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Abstract: Nowadays, there is a growing demand for information security and security rules all across
the world. Intrusion detection (ID) is a critical technique for detecting dangers in a network during
data transmission. Artificial Intelligence (AI) methods support the Internet of Things (IoT) and smart
cities by creating gadgets replicating intelligent behavior and enabling decision making with little or
no human intervention. This research proposes novel technique for secure data transmission and
detecting an intruder in a biometric authentication system by feature extraction with classification.
Here, an intruder is detected by collecting the biometric database of the smart building based on the
IoT. These biometric data are processed for noise removal, smoothening, and normalization. The
processed data features are extracted using the kernel-based principal component analysis (KPCA).
Then, the processed features are classified using the convolutional VGG−16 Net architecture. Then,
the entire network is secured using a deterministic trust transfer protocol (DTTP). The suggested
technique’s performance was calculated utilizing several measures, such as the accuracy, f-score,
precision, recall, and RMSE. The simulation results revealed that the proposed method provides
better intrusion detection outcomes.

Keywords: intrusion detection; artificial intelligence; IoT; biometric authentication; feature extraction;
classification

1. Introduction

Ideal user authentication techniques must be accurate, versatile, computationally
quick, and operable in almost real time. While several authentication techniques have been
put out, biometrics now seems to be the front-runner for user authentication strategies in
the future. Physical and behavioral biometrics are the two categories into which biometric-
based authentication is divided [1]. Physical biometrics uses voice, iris, and fingerprint
scanners to rely on the individuality of certain physical characteristics among people for
authentication. Similar to fingerprinting, behavioral biometrics works under the premise
that human behavior for particular tasks is generally distinct enough to be utilized for user
authentication. Examples include touch dynamics, keystroke dynamics, and the subject of
this study, mouse dynamics. Comparing behavioral biometrics to physical biometrics for
authentication, behavioral biometrics has garnered more attention because of its broader,
more widespread applicability, decreased intrusiveness, and lack of external sensors.

Furthermore, mouse dynamics has been demonstrated to be an ongoing, portable, and
unobtrusive solution for dynamic user authentication [2]. Furthermore, Machine Learning
(ML) and Deep Learning (DL) techniques can benefit from the vast amounts of data that
are available in the domain space of mouse dynamics. When ML and DL techniques are
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combined, fields with a lot of data have seen amazing outcomes.ML has proven to be
strong enough to be applied to a variety of problem areas and utilizes implicit patterns
in large amounts of data that are too complex for people to perceive; yet it requires the
manual extraction of features from data. Finding the best mix of hyperparameters, extracted
features, and data preparation techniques for a particular problem or dataset is so tricky [3].

AI-assisted authentication can suit a range of objectives when combined with ma-
chine learning and deep neural networks [4]. We look at the current state of AI-assisted
authentication. Authentication is a critical tool for ensuring information system security.
With time, authentication has steadily integrated a variety of AI technologies to achieve
greater diversity and accuracy. Traditional passwords are no longer the only thing AI
authentication can help with. Image recognition, such as fingerprint and face recognition,
and human behavior, such as keystroke dynamics as well as mouse movement, are used in
various authentication methods [5]. With the popularity of social networks, multimedia
material is growing at an unprecedented rate throughout the internet. With this rapid
growth, hackers target the internet business with many tactics, including obfuscated harm-
ful URLs, malware distribution, account hijacking, phishing assaults, and impersonation
attacks. These assaults take advantage of the widespread use of social networking sites.
Security and interoperability are two critical challenges for the research community regard-
ing social media content. The necessity of the hour is to design and develop a scalable and
widespread communication paradigm to address these difficulties [6].

The contributions of this paper are as follows:

1. To propose a novel method for the secure data transmission and detection of intruders
in a biometric authentication system by feature extraction with classification.

2. To collect a biometric database of the smart building based on the IoT.
3. To process data features that have been extracted using the kernel-based principal

component analysis (KPCA).
4. To classify the processed features using a convolutional VGG−16 Net architecture.
5. To secure the network using a deterministic trust transfer protocol (DTTP).

This article is structured as follows: The related works are provided in part 2, the
proposed technique is defined in Section 3, the performance analysis is explained in
Section 4, and the conclusion is provided in Section 5.

2. Literature Review

A crucial step is deciding which biometrics to combine and how to combine them.
Researchers have proposed a large number of multi biometric combinations at this mo-
ment. The work in [7] proposed a multimodal biometrics recognition method that uses
two approaches at the feature level: the first is the firefly method, and the second is a
combination of fractional theory and the firefly method. The authors used repeated line
tracking, FFF, and Multi-Support Vector Machine algorithms to accomplish preprocess-
ing (the SDUMLA-HMT [8] and PolyU FKP [9] databases), feature extraction, as well as
classification in this study. The authors in [10] created a multimodal biometric method
based on the feature-level integration of FV as well as the dorsal texture of the fingers.
The preprocessing was accomplished in this study by employing Gabor filters as well as
winner-take-all algorithms. The work in [11] developed a multimodal biometric system
for merging the FV and finger dorsal texture using a score-level fusion approach based on
cross-selection binary coding. They utilized the THV-FVFDT2 database in this study.

The obtained findings revealed that the system’s equal error rate (EER) is tolerable.
The authors [12] recommended using biometric identification to access a central health
record database with privacy policies. A new Multi-Criteria Decision-Making (MCDM)
paradigm was investigated by [13]. The MCDM approach was utilized to rank each group
of elements using an integrated strategy for the order of preference by similarity (TOPSIS)
and the analytic hierarchy process (AHP). The essential factors in each group were also
identified using K-means clustering. The work in [14] developed a new hybrid approach
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that might be used with EMR (Electronic Medical Record) systems. The robustness, security,
and integration of EMR systems will all benefit from this strategy.

Deep learning designs, such as recurrent neural networks (RNN), stacked autoen-
coders, RBM (Restricted Boltzmann Machine), DBN (Deep Belief Network), CNN (Con-
volutional Neural Network), and others, are commonly employed. For anomalous event
identification in films, a three-dimensional CNN was employed to extract spatiotemporal
data from the inputs [15]. Intra-frame classification algorithms and sparse-layered coding
for recognizing uncommon occurrences in multimedia such as films were determined by
the SVM’s probabilistic outputs. Anomalies can be discovered with a CNN [16] in crowded
activities. Researchers examined the convolutional autoencoder (CAE) performance and
the impact of anomaly detection techniques on high-level feature aggregation by analyzing
input frames [17]. The Motion and Appearance DeepNet method proposed a mix of multi-
ple one-class SVM methods with a DNN for anomaly identification in video data. A deep
Gaussian mixture method was utilized to examine patterns of video events, and feature
learning was accomplished utilizing PCANet for anomalous event identification using DL
approaches [18,19]. Long Short-Term Memory and CNN methods were combined in a
proposed hybrid neural network model to detect aberrant emotions in social media. Pattern
recognition applications use these methods more extensively than existing ML algorithms
because of their representation learning and end-to-end training [20]. The vulnerability of
IoT systems has been the subject of numerous studies, and the work in [21] outlined the
unresolved issues with IoT devices and offered remedies. The authors in [22] discussed
numerous IoT framework intrusion detection methods. Weber looked into various legal
methods for calculating an IoT architecture’s privacy and security requirements [23]. A ball
can be thrown in the virtual world to authenticate users, according to the work in [24]. They
attained a matching accuracy of 92.86 percent in their pilot investigation. Similar to this,
the work in [25] utilized head-movement patterns for VR authentication and attained an
accuracy of 92%. Although pure behavioral biometrics may not be practical in a large-scale
context, the authors in work [26] advised using such capability as an additional layer of
security in security-sensitive VR applications. This is consistent with research [27] that
shows accuracy declines logarithmically with group size, rendering behavioral biometrics
in and of themselves unsuitable for VR authentication. Additionally, traditional approaches
still face significant challenges due to high computational costs. However, this approach is
parametrically complex because of the challenging Gabor filter setup. Therefore, there is
still a need to create a quick, effective feature extraction technique that can improve the
performance of the established finger-vein system. Due to its insufficient security, the old
password-based authentication mechanism has gradually faded.AI-enriched authentication
techniques have been driving the trend in recent years, with AI-assisted authentication
methods leading the way in terms of security and compatibility with as numerous realistic
circumstances as possible.

3. Proposed Secure Data Transmission and Intruder Detection in Biometric
Authentication System

This section discusses a novel technique for secure data transmission and detecting
intruders in biometric authentication by feature extraction with classification. Here, in-
truder is detected by collecting the biometric database of the smart building based on IoT.
Processed data features are extracted using kernel-based principal component analysis
(KPCA). Then, the processed features are classified using convolutional VGG−16 Net ar-
chitecture. Then, the entire network is secured using a deterministic trust transfer protocol
(DTTP). Overall proposed method is represented in Figure 1.
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Figure 1. Overall proposed architecture.

To produce finer and better data, preprocessing can be utilized to solve several types
of issues in large datasets. The intended data must be compatible with data preprocessing
procedures to ensure that all data are preprocessed to be appropriate, usable, and clean.
This will boost accuracy. Normalizing data for scaling characteristics to fit between a
given maximum and minimum value, typically between one and zero, as illustrated in
Equation (1), is one of the preprocessing approaches.

fnorm(x) =
x− xmin

xmax − xmin
(1)

Equation (1) explains the normalization to one-zero. Unlabeled data are subjected to
the normalizing parameter vectors as fit, in particular the vector carrying the maximum
values x (max) and minimum values x (min). Data that have labels are not normalized.

4. Feature Extraction Based on Kernel-Based Principal Component Analysis (KPCA)

PCA is a frequently utilized method for describing data by extracting a small number
of characteristics from input. In contrast to methods like parametric models and wavelet de-
composition, where derived characteristics are heavily dependent on a method or wavelet
type under consideration, this method is considered a global method. PCA obtains features
by diagonalizing the data’s correlation matrix and retaining just the most relevant eigen-
vectors. Consider zero-mean data, provided column-wise in x1, x2, . . . , xn ∈ IR d without
losing generality. PCA method seeks m features v1, v2, . . . , vm ∈ IR d, as eigenvectors in
Eigen-issue λ v = C v, with C = 1

n ∑n
j=1 xjxj

T correlation matrix. Eigenvalue λ of every
eigenvector v, which indicates the amount of data recorded variance, determines its signifi-
cance. The eigenvectors, which take the form v = ∑n

i=1 αixi, reside in the data span due to
the operations’ linearity property.

Kernel-PCA is a common generalization for discovering nonlinearities, unlike tradi-
tional PCA, which is limited to learning only linear structures within data. Φ: IR d 7→ H,
and then evaluate PCA on mapped data, Φ(x1), Φ(x2), . . . , Φ(xn) ∈ H. In the modified
data, eigenvectors are linear. It turns out that using the kernel method can significantly
compute such nonlinear PCA for a broad class of nonlinearities without explicitly assessing
map. Specified by a kernel function for these proximity measures. On kernel-PCA [9], this
widely held principle is demonstrated.

First, we write the PCA method in terms of inner products in feature space, hΦ(xi),
Φ
(

xj
)
iH, f or i, j = 1, 2, . . . n. The expression is satisfied by each extracted feature Φ ∈ H

by Equation (2).
λϕ = CΦ ϕ (2)
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CΦ = 1
n ∑n

j=1 Φ
(

xj
)
Φ(xj)

T all solutions Φ, like in the linear case, are contained inside
the span of the data’s Φ images. This means that there exists coefficients α1, α2, . . . , αn
such that by Equation (3)

ϕ = ∑n
i=1 αiΦ(xi) (3)

Substituting CΦ and expansion (2) into Eigen problem (1), and describing a n × n
matrix K whose (i,j)-th entry is hΦ(xi), Φ(xj)iH, we obtain Eigen-issue in terms of inner
product matrix by Equation (4)

nλα = Kα (4)

where α = [α1, α2, . . . , αn] >. One performs normalization on resulting solution α, using
kαk 2 = 1/λ, to obtain normalization as in PCA 1, i.e., hΦ, ΦiH = 1. Φ(xj)iH, corresponding
to an implicit mapping. Polynomial kernel κ(xi, xj) = (1 + hxi, xji) p and Gaussian kernel

κ
(

xi , xj
)
= exp

(
1

σ2 ‖xi − xj‖2
)

are examples of admissible kernels. The latter implicitly
translates data into an infinite-dimensional space.

We will need to be able to optimize canonical correlation as well, but for now, we
will only focus on evaluating canonical correlations in an RKHS. In reality, we have a
statistical as well as a computational purpose. While describing F-correlation in terms of
a population expectation thus far, we usually only have access to a small sample rather
than the entire population. As a result, we will create a “kernelized” version of canonical
correlation that combines two aspects: dealing with empirical data and working in a feature
space. We begin with a rudimentary “kernelization” of the population F-correlation. This
naive kernelization does not produce a generally usable estimator for reasons that we will
describe, but it does serve as a roadmap for building a regularized kernelization that does.

5. Convolutional VGG-16 Net Architecture

VGG-16’s convolutional layers are all 3× 3 convolutional layers with identical padding
and stride size of 1, and pooling layers are all 2 × 2 pooling layers with a stride size of 2.
VGG-16’s default input image size is 224 × 224 pixels. The high-level network features
in convolutional neural networks have rich semantic data, which improves positioning
accuracy of CNNs. However, essential details are lost, and features are rough in space
due to multiple pooling of high-level features. Multiscale training on images is a natural
solution to this challenge. Technique of transport is different for each location. The feature
map is up-sampled utilizing bilinear interpolation to attain a uniform size because size of a
feature graph varies.

We begin with the VGG-16 network, built for large-scale natural picture classification
in the first place.VGG−16 comprises 13 convolutional layers and three FC layers. conv-f11,
12, 21, 22, 31, 32, 33, 41, 42, 43, 51, 52, 53 g are the convolutional layers. The target dataset
in this paper is quite modest, and pretrained VGG-16 is effective in various segmentation
tasks. As a result, transfer learning is applied in our paper’s training. We only learn
conv-f11, 12, 21, 22, 31, 32, 33, 41, 42, 43 g, convolution kernel is 3 × 3, and max-pooling
because VGG−16 network has been updated. The VGG16 network was fine-tuned in
this network. Dilated convolution increases the convolution kernel’s sensation field while
keeping number of specifications constant as well as ensuring that size of output feature
map does not vary. Convolution of conv −f51, 52, and 53 g was modified to dilated
convolution, with a 3 × 3 convolution kernel and a 2 dilated rate, pooling layer following
cov-43 and cov-53 was canceled. The convolution kernel is 7 × 7, and the dilation rate
is 4. Then, we construct a predictor using multiscale features derived from several layers.
There is no need to consider all the layers because there is a significant association between
adjacent layers. We extract Hypercolumn features from f12, 22, 33, 43, 53, and 7 g with
on-demand interpolation using skip-connections.

Although output of original Inception−v3 and VGG−16 networks comprises 1000 clas-
sifications, our instance only needed two PTC and benign nodules. As a result, we changed
the last layer’s output channel number from 1000 to 2. During the training procedure, we
also utilized a 50% dropout rate to avoid overfitting, and dropout mechanism discards
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some layer inputs randomly. We employed TensorFlow’s pretrained models and fine-tuned
them with cytological pictures. The models are included in the Tensor Flow-Slim image
classification package and were pretrained on the ImageNet dataset. Because ImageNet
had around 14,000,000 photos, but we only had 279, we used specifications from pretrained
method to initialize the parameters. Because deep networks involve many specifications, it
was challenging to train methods with such a limited number of photos. Pretraining can
hasten network convergence. The VGG-16 method architecture consists of 13 convolutional
layers, 2 fully connected layers, and 1 SoftMax classifier. Publication of Karen Simonyan
and Andrew Zisserman’s paper, “Very Deep Convolutional Network for Large Scale Im-
age Recognition” in 2014, introduced VGG-16 method. Karen and Andrew constructed a
16-layer convolutional network with complete connectivity. Only 3×3 convolutional layers
were stacked on top of one another for simplicity.

64 × 3 × 3-sized feature kernel filters makeup first and second convolutional layers.
Output is subsequently transmitted with a stride of 2 to max pooling layer. The 3rd
and4thconvolutional layers’ 124 feature kernel filters have a 3 × 3 filter size. Output is
minimized to 56 × 56 × 128 by the max pooling layer with stride 2 that comes after these
first two layers.

The 5th, 6th, and 7thlevels all make use of 3 × 3 convolutional layers. All 3 make
use of 256 feature maps. A stride 2 max pooling layer comes after these layers. Two
sets of convolutional layers with 3 × 3 and thirteenth-order kernels are present. These
convolutional layer sets each contain 512 kernel filters. Following a 1000-unit softmax
output layer, the fourteenth and fifteenth levels are completely connected hidden layers
with 4096 units each (sixteenth layer).

6. Deterministic Trust Transfer Protocol (DTTP)-Based Secure Data Transmission

DTTP favors packet forwarding for each node by using Combined Trust Values (CTVs). Each
sensor node in our proposed method has a CTV based on the following trust evaluation factors:

1. Identification: This factor holds a node’s identification information. It contains a
node’s location information as well as its ID.

2. Sensing Data: This element comprises data sensing and event time sense.
3. Consistency: A node’s level of consistency is represented by this factor. CTV reflects a

node’s total trustworthiness, determined using the three parameters above. We can
identify malicious or hacked nodes based on these features and filter their data from
the network. By lowering or raising the CTV, a node is punished or rewarded. Every
aggregator identifies a packet by appending its hash value to CTV and transmits it to
the destination node. The destination node verifies the hash value, and the CTV of all
nodes is checked. The CTV is incremented if the hash value is confirmed; otherwise, it
is decremented. The corresponding node is deemed malicious if the CTV falls below
a trust level.

Trust Evaluation Process. The following trust evaluation factors are assessed to deter-
mine the node’s trustworthiness:

Identification: This element consists of a node’s specific identification information. It
includes the node’s deployment grid identity and position.

IDi = 〈XPositioni, YPositioni〉, where 1 ≤ i ≤ k

Sensing Result: This factor represents the sensing result data for detected events. This
element is made up of data sensing and event time sense.

SRi = 〈SDi, STi〉 : Sensing result value of node i, where 1 ≤ i ≤ k

where SDi is sensing data of node i and STi is sensing time of node i.



Energies 2022, 15, 7430 7 of 14

Consistency: This factor represents a node’s level of consistency. We can find malicious
or hacked nodes based on this aspect and remove their data from the network. Consistency
value (CVi) is represented by:

CVi =
CCSi − ICSi
CCSi + ICSi

, where− 1 ≤ Ci ≤ 1

where CCsi is the node i’s consistent sensing count, ICsi is node i’s inconsistent sensing
count, and CVi is node i’s consistency value i (1 ≤ i ≤ k).

Trust Estimation: In the trust quantification process, weights are assigned to trust fac-
tors, which are then reviewed and quantified. Wi is a weight that represents the importance
of a specific factor, ranging from 0 to +1. Weight varies according to the application. As a
result, the CTV for node i is calculated using Equation (5):

CTVi =
W1 IDi + W2SRi + W3CVi

∑3
i=1 Wi

(5)

where 0 ≤Wi ≤ 1.
The trust values for adjacent nodes vary dynamically and continuously as time passes.

If a node makes some minor and recent errors in communicating or sensing events, it
has little impact on the trust value that its neighbors evaluate. Because every sensor
node (SN) employs histograms for accumulative trust evaluations, which are executed as
many count factors in the trust evaluation matrix, this is the case. Otherwise, if a node
consistently broadcasts inaccurate data or rarely contacts its adjacent nodes, its trust value
drops and converges to –1. As a result, this phase can detect and classify some malicious or
compromised nodes that broadcast inconsistent or deceptive data regularly.

Aggregator Selection: Aggregators can be changed dynamically and regularly, de-
pending on application. An aggregator’s job is to combine sensing input. After being
chosen as an aggregator, aggregator node a gives its identification IDa = GridID; Position >
to sink node and its neighboring nodes.

Data Aggregation: Let the initial trust values of the nodes {n1, n2, . . . } along the path
from a source S to a sink D be {CTV1, CTV2, . . . }. Nodes cannot be entirely trusted or
thoroughly distrusted because they do not know from the outset if their neighbors can
be relied upon. Each aggregator maintains a counter that counts the packets aggregated
through a route (Ct). The aggregator Ak always verifies the trust value CTVi when it
receives data packets and CTVi from a node ni. The data packets from the node ni will not
be aggregated if CTVi, CTVthr. The counter Ctk increases as eq if CTVi > CTVthr(6):

Ctk = Ctk + α (6)

where α is the number of packets that Ak successfully gathered. Then, Ak computes the
MAC over the combined data and Ctk using a shared key between the aggregator and sink
and sends the MAC to the sink via Equation (7):

Ak
[MAC (agg,ctk)]→ D (7)

Similar to this, every aggregator establishes its MAC value. Finally, all of the aggre-
gated data are delivered to sink D. The aggregators’ counters are checked before their
MACs are confirmed when the aggregated data from all the aggregators reach the sink. If
the counters are higher than a credit threshold Cthr, the aggregators are regarded as being
in good behavior. On the other hand, if the counters are lower than Cthr, the aggregators
are thought to be acting improperly. To reduce control overhead, the MAC is only verified
for the misbehaving aggregators rather than for all aggregators. Aggregators with counters
lower than Cthr are also barred from sending more data. Algorithm 1 shows DTTP-based
secure data transmission.
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Algorithm 1: DTTP

For every sensor node, S, I = 1,2, . . . ,n
Calculate identification factor Idi
Calculate sensing result SR
Calculate consistency value CVi
Evaluate CTVi
End for
Select aggregator node Aj with highest CTVi
For every aggregator Aj, j = 1,2, . . . .n
When Ai receives data packet from node Si, it measures its trust value CTVi
If CTVi < CTVi then Ai will not aggregate packet
Else
Aj aggregates packet and increment its counter CTj as Ctj = Ctj +α

Where α is the number of packets successfully aggregated by Aj
End if
Aj produces a random hash value [MAC (agg, Ctj]
Aj transmits [MAC (agg, Ctj] to the sink
End for
When all aggregated data from Ai reaches sink, it checks the counter value Ctj
If Ctj > Ctj , then
Aj is well behaving
Else
Aj is misbehaving
End if
Aj is prohibited from further transmissions

7. Performance Analysis

This project’s training and testing parts were carried out on a system with an Intel®CoreTM
i7-64720 HQ CPU running at 2.60 GHz (4 cores) and an NVIDIA GeForce GTX 1650 graph-
ics card. MATLAB® R2019a and Microsoft Windows 10 Pro 64-bit have been used to
implement each approach.

8. Database

Two open databases were used to test the sturdiness of the proposed recognition
algorithms. Shandong University obtained the FV database [28]. Joint Lab created the
camera for Intelligent Computing and Intelligent Systems. Each image is saved in the “BMP”
format, which has a dimension of 320 × 240 pixels. Hong Kong Polytechnic University’s
database is the FKP database (PolyU FKP database) [29]. A total of 7920 photos are included
in this database, consisting of 12 images taken of the index as well as middle fingers of
both hands of 165 individuals. Because there are more participants in the PolyU FKP
database than in the FV database (165 > 106), we only selected 106 of these individuals [30].
This presumption is required to accomplish the FV and FKP modalities fusion for the
training and testing stages. In our suggested unimodal as well as multimodal methods,
each database’s classes were split into two separate sub-databases, with 60% used for
training and 40% used for testing. After two cross-validations, the recognition accuracy
was calculated by alternating the training and test images.

Table 1 and Figure 2 show the comparative analysis for the accuracy between the
proposed and existing techniques. Here, the comparative analysis has been carried out
on various biometric datasets based on the number of images processed. The accuracy
calculation is performed by the general prediction capability of the projected DL method.
The true positive (TP) and true negative (TN) evaluate the capacity of a classifier to evaluate.
The false positive (FP) and false negative (FN) recognize the number of false predictions
produced by the methods. The proposed technique attained 96% accuracy for 500 images
based on their iterations, while the existing RBM obtained 83% and the CNN attained
90% accuracy.
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Table 1. Comparative analysis of accuracy.

Number of Images RBM CNN KPCA_VGG-16-DTTP

100 68 75 81

200 72 77 85

300 75 79 88

400 79 85 92

500 83 90 96
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Figure 2. Comparison of Accuracy.

Table 2 and Figure 3 show the various dataset-based biometric image comparisons in
terms of the F-scores between the proposed and existing techniques. For calculating the
F-score, the number of images processed was 500 images for both the existing and proposed
technique. The F-score reveals each feature’s ability to discriminate independently from
other features. For the first feature, a score is generated, and for the second feature, a
different score is obtained. However, it says nothing about how the two elements work
together. Here, calculating the F-score using exploitation has determined the prediction
performance. It is created by looking at the harmonic component of the recall and precision.
If the calculated score is 1, it is considered excellent, whereas a score of 0 indicates a poor
performance. The actual negative rate is not taken into consideration by the F-measures.
Here, the proposed technique attained 85% of the F-score for 500 images based on their
iterations, while the existing RBM obtained 79% and the CNN attained 81% of the F-score.

Table 2. Comparative analysis of F-score.

Number of Images RBM CNN KPCA_VGG-16-DTTP

100 65 68 73

200 68 71 76

300 72 75 79

400 77 78 81

500 79 81 85
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Figure 3. Comparison of F-score.

Table 3 and Figure 4 show the precision calculation-based comparison for the proposed
and existing techniques based on 500 images processed from the input biometric dataset.
The accuracy of a class is calculated by dividing the total items classified as belonging to
the positive class by the number of true positives. The probability is that a classification
function will produce a true-positive rate when present. It is also known by the acronym
TP amount. The proposed technique attained 92% precision for 500 images based on their
iterations, while the existing RBM obtained 85% and the CNN attained 89%.

Table 3. Comparative analysis of precision.

Number of Images RBM CNN KPCA_VGG-16-DTTP

100 77 81 83

200 79 83 85

300 81 86 89

400 83 87 91

500 85 89 92
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Table 4 and Figure 5 show a comparative recall analysis based on the number of images
from the input dataset. In this context, recall is described as the ratio of the total number of
components that genuinely fall into a positive class to several true positives. The percentage
of positive samples that were correctly identified as positive out of all the positive samples
is how recall is evaluated. How well a method can recognize positive samples are calculated
by recall. The recall increases as more positive samples are determined. Here, the proposed
technique attained 80% recall for 500 images based on their iterations, while the existing
RBM obtained 65% and the CNN attained 72% recall.

Table 4. Comparison of Recall.

Number of Images RBM CNN KPCA_VGG-16-DTTP

100 55 61 65

200 58 63 69

300 61 67 73

400 63 70 75

500 65 72 80
Energies 2022, 15, x FOR PEER REVIEW 12 of 15 
 

 

 

Figure 5. Comparison of Recall. 

Table 5 and Figure 6 show a comparative analysis of the RMSE, which indicates that 

an error occurred while processing 500 images. When training regression or time-series 

models, RMSE is one of the most widely used metrics to gauge how accurately our fore-

casting model predicts values compared to real or observed values. The MSE’s squared 

root is used to calculate the RMSE. The RMSE calculates the change in each pixel as a 

result of processing. The proposed technique attained 46% RMSE for 500 images based on 

their iterations, while the existing RBM obtained 55% and the CNN attained 48% RMSE. 

Table 5. Comparative analysis of RMSE. 

Number of Images RBM CNN KPCA_VGG-16-DTTP 

100 65 61 58 

200 62 55 55 

300 60 52 52 

400 58 51 51 

500 55 48 46 

 

Figure 6. Comparison of RMSE. 

9. Discussion 

Figure 5. Comparison of Recall.

Table 5 and Figure 6 show a comparative analysis of the RMSE, which indicates
that an error occurred while processing 500 images. When training regression or time-
series models, RMSE is one of the most widely used metrics to gauge how accurately our
forecasting model predicts values compared to real or observed values. The MSE’s squared
root is used to calculate the RMSE. The RMSE calculates the change in each pixel as a result
of processing. The proposed technique attained 46% RMSE for 500 images based on their
iterations, while the existing RBM obtained 55% and the CNN attained 48% RMSE.

Table 5. Comparative analysis of RMSE.

Number of Images RBM CNN KPCA_VGG-16-DTTP

100 65 61 58

200 62 55 55

300 60 52 52

400 58 51 51

500 55 48 46
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9. Discussion

We will not use all the input data we gathered during the training process because
doing so could lead to an overfit NN model. This common problem may be easily fixed by
dividing our data samples and using only a fraction of them for training. The model cannot
memorize the provided examples if only a subset of the data is used. It is possible to assess
whether overfitting is occurring using the remaining data inputs. The degree of overfitting
is calculated using the accuracy and precision of the trained design. The training procedure
takes up 80% of the split; 10% of samples are used to check the input data throughout the
training phase, and the remaining 10% is utilized as the testing data input to assess the
accuracy and performance of the now-trained method. By adding various transformations
to the incoming data, the final results can be improved even more. These modifications
will aid the classifier in adapting to real-world settings, allowing it to enhance the accuracy
and performance even further. The experimental results attained parameters such as an
accuracy of 96%, F-score of 85%, precision of 92%, recall of 80%, and RMSE of 46%.

10. Conclusions

This research proposed a novel technique for secure data transmission and detecting
an intruder in a biometric authentication system by feature extraction with classification.
Here, an intruder is detected by collecting the biometric database of the smart building
based on the IoT. These biometric data are processed for noise removal, smoothening, and
normalization. The processed data features are extracted using a kernel-based principal
component analysis (KPCA). Then, the processed features have been classified using a
convolutional VGG-16 Net architecture. Then, the entire network was secured using a
deterministic trust transfer protocol (DTTP). The experimental results attained parameters
such as an accuracyof96%, F-scoreof85%, precisionof92%, recall of 80%, and RMSE of 46%.
The future scope of this research can be carried out based on the cloud cyber security
system-based technique. The future scope of this research can be carried out based on a
real-time dataset with an improved accuracy using a blockchain technique with machine
learning techniques.
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