10]. The MEM includes two steps: (1) identify the group of WTs
with similar dynamic characteristics, and (2) obtain the aggregated parameters of the WTs,
transformers, and collector cables [11].
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During the past few decades, to obtain a better performance on WT clustering, wind
speed [12,13], rotor speed [14], the power characteristic curve [15,16], crowbar action [17,18],
chopper action [19] and other quantities have been fully investigated to be selected as the
clustering indicators. Wind speed is regarded as the primary clustering indicator. Crowbar
or chopper action is considered more suitable for grouping WTs when simulating low
voltage ride through characteristics. However, the selection of these clustering indicators is
generally based on specific time spots, and limitations universally exist in these studies. For
example, WT characteristics dynamically change along with the time that passes, and the
time spot-based clustering results are suitable in limited situations. In [20], WTs connected
to the same feeder were aggregated into one equivalent WT, but this approach, might
introduce large equivalent errors when wind speeds of WTs within a feeder have large
deviations. Recently, a WF equivalent modeling method based on feature influence factors
and improved back propagation (BP) neuron networks algorithm was proposed, which
improves the efficiency and accuracy when grouping large amounts of WTs [21]. The
clustering result is still calculated at a specific steady state, and keeps changing due to the
unpredictability of environmental scenarios. Therefore, the MEM based on the operation
point is stochastic, and both structures and parameters of the equivalent model are random.
Conclusions under different scenarios will also be different.

As for the uncertainty problem of the MEM, several studies propose a probabilistic
clustering concept for aggregate modeling of WFs. In [22], a weighted graph representing
relationship of the power of WTs was used to build the Markov chain in order to estimate
the probability that WTs belong to the same cluster. In [23], a probabilistic equivalent
model was constructed considering the probability distribution characteristics of wind
speed and wind direction in an actual DFIG-based WF. On this basis, the probability
distribution characteristics of the fault type is taken [24]. Moreover, the paper merges
clustering results with insignificant differences through the significance test of the Fisher
discriminant, and improves the generality of the probabilistic WF equivalent model. In [25],
historical meteorological data were utilized to investigate the probability distribution of
key equivalent parameters, such as capacity, wind speed and electrical impedance to the
point of common coupling. In [26], an equivalent model for mixed WFs based on BP neural
networks was constructed. However, it is difficult for this data-driven modeling approach
to achieve the desired simulation accuracy.

Accordingly, this paper proposes an innovative general equivalent modeling method
for DFIG-based WFs. The main contributions are listed as follows:

(1) The method of combining model-driven and data-driven is introduced into the re-
search on general equivalent modeling of DFIG-based WFs. For uncertain scenarios,
the established model has a wide range of adaptability.

(2) Meaningful insights into how to select mechanism models are provided. Considering
different calculation methods for the equivalent parameters of the collector cables,
two mechanism models with complementary characteristics are selected.

The remainder of this paper is organized as follows. In Section 2, the ideas and
methods based on a data-driven model are introduced. The two sampling methods and
training database construction are presented in detail in Section 3. In Section 4, the proposed
model is verified with different voltage dips and changing wind scenarios. The discussion
and conclusions are discussed in Sections 5 and 6.

2. Ideas and Methods

The following issues need to be taken into account for researching the general equiv-
alent modeling of DFIG-based WFs. One is how to cope with the simulation demand of
uncertain operation scenarios and enhance the adaptability of the general model, and the
other is how to improve the convenience of using the model while ensuring the accuracy of
the model and enhancing the engineering utility value.
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To address the two issues, the framework of the model-data-driven general equivalent
modeling method for DFIG-based WFs is shown in Figure 1, which includes selecting the
mechanism model, setting the weight coefficients, and constructing the training database.
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Figure 1. Framework of general equivalent modeling method.

2.1. Mechanism Model Selection

Suitable mechanism models can effectively improve the accuracy of the general equiv-
alent model. The mechanism model of DFIG-based WFs is developed with an aggregation-
based method, of which the SEM is the simplest, and the MEM by clustering WTs with
similar wind speeds or electrical distances is more common. Therefore, the three equivalent
models are tentatively selected as the mechanism models in the paper.

For the three mechanism models, the MATLAB/Simulink platform was used to con-
duct simulation studies and model accuracy analysis. The simulation results show that the
dynamic performances of the SEM and the MEM by clustering WTs with similar electrical
distances were almost the same, and the equivalent accuracy of both was lower than that
of the MEM by clustering WTs with similar wind speeds. Considering that the selected
mechanism model needs to have high accuracy, the MEM by clustering WTs with similar
wind speeds was finally chosen as the mechanism model.

In addition, the mechanism model needs to obtain the aggregated parameters of the
WTs, transformers, and collector cables. At present, the aggregated parameters of the WTs
have been widely agreed upon, i.e., the calculation of aggregated wind speed is based on
equal total wind energy, and the calculation of aggregated parameters of WTs is based
on the capacity weighting method. In addition, the calculation of aggregated parameters
of transformers is also based on the capacity weighting method. However, there are two
different calculation methods for the aggregated parameters of the collector cables. One is
the equal loss power method [27], and the other is the equal voltage dip method [28]. The
corresponding methods are detailed in Equations (1) and (2), respectively:

Zeq =

m
∑

i=1
(P2

Z_iZl_i)(
m
∑

i=1
Pi

)2 (1)

Zeq =

m
∑

i=1
(

i
∑

j=1
(Zl_jPZ_j)Pi)(
m
∑

i=1
Pi

)2 (2)

where Z1_i is the cable impedance of the ith WT branch, PZ_j is the total active power
flowing through the impedance Z1_j, Pi is the active power of the ith WT, and m is the
number of WTs in the clustering groups.
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The aggregated parameters of the collector cables calculated by the two methods had
a significant difference, especially for the WTs at the end of one feeder. Therefore, we
finally selected the mechanism model by clustering WTs with similar wind speeds, together
with the aggregated parameters of the collector cables by the equal power loss method,
as mechanism model 1 (MM1). The mechanism model clustering WTs with similar wind
speeds, together with the aggregated parameters of the collector cables by the equal voltage
dip method, was selected as mechanism model 2 (MM2).

2.2. The Data-Driven Adaptive Weight Optimization Model

To set the weight coefficients, the simplest way is to ignore the differences among mod-
els and assign the same weight. However, the accuracy of this general WF equivalent model
will not significantly improve compared to the traditional model. Therefore, we adopted
a time-varying weight coefficient, which means different models had different weight
coefficients, and the same model also had different weight coefficients in differen phases.

To find the best weight coefficients at different periods, the particle swarm optimization
(PSO) algorithm was adopted [29]. The fitness function of the PSO algorithm was set to the
root mean square error of the general WF equivalent model in different phases, that is:

opt f unction(ω1, ω2) =

√
n
∑

i=1
(

m
∑

k=1
[ω1y1(k) + ω2y2(k)− y0(k)]

2)

s.t. ω1, ω2 ∈ [0, 1]
(3)

where ω1,ω2 are the weight coefficients of MM1 and MM2 for a specific phase, respectively.
y1(k), y2(k) and y0(k) are the output values of MM1, MM2, and detailed WF model at the
kth sampling point within a phase, respectively, m is the number of sampling points, and n
is the sample size of the training data.

3. Data Source
3.1. Data Settings

The wind speed and external fault information are required for WF equivalent model-
ing. Considering the completeness of data samples, this paper adopts two ways to generate
data samples. One is simple random sampling within the selected range, and the other
is sampling based on the probability density function. For the first sampling method, six
scenarios were considered, i.e., low wind speed range (4.5~8.5 m/s), medium wind speed
range (8.5~12.5 m/s), high wind speed range (12.5~22 m/s), medium-low wind speed
range (4.5~12.5 m/s), and medium-high wind speed range (8.5~22 m/s) are considered.
Next, the input wind speed of each WT was randomly generated with equal probability by
ignoring the wake effect. The voltage dip at the point of connection (POC) was drawn with
equal probability in the range of 0.1~0.9 p.u. For the second sampling method, considering
the statistical characteristics of wind speeds, the wind speed and wind direction of the WF
were generated based on the probability density function. Next, the input wind speed of
each WT was derived based on the wake effect. In addition, the ground resistance values
were also extracted based on the probability density function.

In this paper, for the first sampling method, 50 sets of sample data were generated for
each scenario. For the second method, 200 sets of sample data were drawn according to
the probability.

3.2. Training Database

Taking the large capacity of data samples into account, we adopted the MATLAB
2020b platform to carry out numerical simulations using m-language programming and
Simulink to call each other. The simulation results were automatically stored and called for
the adaptive weight optimization model based on the PSO algorithm. The specific flow is
shown in Figure 2.
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4. Example Analysis
4.1. Example of Calculation

A detailed WF consisting of 28 × 1.5 MW DFIGs (DFIG_1—DFIG_28) was set up in
the MATLAB/Simulink platform, as shown in Figure 3. The model parameters are given
in Table A1.
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Compared with the simulation results of the detailed WF model (DM), error metrics
are defined as:

Er =
1
m

m

∑
k=1

∣∣∣∣yfk − yk
yk

∣∣∣∣× 100% (4)

Ea =
1
m

m

∑
k=1

∣∣yfk − yk
∣∣ (5)

where yk and y f k are the output values of the detailed WF model and the equivalent model
at the kth sampling point, respectively, and m is the number of sampling points.

4.2. Optimization of Adaptive Weight Coefficients

As previously commented in Section 2.2, the PSO algorithm was used to find the
optimal weight coefficients of the mechanism models. The numbers of population size
and iterations were set to 500 and 400, respectively. Moreover, inertia weight ϕ is an
essential parameter of the PSO algorithm, and we adopted a dynamic adjustment inertia
weight strategy, where the inertia weight is dynamically adjusted according to a linear
decreasing approach:

ϕ(j) = ϕmax − (ϕmax − ϕmin)(j/jmax) (6)

where ϕmax = 0.9, ϕmin = 0.1, jmax is the maximum number of iterations, and j is the
number of current iterations.

According to the time window division method of IEC 61400-27-1 [30], the whole fault pro-
cess is divided into five phases, namely, pre-fault (t0 − 1s, t0), early fault (t0, t0 + 0.14s), the
quasi-steady-state phase during the fault (t0 + 0.14s, t1), early fault recovery (t1, t1 + 0.5s),
and the quasi-steady-state phase during the fault recovery (t1 + 0.5s, t1 + 5s) (t0 and t1 denote
the initial time of fault and the time of fault clearance, respectively).

After the iterative optimization of the PSO algorithm, the weight coefficients of the
above five time windows corresponding to MM1 and MM2 are shown in Table 1.

Table 1. Adaptive weight coefficients.

Models
Category

Active Power Weight Coefficients

(t0 − 1s, t0) (t0, t0 + 0.14s) (t0+0.14s, t1) (t1, t1 + 0.5s) (t1 + 0.5s, t1 + 5s)

MM1 0.9713 0.3982 0.7163 0.0065 0.7270
MM2 0.0296 0.6048 0.2855 0.9982 0.2728

Models
Category

Reactive Power Weight Coefficients

(t0 − 1s, t0) (t0, t0 + 0.14s) (t0+0.14s, t1) (t1, t1 + 0.5s) (t1 + 0.5s, t1 + 5s)

MM1 0.0003 0.0871 0.4679 0.0005 0.0043
MM2 0.8898 0.9973 0.6002 0.9555 0.9896

4.3. The Adaptability of the General Equivalent Model

To verify the adaptability of the proposed model (PM), ten groups of input wind
speed and fault voltage dip were randomly generated, which are shown in Figure 4. In
each scenario, the wind speeds were assigned to the WTs in WF, and the voltage dip was
realized by setting a three-phase symmetrical short-circuit fault at the midpoint of one
transmission line.
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Under the operation conditions of Figure 4, the dynamic responses at the POC of the
DM, MM1, MM2 and PM were sampled. The active and reactive power errors of different
equivalent WF models were calculated according to Equations (4) and (5), respectively, as
presented in Tables 2 and 3. According to the values given in Tables 2 and 3, the differences
in accuracy of the three equivalent models are illustrated in Figures 5 and 6, respectively.

Table 2. Active power response error of three equivalent models.

Case
(t0 − 1s, t0) (t0, t0 + 0.14s) (t0 + 0.14s, t1) (t1, t1 + 0.5s) (t1 + 0.5s, t1 + 5s)

MM1 MM2 PM MM1 MM2 PM MM1 MM2 PM MM1 MM2 PM MM1 MM2 PM

1 0.034% 0.033% 0.022% 1.970% 1.602% 1.721% 1.536% 1.359% 1.412% 0.841% 0.750% 0.787% 0.698% 0.649% 0.665%
2 0.383% 0.384% 0.294% 0.701% 0.387% 0.324% 1.102% 0.822% 0.843% 0.446% 0.523% 0.295% 0.068% 0.093% 0.071%
3 0.161% 0.161% 0.080% 1.317% 1.008% 1.068% 3.373% 1.808% 1.734% 1.218% 0.651% 0.674% 1.028% 0.954% 0.988%
4 0.171% 0.170% 0.082% 4.407% 4.667% 4.282% 1.728% 2.062% 1.748% 4.474% 4.375% 4.202% 0.491% 0.427% 0.479%
5 0.362% 0.368% 0.273% 0.428% 0.477% 0.552% 0.401% 0.141% 0.169% 0.608% 0.717% 0.320% 0.142% 0.155% 0.132%
6 0.360% 0.361% 0.451% 1.921% 1.930% 1.799% 1.856% 1.761% 2.012% 1.231% 1.162% 1.597% 1.802% 1.822% 1.787%
7 0.051% 0.048% 0.045% 3.925% 2.108% 2.431% 0.435% 3.014% 0.883% 1.721% 1.256% 1.022% 1.019% 1.013% 0.998%
8 0.166% 0.179% 0.156% 2.057% 2.606% 2.557% 0.650% 4.800% 1.892% 1.512% 1.279% 0.915% 0.473% 0.436% 0.444%
9 0.406% 0.411% 0.316% 2.357% 1.779% 1.730% 0.103% 0.609% 0.358% 1.245% 0.862% 0.632% 0.095% 0.104% 0.102%

10 0.255% 0.255% 0.166% 0.642% 1.106% 1.062% 0.960% 1.218% 0.302% 1.732% 1.714% 1.280% 0.491% 0.572% 0.533%

Table 3. Reactive power response error of three equivalent models.

Case
(t0 − 1s, t0) (t0, t0 + 0.14s) (t0 + 0.14s, t1) (t1, t1 + 0.5s) (t1 + 0.5s, t1 + 5s)

MM1 MM2 PM MM1 MM2 PM MM1 MM2 PM MM1 MM2 PM MM1 MM2 PM

1 0.0046 0.0060 0.0002 0.0203 0.0210 0.0129 0.0179 0.0138 0.0064 0.0224 0.0178 0.0194 0.0141 0.0113 0.0127
2 0.0076 0.0087 0.0007 0.0192 0.0148 0.0080 0.0467 0.0112 0.0082 0.0649 0.0290 0.0323 0.0101 0.0053 0.0053
3 0.0057 0.0062 0.0005 0.0407 0.0185 0.0068 0.0212 0.0218 0.0045 0.0990 0.0534 0.0570 0.0176 0.0083 0.0086
4 0.0090 0.0091 0.0003 0.0069 0.0074 0.0081 0.0133 0.0141 0.0161 0.0468 0.0454 0.0397 0.0063 0.0065 0.0060
5 0.0079 0.0078 0.0001 0.0155 0.0139 0.0082 0.0048 0.0032 0.0220 0.0360 0.0319 0.0351 0.0064 0.0054 0.0054
6 0.0076 0.0080 0.0004 0.0084 0.0078 0.0074 0.0215 0.0227 0.0197 0.0396 0.0363 0.0365 0.0048 0.0050 0.0047
7 0.0052 0.0059 0.0001 0.0149 0.0082 0.0069 0.0090 0.0220 0.0102 0.0724 0.0347 0.0365 0.0083 0.0048 0.0049
8 0.0056 0.0057 0.0006 0.0384 0.0178 0.0061 0.0305 0.0307 0.0161 0.0888 0.0459 0.0496 0.0148 0.0070 0.0072
9 0.0089 0.0093 0.0010 0.0141 0.0107 0.0058 0.0245 0.0229 0.0200 0.0334 0.0263 0.0270 0.0050 0.0058 0.0052
10 0.0043 0.0053 0.0022 0.0277 0.0166 0.0059 0.0117 0.0115 0.0057 0.0639 0.0392 0.0424 0.0115 0.0065 0.0068
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As shown in Table 2 and Figure 5, for the pre-fault phase (t0 − 1s, t0), the PM con-
structed in this paper exhibited higher active power simulation accuracy except in Case
6. In this phase, the active power output of the WF is stable. Moreover, the performance
difference of the two mechanism models is relatively fixed for different scenarios. It helps
to improve the accuracy of the PM through the optimal configuration of weight coefficients.
For the other four phases, the improvement in accuracy decreased slightly, and the accuracy
of the PM was between the MM1 and MM2 in some scenarios. The reason lies in that the
active power output of WF starts to fluctuate in those phases, and the performance differ-
ence of the two mechanism models also begins to change in different scenarios. However,
taking the quasi-steady-state phase during the fault (t0 + 0.14s, t1)into account, where the
phenomenon that the accuracy of the PM is between the MM1 and MM2 appears more
often, the active power errors of each model are presented in Figure 7. It can be seen that
the active power performance of the PM is more stable than that of the MM1 and MM2,
indicating its better adaptability.
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To further demonstrate the effectiveness of the PM, the dynamic responses of the 
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correspondence with the electromechanical transient responses of the DM. For the other 
nine cases, for example, Case 3, it can be seen that the responses of the PM were much 
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As shown in Table 3 and Figure 6, for the pre-fault phase (t0 − 1s, t0), the PM estab-
lished in this paper also shows higher reactive power simulation accuracy. For the other
four phases, the reactive power performance of the PM is between MM1 and MM2 in some
scenarios. However, taking the early fault recovery phase into account, where the above
phenomenon appears more often, the reactive power errors of each model are illustrated in
Figure 8. It can be seen that the reactive power performance of the PM is also more stable.
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To further demonstrate the effectiveness of the PM, the dynamic responses of the
DM, PM, MM1 and MM2 in Cases 6 and 3 are presented in Figures 9 and 10, respectively.
As mentioned above, for Case 6, the accuracy of the PM was lower than both the MM1
and MM2. From Figure 9, we can observe that the PM remains accurate and has high
correspondence with the electromechanical transient responses of the DM. For the other
nine cases, for example, Case 3, it can be seen that the responses of the PM were much
closer to that of the DM than the MM1 and MM2, as shown in Figure 10.
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Figure 9. The dynamic responses of WF at POC in Case 6. (a) Active power. (b) Reactive power.
(c) Voltage.
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5. Discussion

Until now, the general equivalent modeling method for DFIG-based WFs has not been
considered from a model-data driven point of view; only a few researchers have analyzed
the possibility of identifying the crowbar action based on a data-driven model [31]. This
means that the accuracy of WF-equivalent models has been improved, only considering
coherent cluster divisions without regard to the adaptability of the equivalent model for
different scenarios.

One of the novelties presented in this paper is to enhance the stable performance of
WF-equivalent models in uncertain operating scenarios. As the scenario changes, the accuracy
of the traditional WF equivalent models will also change, and the performance is often
uncertain due to complex influencing factors. As shown in Figures 5 and 6, sometimes the
performance of the MM1 is better, and sometimes the performance of the MM2 is better. It is
not clear in which scenario the effectiveness of the equivalent model will fail. Therefore, in
the view of enhancing the stability of the model performance, we used data-driven mining of
complementary characteristics between mechanism models. As shown in Figures 7 and 8, the
applicability to uncertain scenarios was significantly improved.
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In addition, this paper provides meaningful insights into how to select mechanism
models. We analyze the influence of the two calculation methods for the aggregated
parameters of the collector cable on the accuracy of the equivalent model, and select
two equivalent models with complementary characteristics. This helps to improve the
accuracy of the general equivalent model. From Tables 2 and 3, we can observe that except
in rare phases, the accuracy of the general equivalent model is smaller than the maximum
error between the two mechanism models. Moreover, the average error of the general
equivalent model is also smaller than those of the two mechanism models.

The simulations were carried out on a workstation with the following specifications:
Intel Xeon(R) Platinum 8375C, 32 CPU @ 2.9 GHz, 128 GB of RAM. The average simulation
times of the DM, PM, MM1 and MM2 were 2146 s, 283 s, 135 s and 135 s, respectively. By
the PM, the simulation time of the detailed WF can be significantly reduced by about 87 %.
Compared to the MM1 and MM2, about two times the simulation time is increased.

6. Conclusions

From the viewpoint of improving the applicability and engineering utility value of
the DFIG-based WF equivalent model, this paper proposes a general model-data-driven
equivalent modeling method. It verifies the effectiveness of the proposed model for
uncertain operation scenarios through simulation.

The two mechanism models are selected based on clustering indicators and calculation
methods for the aggregated parameters of the collector cable. The combination of the
two models can not only take advantage of the high accuracy of each model, but also take
advantage of their complementary nature to reduce simulation errors.

In this paper, the fault process is divided into five stages, and the data-driven adaptive
weight optimization model is constructed to optimize the corresponding weight coefficients. It
further improves the adaptability of the general WF equivalent model in uncertain scenarios.

However, the main drawback of this general equivalent modeling method is that the
accuracy of the PM is sometimes between the MM1 and MM2. In future works, a possible
extension could be to apply the time series analysis theory to analyze the fluctuation law of
the dynamic responses, and we will further improve the accuracy of the general equivalent
model by optimizing the time window division.
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Appendix A

Table A1. Simulation parameters.

Double-fed
Asynchronous

Wind
Turbines

Wind Turbines

Blade radius /m 31
Shaft system

stiffness factor
/(pu/rad)

1.11

Inertia time
constant /s 4.32 Rated wind

speed /(m/s) 12.5

Cut-in wind
speed /(m/s) 4.5 Cut-out wind

speed /(m/s) 22

Double-fed asynchronous generators

Rated power
/MW 1.5 Rated frequency

/Hz 50

Rated voltage
/kV 0.575 Stator

impedance /pu 0.016 + j0.16

Rotor
impedance /pu 0.023 + j0.18

Stator and rotor
mutual

impedance /pu
j2.9

Power converters

Rated capacity
of rotor-side

converter /MVA
0.525

Rated capacity
of grid-side

converter /MVA
0.75

DC Bus Rated
Voltage/kV 1.15 DC side bus

capacitance /F 0.01

Crowbar circuit
input threshold

/pu
2

Crowbar circuit
cut out threshold

/pu
0.35

Crowbar
resistance /pu 0.1

Machine
sidetransformer

Rated capacity
/MVA 1.75 Rated frequency

/Hz 50

Rated Ratio /kV 25/0.575 Impedance /pu 0.06

Main
Transformer

Rated capacity
/MVA 150 Rated frequency

/Hz 50

Rated Ratio (kV) 125/25 Impedance /pu 0.135

Cable line Unit resistance
/(Ω/km) 0.1153 Unit inductance

(/Ω/km) j0.3297
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