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Abstract: The proliferation of unmanned aerial vehicles (UAVs) has spawned a variety of intelligent
services, where efficient coordination plays a significant role in increasing the effectiveness of cooper-
ative execution. However, due to the limited operational time and range of UAVs, achieving highly
efficient coordinated actions is difficult, particularly in unknown dynamic environments. This paper
proposes a multiagent deep reinforcement learning (MADRL)-based fusion-multiactor-attention-critic
(F-MAAC) model for multiple UAVs’ energy-efficient cooperative navigation control. The proposed
model is built on the multiactor-attention-critic (MAAC) model, which offers two significant advances.
The first is the sensor fusion layer, which enables the actor network to utilize all required sensor
information effectively. Next, a layer that computes the dissimilarity weights of different agents is
added to compensate for the information lost through the attention layer of the MAAC model. We
utilize the UAV LDS (logistic delivery service) environment created by the Unity engine to train the
proposed model and verify its energy efficiency. The feature that measures the total distance traveled
by the UAVs is incorporated with the UAV LDS environment to validate the energy efficiency. To
demonstrate the performance of the proposed model, the F-MAAC model is compared with several
conventional reinforcement learning models with two use cases. First, we compare the F-MAAC
model to the DDPG, MADDPG, and MAAC models based on the mean episode rewards for 20k
episodes of training. The two top-performing models (F-MAAC and MAAC) are then chosen and
retrained for 150k episodes. Our study determines the total amount of deliveries done within the
same period and the total amount done within the same distance to represent energy efficiency.
According to our simulation results, the F-MAAC model outperforms the MAAC model, making 38%
more deliveries in 3000 time steps and 30% more deliveries per 1000 m of distance traveled.

Keywords: air logistics; multiagent reinforcement learning; actor-attention-critic; sensor fusion;
multiple UAV

1. Introduction

In recent years the usage of unmanned aerial vehicles (UAVs) for various applications
has increased spontaneously. Multiple UAVs are deployed for cooperative missions such
as passenger transportation, logistics delivery, and surveillance [1]. In order to successfully
carry out the mission in limited resources and time, an energy-efficient multiple-UAV
navigation control is needed for the cooperative task. Since the energy consumption of a
UAV is proportional to operating time, the UAV’s energy efficiency is directly related to a
high performance [2]. To develop an energy-efficient multiple-UAV control model, control
complexity is a typical problem that needs to be resolved. When UAVs perform cooperative
missions together, the decision of one UAV affects the decision of other UAVs. Moreover,
complexity increases exponentially as the number of UAVs increases [3]. Consequently,
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there are clear limitations in solving such problems with existing conventional heuristic-
based search algorithms.

Multiagent deep reinforcement learning (MADRL) is a novel model that enables each
agent to perform cooperative tasks by interacting with other agents through their own
decisions. MADRL is a suitable model compared to a conventional model, which can be
applied to various environments where multiple agents exist, such as multirobot controls,
multiplayer games, and multiple-UAV control, etc. [4,5]. Unlike a ground vehicle that
moves on a 2D plane, the range of a UAV’s motion is much broader. As a result, the
movement strategy for mission performance is more diverse. Furthermore, UAVs must
make appropriate decisions by using their own sensor information and the information
retrieved by other UAVs. For these reasons, a suitable MADRL model must be selected for
efficient navigation control.

There has been considerable research carried out in reinforcement learning (RL) based
on UAV navigation and its application. G. Muñoz et al. [6] developed a DQN-based
model applied to a single UAV for navigation with obstacle avoidance. The Airsim-
based realistic simulated 3D environment was utilized for training the agent. The author
evaluated and demonstrated that the proposed model outperformed other DQN-based
algorithms. Similarly, H. Qie et al. [7] proposed a multiagent deep deterministic policy
gradient (MADDPG)-based model for multiple-UAV target assignment and path planning.
The results showed that agents could be assigned to their targets at a relatively close dis-
tance with a clear behavior for avoiding threat areas. Linfei Feng [8] introduced the policy
gradient (PG) model, which could be applied to optimize the logistics distribution routes
of a single UAV. The results showed that the UAV arranged delivery routes to multiple
destinations with the shortest path. Ory Walker et al. [9] developed a framework based on
the combination of proximal policy optimization (PPO) and adaptive belief tree (ABT) for
multiple-UAV exploration and target finding. The proposed algorithm was verified in both
2D and 3D environments with the physically simulated UAVs using the PX4 software stack.
W.J. Yoon et al. [10] utilized the QMIX model for eVTOL mobility in drone taxi applica-
tions. The proposed QMIX-based algorithm showed optimal performance when compared
with independent DQN (I-DQN) and a random walk in the drone taxi service scenario.
Zhou W. et al. [11] proposed a reciprocal-reward multiagent actor-critic (MAAC-R) method
and applied it for learning cooperative tracking policies for UAV swarms. The training
results demonstrated that the proposed model performed better than the MAAC model
in terms of cooperative tracking behaviors of UAV swarms. D. Xu et al. [12] improved the
MADDPG-based algorithm and applied it for the autonomous and cooperative control
of UAV clusters in combat missions. The proposed algorithm was tested by performing
two conventional combat missions. The result showed that the learning efficiency and the
operational safety factor were improved when compared with the original MADDPG algo-
rithm. Similarly, Guang Zhan et al. [13] applied multiagent proximal policy optimization
(MAPPO) in a Unity based 3D-simulated air combat environment. The proposed algorithm
was trained with a Ray based distributed training framework. In the experiment, MAPPO
outperformed COMA and BiCNet in average accumulate reward. Table 1 shows a detailed
comparison of research activity conducted utilizing MADRL and RL.
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Table 1. Comparison of RL-based UAV application.

Name of the Research Year Baseline Actor
Critic

Single/
Multiagent

Centralized/
Decentralized Applications Simulated Environment

Multiple-UAV Reinforcement Learning Al-
gorithm Based on Improved PPO in Ray
Framework [13]

2022 MAPPO [14] Yes Multiagent Centralized critic
with decentralized actor

Distributed decision-
making and complete
cooperation task

Unity collaborative combat
environment 3D

Autonomous and cooperative control of
UAV cluster with multi-agent reinforce-
ment learning [12]

2022 MADDPG [15] Yes Multiagent Centralized critic
with decentralized actor

Autonomous and co-
operative control of
UAV clusters

Conventional combat envi-
ronment

Improving multi-target cooperative track-
ing guidance for UAV swarms using multi-
agent reinforcement learning [11]

2021 MAAC [16] Yes Multiagent Centralized critic
with decentralized actor

Tracking the perceived
targets and searching
the unknown targets

Coordinate plane 2D

Distributed deep reinforcement learning
for autonomous aerial eVTOL mobility in
drone taxi applications [10]

2021 QMIX [17] Yes Multiagent Centralized critic
with decentralized actor

Computing the opti-
mal passenger trans-
portation routes

200-by-200 grid map 2D

A Framework for Multi-Agent UAV Explo-
ration and Target-Finding in GPS-Denied
and Partially Observable Environments [9]

2020 ABT + PPO
[18] Yes Multiagent Decentralized actor and

critic

Multiple-UAV
exploration and
target finding

Occupancy map with Ope-
nAI Gym 2D + 3DR Iris and
3DR Solo with Gazebo 3D

Reinforcement Learning to Optimize the
Logistics Distribution Routes of Un-
manned Aerial Vehicle [8]

2020 PG [19] Yes Single
Agent -

Path planning for
UAVs in complex
surroundings

Coordinate plane 2D

Joint Optimization of Multi-UAV Target
Assignment and Path Planning Based on
Multi-Agent Reinforcement Learning [7]

2019 MADDPG
[15] Yes Multiagent Centralized critic

with decentralized actor

Multiple-UAV target
assignment and path
planning

OpenAI’s platform 2D

Deep reinforcement learning for drone de-
livery [6] 2019 DDQN [20] No Single

Agent -
Navigation with ob-
stacle avoidance in re-
alistic environment

Realistic neighborhood
environment on AirSim 3D
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From Table 1, most of the research was carried out using actor-critic-based models. Ad-
ditionally, based on the previous research related to MADRL, we conclude that centralized
training with a decentralized execution methodology is more suitable for real-world situa-
tions. In real-world execution, it is difficult for one UAV to obtain data from all other UAVs
in real time. A decentralized actor network can be used to infer the action in such a partially
observable environment. We paid attention to the multi-actor-attention-critic (MAAC)
model, which showed optimal performance among algorithms based on a centralized critic
and a decentralized policy, which can be used in environments where information exchange
between agents is not guaranteed [16].

This study makes the following significant contributions.

• The development of an MAAC-based model with two significant improvements by
applying a sensor fusion layer in the actor network and a dissimilarity layer in the
critic network.

• A new feature to calculate the energy efficiency of UAVs is incorporated with the
previously developed UAV LDS simulation environment.

• The performance of the existing RL and MADRL models are compared with two
energy efficiency indicators.

In this research, we focus on optimizing learning efficiency by efficiently processing
the observations of multiple UAVs by adding two features to the MAAC model. First,
we introduce a sensor fusion layer in the actor network to extract features from various
sensors such as a ray-cast sensor for preventing collision with adjacent obstacles, an inertial
navigation system (INS) for the self-awareness of flight status, and a radio detection and
ranging (RADAR) system for collecting location data from other UAVs. Second, in the critic
network, a dissimilarity layer is added to provide more weight to the information of agents
with fewer similarities. By implementing these functions, the efficiency of information
processing is increased, and we prove through experiments that it plays a decisive role in
achieving the goal of energy-efficient UAV navigation control.

To experiment and validate our proposed MADRL model, the logistic delivery service
virtual test bed is adopted from our previous research [21]. The test bed is customized
by adding an energy efficiency module for multiple-UAV cooperation specifically for
logistic delivery. To find out whether UAVs can cooperatively perform missions well, the
environment includes a scenario in which two UAVs cooperate for transport logistics. A
function to measure the total travel distance of UAVs has been added to validate the energy
efficiency of the UAVs. Our proposed model shows the highest performance in terms of
energy efficiency compared to conventional RL algorithms. We measure energy efficiency
with the number of trips carried out during the same time, and the number of cargos carried
out during the same distance traveled. Our model shows superiority in both indicators.

Our work is structured as follows. Section 2 covers the general background of the
RL and MADRL algorithms. In Section 3, we expound on the proposed fusion-MAAC
(F-MAAC) method. Section 4, the test bed for the training and evaluation is described in
detail. Section 5 shows the results and discusses performance evaluation. Finally, the study
concludes with future directions in Section 6.

2. Background

RL is a field that has recently been spotlighted in the field of machine learning. It
is a technology that learns a model through the trial and error of an agent in a given
environment without any data. RL can be described as a learning process that develops
a behavior through trial and error to maximize the cumulative reward in a sequential
decision-making problem. The Markov decision process (MDP) can be expressed as a
sequential decision-making problem. RL is being utilized in various fields and situations
expressed as sequential decision-making problems, such as stock investment, driving,
and games.
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2.1. Markov Decision Process (MDP)

RL is an optimization method for solving sequential decision-making problems using
the Markov decision process (MDP). The MDP is defined as follows.

(S, A, P, R, γ) (1)

Here, S stands for state space and A stands for action space. P is the probability distribution
of the next state s′ when the agent chooses the action a ∈ A from the state s ∈ S, and R
means the reward received in the next state s′. For the cumulative reward, the future reward
is depreciated using the discount rate γ. This reflects future uncertainty and prevents the
divergence of the cumulative reward so that learning can be performed stably. Figure 1a
exemplifies the basic concept of MDP. When an agent chooses action a, the environments
proceed to the next step by action a and return the next state s and reward r.

Figure 1. Conceptual diagram: (a) Markov decision process and (b) Markov game (a—action, s—state,
r—reward).

A Markov game is a multiagent extension of the MDP [22]. A Markov game is defined
as a set of states and actions for N agents. A probability distribution for the next state is
given through the current state and action of each agent. The reward function for each agent
depends on the global state and action of all agents. Observation Oi is a partial state that
agent i can observe and includes some information of the global state. Each agent learns the
policy π : Oi → P(Ai) that maximizes the expected sum of rewards. Figure 1b shows the
multiple-agent interaction with the environment to update the rewards. Multiple agents
{A1. . . AN} send the action command aN = {A1{a1}, A2{a2}, . . . , AN{aN}} to the environment.
The environment returns the following set of state sN = {A1{s1}, A2{s2}, . . . , AN{sN}} and
reward rN = {A1{r1}, A2{r2}, . . . , AN{rN}}.

2.2. Bellman Equation

Solving the MDP is divided into prediction and control problems. Prediction is the
problem of evaluating the value of each state given a policy. Control is the problem
of finding the optimal policy. The policy and value need to be expressed through the
Bellman equation to solve these problems. Bellman’s equation is defined using the recursive
relationship between the present time step t and the next time step t + 1. The value function
V(S) and the action value function Q(S, A) can be expressed as the Bellman expectation
equation and the Bellman optimal equation [23].

The expected reward Gt is derived using the following equation:

Gt = Rt+1 + Rt+2 + . . . + RT (2)

where R is the reward, Gt is the sum of the rewards received from time step t + 1 to the
final time step T.

Since immediate rewards are more important than the future reward, the discount
factor γ is multiplied by Equation (2) to redefine Gt.

Gt = Rt+1 + γRt+2 + γ2Rt+3 + . . . = Rt+1 + γGt+1 (3)
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• Bellman’s expectation equation—The value function vπ(st) is calculated using the ex-
pected value Gt in Equation (4).

vπ(s) = Eπ [Gt|St = s] (4)

where Eπ is the expectation when following the policy π .
Now to derive the value function vπ(st), Equation (3) is substituted in Equation (4).

vπ(st) = Eπ(Rt+1 + γvπ(st+1)] (5)

The action value function qπ(s, a) is calculated using the expected value Eπ(Gt).

qπ(s, a) = Eπ [Gt|St = s, At = a] (6)

Now, to action value function qπ(st, at), Equation (3) is substituted in Equation (6).

qπ(st, at) = Eπ [Rt+1 + γqπ(st+1, at+1)] (7)

• Bellman’s optimal equation—The optimal value v∗(s) and q∗(s, a) is calculated as follows:

v∗(s) = max
π

vπ(st) = max
a

E[Rt+1 + γvπ(st+1)] (8)

where max
π

is the maximum cumulative rewards and max
a′

is the best action a′ out of

all actions at+1 that provides a maximum reward.

q∗(s, a) = max
π

qπ(st, at) = E[Rt+1 + γmax
a′

q∗(st+1, a
′
)] (9)

2.3. Multiagent Deep Reinforcement Learning

Multiagent Deep Reinforcement Learning (MADRL) is one of the most popular and
effective models for solving more complex problems where multiple agents collaborate
to perform specific tasks. For example, playing soccer games with multiple robots where
the team of robots collaborates to achieve the mission. One of the key challenges in such
an environment is that the environment is more dynamic to the perceptive of each agent,
which may affect the individual learning rate as a team.

• Multiagent deep deterministic policy gradient (MADDPG)— MADDPG [15] is a multiagent
extension of DPG [24], which combines DDPG [25] with DQN [26] approaches such
as replay buffer and target separation. Each agent has its own actor and critic. In the
MADDPG method, centralized training with a decentralized execution approach is
used. The architecture of the MADDPG model is shown in Figure 2. A centralized
critic network Q1...N is used for centralized training with observations o1...N and
actions a1...N from all other agents as input. In the decentralized execution, agents
use an actor network π1...N to choose an action by only using local information. By
this approach, the MADDPG model can be applied even in a partially observable
environment where communication between agents is limited.

• Multiactor-attention-critic (MAAC)—MAAC was developed by [16] and adopted from
the MADRL model. The model trains the decentralized policies in multiagent environ-
ments by utilizing centrally computed critics with an attention mechanism. It chooses
relevant information for each agent at every time step. The multiattention head layer
consists of multiple attention heads. The attention function in the attention head can
be described as mapping a query and a set of key–value pairs to an output [27]. The
attention function is calculated as Equation (10), where query Q has the corresponding
key K and value V and dk is a scaling factor. As shown in Figure 3, encodings of the
agent’s state and action denotes the state action encodings (SAEi) are the key and
value. The encodings of the other agent’s state encoder (SEj), j ∈ \i are the query. In
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each attention head N, different attention head values (AHVs) are derived according
to the influence of the query, key, and value extractors. The final output attention
value (AV) is achieved with the combination of AHVs. The final output Qi(o,a) is
derived through fully connected layers FC1 and FC2 with the input of AV and SEi. In
the multiattention head layer, the agent updates the weighted value which is more
similar to other agents. This attention mechanism enables a more effective and flexible
learning in complex multiagent environments compared to MADDPG.

AttentionFuntion(Q, K, V) = so f tmax
(

QKT
√

dk

)
V (10)

Figure 2. Overall architecture of DDPG.

Figure 3. Critic network of MAAC.

3. Fusion-Multiactor-Attention-Critic (F-MAAC) Model

In this section, the F-MAAC model is discussed for the application of multiple-UAV
cooperative navigation. To increase the learning efficiency of the agent, we used a new
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sensor fusion layer with MAAC. The sensor fusion layer was used for the UAV’s local
observation, and another layer named cosine dissimilarity was added to utilize global
information obtained by other UAVs efficiently. The overall architecture of the proposed
F-MAAC model is exemplified in Figure 4.

Figure 4. F-MAAC model’s overall architecture with training flow.

The overall flow of the F-MAAC model follows the basis of the MAAC model, in-
cluding a loss function and the gradients of the objective function. Each agent has its
own independent actors and critics following a centralized training with a decentralized
execution. In the training phase, all agents’ observations are entered as inputs of each
agent’s critic network. In the execution phase, the decentralized actor network is used
to choose the action as inference by using only its own observation for input data. This
general F-MAAC model can be applied to N agents equipped with M types of sensors. The
step-by-step training procedure of the F-MAAC model is as follows:

Step 1: Initialize the critic network Qψ
1...N and actor network πθ

1...N with random

parameters and synchronize the parameters of target critics Qψ
1...N with critics Qϕ

1..N , and
target actors πθ

1...N with actors πθ
1..N .

Step2: Get observation o1...N from the environment, feed-forward to actors πθ
1...N(o),

and select action a1...N .
Step 3: Proceed to the next time step with actions a1...N and get the next observations

o
′
1...N and rewards r1...N from the environment.

Step 4: Push the obtained set of (o, a, o
′
, r)1...N to the replay buffer.

Step 5: Repeat step 2 to 4 until the number of E data is collected.
Step 6: Sample B = (o, a, o

′
, r)1...N from the replay buffer,

Step 7: Perform a gradient descent by using B to minimize the loss function in Equa-
tion (11) with respect to the network parameter ϕ

LQ(ϕ) = ∑N
i=1 E[(Qϕ

i (o, a)− y2
i )] (11)

where yi = ri + γEa′∼πθ(o′)

[
Qψ̄

i (o
′, a′)− α log

(
πθi

(
a′i | o′i

))]
Step 8: Perform a gradient ascent by using o1...N in B to maximize the gradient of the

objective function in Equation (12) with respect to the network parameter θ

∇θi J(πθ) = Eo∼D,a∼π∇θi logπθi (ai|oi)
(
−αlog

(
πθi (ai|oi)

)
+ Ai(o, a)

)
(12)
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Step 9: Update the parameters of target critics Qψ̄
1...N(o, a) with Equation (13) and

target actors πθ̄
1...N(a, s) with Equation (14) using an update rate of τ = 0.005

ψ = ψ ∗ (1.0− τ) + ψ ∗ τ (13)

θ = θ ∗ (1.0− τ) + θ ∗ τ (14)

Step 10: Steps 2 to 9 should be repeated until the end of the episode.

3.1. Deep Fusion Layer in Actor Network

As illustrated in Figure 5, we propose a deep fusion layer in the actor network to
increase efficiency. Observations are separated into the M types of sensors to extract
features from each sensor. For instance, three different types of sensors are used for UAVs
in our virtual UAV LDS environment: a ray-cast sensor for preventing collision with
surrounding obstacles, an INS for the self-awareness of flight status, and a RADAR for
retrieving coordinates of other UAVs and hubs. Each sensor’s data pass through the sensor
encoder. The encoded sensor data are concatenated and pass through two fully connected
layers. The output of the deep fusion layer can be expressed by Equation (15). FC1, FC2,
and sensor encoders(SNE1...3) are fully connected layers.

Output = FC2(FC1(Concat(SNE1(sensor1), SNE2(sensor2), SNE3(sensor3))) (15)

Figure 5. Actor network of F-MAAC model.

3.2. Dissimilarity Layer in Critic Network

In the critic network, state encodings (SE1...N) are shared with other agents, as shown
in Figure 6. The attention head in the multiattention head layer selects relevant information
from other agents’ observations. The attention head is constructed with a scaled dot
product [27] which calculates the degree of similarity between encoded observations of
agent i (SEi, SAEi) and the encoded observations of the other agents j ∈ \i (SEj). The
UAVs at adjacent distances will have similar observation data. When more weights are
provided to similar observations, the UAVs will have a wider field of view and less chance
of colliding with each other.
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Figure 6. Critic network of F-MAAC model.

However, there are also drawbacks derived from the multiattention head layer. For
example, when an agent’s observation at a distance that is dissimilar from the current
agent’s observation plays an essential role in performing its mission, it can lead to serious
performance degradation. More specifically, the observation from an agent at long distances
near a target point may provide helpful information. For these reasons, a dissimilarity layer
was added to prevent performance degradation due to attention and to improve learning
stability. In the previous study, we verified the effect of adding a dissimilarity layer to the
MAAC model in a simple 2D cooperative navigation environment [28].

Cosine similarity refers to the similarity between two vectors obtained by using the
cosine angle between the two vectors. The additional use of the observation multiplied
by the dissimilarity value may offset the effect of attention. The dissimilarity value is
calculated with the encoded observations of agent i (SEi) and the encoded observations of
other agents j ∈ \i (SEj). The value passed through the dissimilarity layer’s dissimilarity
value (DV) is concatenated with the value from the multiattention head layer’s attention
value (AV) and SEi. Then, the concatenated value is sent to the fully connected layers FC1
and FC2 to calculate the critic value Qi.

Figure 7 shows the detailed process of the dissimilarity layer. The dissimilarity weight
between the agent’s observations is calculated by multiplying the cosine similarity value
by a negative number as in Equation (16).

CosineDisimilarity(SEi, SEn) = −1 · SEi · SEn

max(‖ SEi ‖ 2· ‖ SEn ‖ 2, ε)
(16)

where, ε = 1× 10−8.
The negative dissimilarity values are replaced with 0 to focus on the agents’ informa-

tion with different patterns. Then, the observations of each agent are multiplied by the
cosine dissimilarity weight and concatenated. The concatenated value is entered as the
input value of the fully connected layer. The output value DV from the dissimilarity layer,
the output value AV from the multiattention head layer, and the encoded value SEi are
concatenated as an input of the fully connected layers.
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Figure 7. Dissimilarity layer in critic network.

4. Test bed
4.1. UAV LDS Environment

In our previous work [21], we developed a UAV logistic delivery service (UAV LDS)
environment for evaluating MADRL-based models. To calculate energy efficiency for this
research, we added the feature of calculating the total movement of all agents. The UAV
LDS environment is a virtual environment designed to reflect simplified logistics delivery
scenarios in the real world and implemented through the Unity platform equipped with the
3D physics engine. The modified source was updated in the following repository (https://
github.com/leehe228/LogisticsEnv, accessed on 3 October 2022). The environment follows
the Open AI Gym API [29] design which provides standard communication between
learning algorithms and environments. In LDS, multiple UAVs act as an air transportation
system which is used to carry cargo in the three-dimensional city sky that connects land
and air. To implement this as a simulated environment, we constructed blocks representing
obstacles such as buildings, warehouses, and cargo to be transported. In the scenario, UAVs
delivered big cargo and small cargo from hubs to the destination. What was unique about
this environment was that two UAVs had to collaborate to move a big cargo. The reason
for including this scenario was that it was possible to check whether the cooperation of
UAVs worked well directly. In addition, such cooperative situations could occur any time
in the real world, such as when multiple UAVs need to move together to load multiple
cargos. Figure 8 shows the UAV carrying cargo in the UAV LDS environment. The gray
box indicates the buildings in the real world, the blue box is the small cargo, and the red
box is the big cargo. Cargos are generated from the hubs, colored blue on the ground. The
destination of the big cargo is colored pink and that of the small cargo is colored green.

4.2. Observation, Action, and Reward Design

This section describes the state, action, and reward of the environment which are
essential elements of MDP. The state is the observation received by the agent, the action is
the type of movement that can be selected, and the reward is the compensation according
to the UAV’s action.

• Observation—The UAVs received three different sensor data such as ray-cast for pre-
venting collision with adjacent obstacles, INS for the self-awareness of flight status,
and RADAR used to find the location of the other UAVs and hubs. In Table 2, a
detailed description of the sensor data is provided.

• Actions—The UAVs could perform seven types of actions: ascend, descend, forward,
backward, left, right, and not move.

• Driving reward —To make the UAVs deliver cargo in the shortest path, a driving reward
was given at every step. The reward was calculated with the difference between the

https://github.com/leehe228/LogisticsEnv
https://github.com/leehe228/LogisticsEnv
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distance of the previous time step dpre and the distance of the current time step dcurr.
Each distance was calculated with the distance to the target point. Before picking
up the cargo, the nearest cargo was the target point. After picking up the cargo, the
delivery point was the target point. If the UAV was not closer to the target point in
the current time step than in the previous time step, a negative reward was given as(
dpre − dcurr

)
× 0.5.

• Delivery rewards—The values in Table 3 were designed to make UAVs deliver cargo
efficiently. For training numerous UAVs to work together to carry cargos, we delicately
designed the rewards related to the delivery.

• Collision penalty—The UAVs must avoid buildings and other UAVs with ray-cast
observations. A negative reward of −10 was given when a collision occurred.

Figure 8. UAV logistic delivery service virtual environment.

Table 2. Summary of observations.

Sensor Type Size Description

Ray-cast
1 × 9 Distance of 9 directions of ray-cast sensor

2 × 9 One-hot encoding of the detected object (nothing, building) of
9 direction of ray-cast sensor

INS
3 (x, y, z)—coordinates of UAVi.
3 (x, y, z)—velocity of UAVi.
3 One-hot encoded cargo type (not holding, small cargo, and big cargo).

RADAR

6 (x, y, z, x, y, z)—coordinates of a big cargo hub and a small cargo hub.
2 Distance from UAV to big and small cargo hubs.
6 (x, y, z, x, y, z)—each nearest big and small cargo coordinates.
2 Distances from UAVi to the nearest big and small cargos.
4 (x, y, z, d) if UAVi holds any cargo, the coordinates and distance of

the destination are given.
7× 4 Coordinates of UAVj (size 3), cargo type of UAVj (size 3), and distance

from UAVi to UAVj (size 1). *

* UAVi is the current, and UAVj are the rest of all UAVs except UAVi .
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Table 3. Summary of delivery rewards.

Action Collaborative First
UAV

Second
UAV

UAV picks up a small cargo No +20.0 -
Small cargo delivery completed No +20.0 -
First UAV picks up a big cargo Yes +10.0 -
The second UAV picks up a big cargo Yes + 10.0 +20.0
Big cargo delivery completed Yes +30.0 +30.0
First UAV drops a big cargo Yes −8.0 -
Both UAVs drop a big cargo Yes −15.0 −15.0

4.3. Environmental Setup

The UAV environment provided custom settings for the environmental setup. In this
research we used the default values in Table 4 for training and evaluation.

Table 4. Summary of environmental setup.

Parameter Description Default (Training) Default (Execution)

NumAgent Total number of UAVs 5 5
width Width of the Unity window 480 pixels 1280 pixels
height Height of the Unity window 270 pixels 720 pixels

timescale The multiplier for the time 20× 1×
mapsize Size of the map 13 m 13 m

numbuilding Number of buildings 3 units 3 units

MaxSmallbox Total number of small cargos
that can be generated 100 units 100 units

MaxBigbox Total number of big cargos that
can be generated 100 units 100 units

5. Experimental Simulation and Results

The proposed F-MAAC model was validated using the environment proposed in
Section 4. For more efficient evaluations of the proposed F-MAAC model, we first compared
the mean episode rewards of the MAAC, MADDPG, and DDPG models with a training of
20k episodes. Then, the two models with the highest performance, F-MAAC and MAAC,
were selected for the training of 150k episodes. To evaluate the trained model to achieve a
meaningful scale length, the episode length was replaced with 3000 from 1000 time steps.
The timescale of the environment was decreased in the evaluation phase to observe and
analyze the strategies of UAVs. The total number of deliveries during one episode and the
same distance traveled were evaluated to verify the energy efficiency.

The hyperparameters for training the RL models are shown in Table 5.

Table 5. Hyperparameter settings of RL models.

DDPG MADDPG MAAC F-MAAC

Number of episodes 1000 1000 1000 1000
Steps per update 100 100 250 250
Batch size 1024 1024 1024 1024
Number of attention heads - - 4 4
Policy hidden dimension 128 128 128 128
Learning rate of critic 0.01 0.01 0.001 0.001
Learning rate of policy 0.01 0.01 0.001 0.001
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5.1. Comparison of Performance of RL Models

Two MADRL models (MAAC, MADDPG) and one single agent RL model (DDPG)
were compared with the proposed F-MAAC model. Each model was trained for 20k
episodes with 1000 steps per episode in the proposed UAV LDS simulation environment.

According to Figure 9, the DDPG’s mean episode reward value showed the worst
performance because it did not increase significantly tableuntil 20k episodes. Although
it rose slightly higher from 5k episodes to 20k episodes when compared to DDPG, the
increase in the mean episode reward value in the MADDPG model was also minor. The
F-MAAC and MAAC models, on the other hand, displayed an impressive performance
and successfully conveyed some quantities of both large and small cargos. Between 10k
and 20k training episodes, the F-MAAC model demonstrated a more significant value than
the MAAC model in the mean episode reward. At the end of 20k training sessions, the
F-MAAC model demonstrated greater mean episode rewards than the MAAC model by
more than 30%.

Figure 9. Mean episode rewards comparison of different models for 20k episodes.

5.2. Comparison of Performance between F-MAAC and MAAC Models

We retrained the F-MAAC and MAAC models with 150k episodes, which took about
six days with two GPU machines. The detailed specifications of the machine are listed
below in Table 6.

Table 6. Specifications and environmental setup of the GPU machine.

CPU Intel i7 8700 k
GPU Nvidia RTX 3080
RAM 64 GB
OS Ubuntu 20.04 LTS
Deep Learning Framework Pytorch 1.8.2

Figure 10 shows the mean episode rewards of the MAAC and F-MAAC models for
150k training episodes. The mean episode reward value of the F-MAAC and MAAC models
increased noticeably in this experiment compared to the previous Section 5.1. The difference
between them with training episodes until 40k was unnoticeable. After the training of
40k episodes, the F-MAAC model started to outperform the MAAC model. From 80k to
150k, the mean episode reward of the MAAC model decreased while that of the F-MAAC
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model constantly increased. At the end of the training, the F-MAAC model obtained 50%
more rewards than the MAAC model. The randomness and instability of the complex 3D
environment produced different learning patterns compared with the previous training,
since the maps of the UAV LDS environment were generated randomly for every episode.
However, both results showed that the F-MAAC model outperformed the MAAC model.
The result of this experiment showed a more reliable comparison since it was trained longer,
until 150k episodes.

Figure 10. Mean episode rewards of the MAAC and F-MAAC models for 150k episodes.

5.3. Comparison of Energy Efficiency between F-MAAC and MAAC Models

For energy efficiency evaluation, we executed the trained model of F-MAAC and
MAAC with 150k episodes. Each model was executed for 100 episodes with 3000 time
steps of each episode. The average performance per episode is shown with a box plot
in Figure 11. We show the number of successful deliveries of small cargo and big cargo.
Furthermore, the total performance was evaluated with Score = NumberO f SmallCargo +
1.5 ∗ NumberO f BigCargo. The weight of 1.5 was multiplied by the number of big cargos
since we gave 50% more rewards to the big cargos in the training phase.

The result showed that the number of deliveries in both small and big cargos with
the F-MAAC model was higher than in the MAAC model. Table 7 shows that the score of
the F-MAAC model was 38% higher than that of the MAAC model during one episode,
indicating that the F-MAAC model was more energy efficient.

Table 7. Overall comparison of MAAC and F-MAAC models.

MAAC F-MAAC

Score 13.29 18.31
Movement 1200 m 1270 m
Collision 9.2 8.4
Score_movement 11.08 14.42

We also provided the energy efficiency with Score_movement, which is the perfor-
mance per 1000 m distance moved. We recorded the total movements of the UAV during
execution. The Score_movement was calculated with Score

Movement × 1000. The results showed
that the F-MAAC model was 30% more efficient compared to the MAAC model.
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In addition, the number of collisions of the F-MAAC model was about 9% less than
that of the MAAC model. The improvement of the F-MAAC model’s sensor processing effi-
ciency can be interpreted as having a positive effect on the obstacle avoidance performance
of the UAV.

Figure 11. Comparison of delivery performance.

6. Conclusions

This study proposed an MAAC-based multiple-UAV navigation control model that
improved energy efficiency through efficient data processing of the UAVs. The following
significant findings were obtained.

(a) In the proposed model, the sensor fusion layer was adapted in the actor network,
and the dissimilarity layer was utilized for the critic network. When applied to the UAV
LDS simulation environment, it outperformed the conventional RL model in terms of
energy efficiency.

(b) The sensor fusion layer extracted features from each sensor enabling the UAVs to
use various sensor data efficiently. The dissimilarity layer compensated for the loss derived
from the attention layer by providing data with high dissimilarity to other agents.

(c) The F-MAAC-applied UAVs transported more cargo than the MAAC in the same
amount of time and distance with greater cooperation and fewer collisions.

The feature of measuring the total movement of UAVs was added to the existing UAV
LDS environment to calculate energy efficiency. We provided two indicators that calculated
the energy efficiency of UAVs. The proposed model showed the best performance in both
types of energy efficiency indicators out of various RL models, including the original
MAAC model. In future studies, further verification and development are needed for the
model in a more sophisticated environment, including realistic sensors and dynamic flight
models. Furthermore, the scalability should be verified in a broader environment where
more agents exist.
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Abbreviations
UAV Unmanned aerial vehicle
RL Reinforcement learning
MADRL Multiagent reinforcement learning
LDS Logistic delivery service
MAAC Multiactor-attention-critic
F-MAAC Fusion-multiactor-attention-critic
DDPG Deep deterministic policy gradient
MADDPG Multiagent deep deterministic gradient
MDP Markov decision process
INS Inertial navigation system
RADAR Radio detection and ranging
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