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Abstract: This paper proposes a novel T-type 7-level single-phase DC-AC inverter having a single
input power source, self-balancing, and voltage gain of 3 along with low total harmonic distortion
(THD). Since the structure of the proposed 7-level DC-AC inverter is symmetrical, the interchange-
ability of mass production can be easily achieved. In addition, because only one switch works for
all time, the switch has quite low switching loss and voltage stress as well as the control being
very easy. Furthermore, not only the proposed 7-level DC-AC inverter is analyzed in detail by the
operating principle, but also the mathematical model for the adopted level-shift sinusoidal pulse
width modulation (LS-SPWM) for this multilevel DC-AC inverter is successfully developed by using
the well-known state averaging technique widely employed in the DC-DC converter. As a result, the
required proportional-integral (PI) controller, used in the closed loop, can be designed systematically
and easily. Eventually, the feasibility and effectiveness of the proposed inverter are verified by
simulated and experimental results.

Keywords: T-type; 7-level; single-phase; DC-AC inverter; modeling; voltage gain

1. Introduction
1.1. Motivations

Multilevel DC-AC inverters (MLIs) are a popular solution for AC power sources,
including renewable energy conversion such as wind energy [1,2], automotive [3–6], and
photovoltaic application [3,7,8]. Compared to two-level voltage source inverters, MLIs
have the advantages of low voltage stress, high efficiency, low common-mode voltage,
as well as providing high quality output waveforms and improving the total harmonic
distortion (THD) [9].

The basic operating principle of the multilevel DC-AC inverter is to utilize the switch
path to render the output voltage stratified, and to upgrade the number of filters or levels
to cause the output voltage to be sinusoidal-like. As the output voltage of an MLI is
hierarchical, the voltage stress across the switch can be clamped. As a result, the high-
voltage AC output can be realized by low-voltage components.

MLIs can be used in high power or low power. Generally, high power converters have
the advantage that all semiconductors are rated to the same voltage, despite the ratio of
output levels over the number of power semiconductors being relatively low compared to
low power converters. Low power multilevel inverters are also a wide research field in
which a large number of output voltage levels can be achieved by sacrificing the voltage
rating of semiconductors. For switching topologies, on the other hand, MLIs can be divided
into two major categories, containing step switching multilevel and pulse-width-modulated
(PWM) switching multilevel.
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The step switching multilevel DC-AC inverter employs DC power source, semicon-
ductor elements and capacitors to synthesize the AC output voltage [10–12]. Although this
inverter greatly reduces the number of switching cycles over one AC cycle, the DC-AC con-
version current path is increased by too many semiconductor elements, thereby increasing
turn-on loss. Furthermore, since multilevel DC-AC inverters operate at low frequencies,
the switched capacitors require a large capacity to provide step voltages. In addition, the
load dynamic response of such an inverter is rather slow.

Voltage source multilevel PWM switching DC-AC inverters can be mainly classified
into four types, containing flying capacitor type, cascade type, diode clamp type, and
T-Type. The diode clamp type can be furthermore classified into two types: one is neutral
point clamped (NPC), the other is active neutral point clamped (ANPC). In general, the
voltage-type multilevel DC-AC inverters can be classified by Figure 1.
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Figure 1. Voltage source DC-AC inverter classification.

The flying-capacitor-based multilevel DC-AC inverter is designed to achieve the AC
output voltage clamped by interconnecting multiple capacitors [13,14]. However, a large
number of capacitors and complicated control strategies for capacitor voltage balancing are
required to obtain a stratified output voltage.

The cascade-based multilevel DC-AC inverter is the only type having a modular
design concept and adopts the fewest components among the three types [15,16]. However,
the need for multiple independent power supplies to synthesize the required levels of the
AC output voltage limits its applications.

The diode-clamp-based multilevel DC-AC inverter employs a diode and a switch
to generate the potential of the neutral point for the output voltage, and a PWM (Pulse
Width Modulation) method to create the appropriate gate signal to turn on the switch.
This results in lower harmonic components compared to the traditional 2-level DC-AC
inverter [17–19]. However, the diode clamp circuit has the problem of not achieving
self-balancing at high levels [19].

The conventional T-type active clamp DC-AC inverter uses fewer components than
the flying capacitor and the diode clamped DC-AC converters, and the voltage stress on
the switch is lower than the input voltage. In addition, complex control signals are not
required to balance the capacitor voltage. However, this structure requires two capacitors
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to build up the neutral point voltage and a bidirectional switch to connect the neutral point
to the load, leading to only a 3-level step-down output voltage.

1.2. State of the Related Works

There are many other existing papers presented for the T-type single-phase MLIs [20–25]
with a different number of levels, voltage gain and circuit structure considered. Those
characteristics are summarized in Table 1. In study [20], two structures are presented by
combining a T-type active clamp DC-AC inverter with multiple DC power sources. The first
structure uses three DC voltage sources and ten switches to achieve a 15-level AC output
with a voltage gain of 1, while the second structure uses four DC power sources and twelve
switches to achieve a 25-level AC output with a voltage gain of 1. In studies [21–23], two
T-type active clamp DC-AC inverters are used to form the circuit structure. In study [21],
the input capacitance of the second T-type active clamp DC-AC inverter is changed to the
power source voltage, and a 7-level step-up T-type DC-AC inverter having a voltage gain of
1.5 is implemented with ten switches and four capacitors. In study [22], only one capacitor
is employed to boost the voltage, an inductor is utilized at the front end of the capacitor to
form a buck-boost converter, and a duty cycle of 0.5 is adopted to convert the voltage on
the capacitor to the power source voltage to achieve a 5-level AC output with a voltage
gain of 2. The circuit structure shown in [23] takes four power inputs cross-connected to
obtain two T-type actively clamped DC-AC inverters to achieve a 9-level AC output with
a voltage gain of 1. However, compared with studies [21,22], the input power source is
increased from a single power source to four power sources, but the 7- and 5-level DC-AC
inverters in [21,22], respectively, are upgraded to the 9-level ones. In studies [24,25], 7-level
DC-AC inverters are presented, formed by combining the T-type active clamp DC-AC
inverter with the H-bridge. In study [24], eight switches and one floating capacitor are used
to form a 7-level DC-AC inverter possessing a voltage gain of 0.75, and the space vector
modulation is used to maintain the floating capacitor across the H-bridge at half of the DC
input voltage. Compared with study [18], the literature [19] adds two switches to achieve a
7-level AC output with a voltage gain of 1.5.

Table 1. T-type single-phase MLIs.

Reference Number Level Number Voltage Gain Circuit Structure

[20] 15 1.0 T-Type + Active Clamped

[21] 7 1.5 Asymmetric Two T-type Active Clamped

[22] 5 2.0 Two T-type Active Clamped+ Front-End Buck-Boost Converter

[23] 9 1.0 Two T-type Active Clamped+ Four Power Inputs

[24] 7 0.75 T-type + Diode Clamped+ Floating Capacitor

[25] 7 1.5 T-type + Diode Clamped+ H-bridge Switched-Capacitor

On the other hand, in order to control the power converter, modeling is very impor-
tant, although there are, of course, numerous variations in analysis and measure from
a theoretical and implement point of view, respectively [26]. There are many methods
which were proposed for modeling the DC-DC converter, for example, the well-known
state-space averaging method. However, very few examples of modeling the multilevel
DC-AC inverter can be found in the literature.

1.3. Contributions

Contributions of this paper are as follows: (1) A novel T-type 7-level single-phase
DC-AC inverter with a single input power source, self-balancing, voltage gain of 3 and low
total THD is proposed, which is different from [27] based on class-D. (2) The mathematical
model of the DC-AC inverter is successfully developed by using the well-known state-space
averaging method widely used in the DC-DC converter. (3) A 300 W prototype circuit
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is simulated to demonstrate the feasibility of the proposed circuit, and one-comparator
voltage control [28], accordingly to the field programmable gate array (FPGA), which is
utilized to verify the effectiveness of the proposed circuit. The proposed T-type 7-level
DC-AC inverter not only has a rather fast load transient response due to the well-designed
feedback controller, but also has the efficiency up to 97.42% and the THD down to 2.01%.

The contents of the paper may be outlined as follows. Section 2 illustrates the proposed
MLI, including circuit description, switching patterns, and operating principle. Power
component design is given in Section 3. Modeling and controller design is introduced
for the level-shift sinusoidal pulse width modulation (LS-SPWM) in Section 4. Simulated
and experimental results, along with discussions, are shown in Section 5. Finally, some
conclusions are made in the last section.

2. Proposed Inverter

Figure 2a shows the proposed single-power-source T-type 7-level single-phase
DC-AC inverter.

Figure 2. Proposed inverter and PWM control strategy: (a) Single-power-source T-type 7-level
single-phase DC-AC inverter; (b) Gate signals of the switches.
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2.1. Operating Principle

Prior to the operation analysis, we will briefly explain the definition of the symbols
and the assumptions required.

(1) the input voltage is signified by Vin, the output voltage is denoted by vo, and the
voltage across the output capacitor Co, VCo, is identical to vo.

(2) the voltages on S1 to S10 are represented by vds1 to vds10, respectively.
(3) the voltages on D1 to D6 are expressed by VD1 to VD6, respectively.
(4) the currents in the energy-transferring capacitors C1 to C4 are denoted by iC1

to iC4, respectively.
(5) It is assumed that the energy-transferring capacitances are large enough such that the

voltages on the capacitors can be viewed as constant, i.e., VC1 = VC2 = VC3 = VC4.
(6) the output current is signified by io, and the currents flowing through inductors L1

and L2 are expressed by iL.
(7) All elements, except the body diodes of the switches, are considered as ideal.

Figure 2b displays the gate signals for the switches with level-shift sinusoidal pulse width
modulation (LS-SPWM). As the gate signals at the positive half-cycle which are identical to
those at the negative half-cycle, only the positive half-cycle is taken into consideration. There
are five stages in circuit operation, and only one switch in each stage over one PWM switching
cycle, while the rest of the switches are always on or off. Since stage I is identical to stage V
and stage II is identical to stage IV, only stages I, II, and III are analyzed.

As the AC output voltage is at the positive half-cycle, the switches S1 and S8 are
always in the on-state and the switches S2, S5, S6, S7, and S9 are always in the off-state.
The output voltage will be obtained by switching S4, S3, and S10 to comply with the circuit
operations of stages I, II, and III, respectively. To speak lucidly, all the three triangular
waves are compared with the sinusoidal wave. If the latter is larger than the former, the
turn-on times are generated. The red line is for vgs4, the blue line is for vgs3, and the green
line is for vgs10.

2.1.1. Stage I

Only S4 is turned on/off as in Figure 3.
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Figure 3. Gate signal of S4.

Time interval [t0 ≤ t ≤ t1]: As illustrated in Figures 2b and 3, the switch S4 is on, but
the switches S3 and S10 are off. As displayed in Figure 4, the power flow via the inductors
L1 and L2 will generate a loop from the input voltage Vin to the switches S1, S4, S8 and the
diodes D2, D6. Hence, the voltage across the terminals A and B, called vAB, is:

vAB = Vin (1)
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Figure 4. Power flow as S4 is conducted.

Time interval [t1 ≤ t ≤ t2]: As illustrated in Figures 2b and 3, the switches S3, S4, and
S10 are all off. As displayed in Figure 5, the power flow via the inductors L1 and L2 will
generate a loop from the switches S1, S8, the diode D6, and the body diode of the switch S5.
Hence, the voltage on the terminals A and B, named vAB, is:

vAB = Vin −VC1 = 0 (2)
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Time interval [t3 ≤ t ≤ t4]: As illustrated in Figures 2b and 6, the switch S3 is on, but
the switches S4 and S10 are off. Although the switch S4 is always in the on-state during this
interval, the diode D2 is reverse biased so that no current passes through S4, which can be
considered as equal to being in the off-state. As displayed in Figure 7, the power flow via
the inductors L1 and L2 will generate a loop from the input voltage Vin to the switches S1,
S3, S8, and the diode D6. Hence, the voltage on the terminals of A and B, called vAB, is:

vAB = Vin + VC1 = 2Vin (3)
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Figure 7. Power flow as S3 is conducted.

Time interval [t4 ≤ t ≤ t5]: As illustrated in Figures 2b and 6, the switches S3 and S10
are off, but the switch S4 is on. The power flow in this interval is the same as Figure 4. The
power flow via the inductors L1 and L2 will generate a loop from the input voltage Vin to
the switches S1, S4, S8, and the diodes D2 and D6. Hence, the voltage on the terminals A
and B, named vAB, is Vin as shown in Equation (1).

2.1.3. Stage III

Only S10 is turned on/off as in Figure 8.
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Figure 8. Gate signal of S10.

Time interval [t6 ≤ t ≤ t7]: As illustrated in Figures 2b and 8, the switches S3 and S10
are on, but the switch S4 is off. As displayed in Figure 9, the current flow via the inductors
L1 and L2 will generate a loop from the input voltage Vin to the switches S1, S3, S8, and S10.
Hence, the voltage on the terminals of A and B, called vAB, is:

vAB = Vin + VC1 + VC4 = 3Vin (4)
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Time interval [t7 ≤ t ≤ t8]: As illustrated in Figures 2b and 8, the switches S4 and S10
are cut off, but the switch S3 is on. The power flow in this interval is the same as Figure 7.
The power flow via the inductors L1 and L2 will generate a loop from the input voltage Vin
to the switches S1, S3, S8, and the diode D6. Hence, the voltage on the terminals A and B,
named vAB, is 2Vin as shown in Equation (3).

According to the analysis mentioned above, the proposed 7-level DC-AC inverter
possesses the voltage gain of 3, to be calculated based on (5):

Voltage gain =
Amplitude of AC output voltage

Sum of input voltages
(5)
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2.2. Switch Behavior and Maximum Voltage Stress

Table 2 displays the switch behavior of the proposed circuit and the corresponding
maximum voltage stresses of switches, where fline is the mains frequency and fPWM is the
switching frequency. Since the positive half-cycle is considered, the switches S2, S5, S6,
S7, and S9 are kept off. The maximum voltage stress is Vin for all switches except for the
switches S3 and S5, whose voltage stresses both are 2Vin.

Table 2. Switch behavior of the proposed circuit and the corresponding maximum voltage stresses of
switches at the positive half-cycle.

S1 S3 S4 S8 S10

Switch Frequency fline fpwm fpwm fline fpwm

Stage I
(S4 PWM)

Switch status 1 0 1, 0 1 0

Maximum
voltage stress 0 2Vin Vin 0 Vin

Stage II
(S3 PWM)

Switch status 1 1,0 1
(no power flow) 1 0

Maximum
voltage stress 0 Vin 0 0 Vin

Stage III
(S10 PWM)

Switch status 1 1 1 1 1,0

Maximum
voltage stress 0 0 0 0 Vin

Note: ‘1′ implies ‘on’ and ‘0′ implies ‘off’.

3. Power Component Design

The specifications for the proposed DC-AC inverter are shown in Table 3.

Table 3. Specifications for the proposed DC-AC inverter.

Specification Value

Input Voltage Vin 56 V

Output Voltage (Mains) Frequency fline 60 Hz

Output Voltage vo 110 Vrms

Rated Output Power Po,rated/Rated Outout Current Io,rated 300 W/2.72 Arms

Minimum Output Power Po,min 75 W

Switching Frequency fs 60 kHz

3.1. Energy-Transferring Capacitor Design

The PSIM simulation results can be used to get the charge of two energy-transferring
capacitors discharged at the positive half-cycle of the mains. By setting the voltage ripple
rate at 10%, the capacitance can be obtained as below:

∆V = 56× 10% = 5.6 V (6)

C1 = C3 =
∆Q1

∆V
=

17.48 m
5.6

= 3.12 mF (7)

C4 = C2 =
∆Q4

∆V
=

8.26 m
5.6

= 1.47 mF (8)

Consequently, for design convenience, a 3.3 mF electrolytic capacitor is used for each
of the four energy-transferring capacitors, and the voltage across each capacitor is identical
to the input voltage according to Section 2.1. Since the derating should be considered in
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use of the electrolytic capacitor, the voltage rating of the selected capacitor, based on thumb
theorem, should be at least 1.25 times of the input voltage Vin, namely:

VC ≥ 56× 1.25 = 70 V (9)

Eventually, the specifications of the selected capacitors are shown in Table 4.

Table 4. Specifications for four energy-transferring capacitors.

Product Name Rubycon

Rted Voltage 100 V
Capacitance 3300 µF

3.2. Filter Design

The maximum total harmonic distortion is 5% under 69 kV or less [29], according to
the harmonic voltage limit proposed by IEEE 519–1992. Since a multilevel DC-AC converter
is operated at high frequencies, the output voltage contains high frequency components,
leading to a total harmonic distortion greater than 5%. Consequently, a filter should be
adopted to reduce the total harmonic distortion of the output voltage.

Since the proposed circuit has a double-ended symmetrical output, the inductance L
of LC filter as shown in Figure 10a is divided into L1 and L2 as shown in Figure 10b, not
only rendering the differential-mode (DM) noise to not exist at the output terminals, but
also keeping the common-mode noise (CM) from influencing the operation of the circuit.
Accordingly, L1 is connected with L2 in series as displayed in Figure 10b so let L be equal to
the sum of L1 and L2 to do analysis and calculation, i.e., L = L1 + L2, where L1 = L2 = 0.5L.

High frequency switching is used to reduce the size of the filter, and the cut-off
frequency fc of the filter is designed at 0.1 times the switching frequency fs to ensure that
the fundamental and harmonics of the switching frequency can be filtered out by this filter.
Since the switching frequency is prescribed at 60 kHz, the value of fc is prescribed at 6 kHz.

The transfer function of the filter, called F(s), is indicated in Equation (10) as follows:

F(s) =
1

Co L

s2 + s 1
RoC o

+ 1
Co L

(10)

In Equation (10), we can find the expressions of the cut-off frequency fc and the quality
factor Q as below:

fc =
1

2π

√
1

CoL
(11)

and:

Q =

√
Co

L
Ro (12)

Substituting the value of fc into Equation (11) yields:

CoL =

(
1

2π × fc

)2
=

(
1

2π × 6 k

)2
= 0.7 n (s2/rad2) (13)

At the same time, rearranging Equation (12) yields:

Co

L
=

(
Q
Ro

)2
(14)
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The value of Q at full load is set to 3 dB, that is
√

2, and substituting this value into
Equation (14) yields:

Co

L
=

( √
2

39.24

)2

= 1.3 m2 ⇒ Co = L× 1.3 m (15)

Substituting Equation (15) into Equation (13) yields:

L =

√
0.7 n
1.3 m

= 734 µH (16)

Substituting Equation (16) into Equation (15) yields:

Co = 954 nF (17)

One 1 µF/275 V metal film capacitor, manufactured by HJC Co., is selected as Co.
Therefore, the value of the individual values of L1 and L2 can be chosen to be:

L1 = L2 = 0.5L= 367 µH (18)
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Eventually, the individual values of L1 and L2 are selected as 367 µH.
Two low permeability cores are selected for cores of L1 and L2 along with the following

parameters shown in Table 5.

Table 5. Specifications for the used cores.

Ring Core T106–26

Outside Diameter (OD) 26.9 mm

Inner Diameter (ID) 14.5 mm

Thickness (HT) 14.6 mm

Relative Permeability (µr) 75

Inductance Coefficient (AL) 124 ± 10% (nH/N2)

Effective Area (Ae) 0.858 cm2

Effective Magnetic Length (le) 6.49 cm

Effective Volume (Ve) 5.57 cm3

Since the inductors L1 and L2 are the same, whose values are 367 µH, the required
number of turns N, wound on the T106-26 core, is:

L = N2 × AL

⇒ N =
√

L1
AL

=
√

L2
AL

=
√

367
124×10−3 = 54.4Turns

(19)

Eventually, each inductance is 375 µH with 55 turns.
On the other hand, the current density Jf is designed to be 400 A/cm2, and by con-

sidering the skin effect and using a wire diameter Φf of 0.5 mm, the required number of
strands is:

NL,turn =
Io,rated

π(
Φ f
2 )

2
× J f (A/mm2)

=
2.72

π × ( 0.5
2 )

2 × 400× 0.01
= 3.46 (20)

According to the result of Equation (20), 4 wires of 0.5 mm diameter enameled wire
are wound on the used cores to obtain the filter inductors L1 and L2.

In addition, the product name for S1, S2, S4, S7, S9, and S10 is AP75T45GP-HF, while
the product name for S3, S5, S6, and S8 is IPP076N15N5. The product name for D1 to D6 is
SBR20A100CTFP.

4. Modeling and Controller Design
4.1. Modeling
4.1.1. Small-Signal Analysis of Stage I

The state-space equations of the circuit are shown in Equation (21) and Equation (22)
as the switch S4 is turned on and off, respectively, during stage I: L diL

dt = vin − vo

Co
dvo
dt = iL − vo

Ro

(21)

 L diL
dt = 0− vo

Co
dvo
dt = iL − vo

Ro

(22)

Based on the state-space averaging method [26], it is assumed that the switch S4 is on
during the period of dTs and the switch S4 is off during the period of (1−d)Ts, where d is
duty cycle and Ts is the switching period. After this, by multiplying Equation (21) by dTs
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and Equation (22) by (1−d)Ts, the state-space averaging equations of stage I, via summing
these two corresponding results, can be obtained to be: L diL

dt = d× vin − vo

Co
dvo
dt = iL − vo

Ro

(23)

Since each parameter of the converter contains a DC quiescent operating point and an
AC small signal, we can express the corresponding parameters as shown in Equation (24):

d = D + d̂
vin = Vin + v̂in
iL = IL + îL
vo = Vo + v̂o

D >> d̂
V in >> v̂in
IL >> îL
Vo >> v̂o

(24)

Substituting Equation (24) into Equation (23) yields the small-signal AC model equation: L dîL
dt = (d̂Vin + Dv̂in)− v̂o

Co
dv̂o
dt = îL − v̂o

Ro

(25)

4.1.2. Small-Signal Analysis of Stage II

The state-space equations of the circuit are shown in Equation (26) and Equation (21)
as the switch S3 is turned on and off, respectively, during stage II: L diL

dt = vin + vC1 − vo = 2vin − vo

Co
dvo
dt = iL − vo

Ro

(26)

where according to the analysis in Section 2, the voltage across the energy-transferring
capacitor C1 is treated as the input voltage, i.e., vC1 = vin.

Sequentially, it is assumed that the switch S3 is on during the period of dTs and the
switch S3 is off during the period of (1 − d)Ts. Afterwards, by multiplying Equation (26)
by dTs and (21) by (1 − d)Ts, the state-space averaging equations of stage II, via summing
these two corresponding results, can be obtained to be: L diL

dt = vin + d · vin − vo

Co
dvo
dt = iL − vo

Ro

(27)

Substituting Equation (24) into Equation (27) yields the small-signal AC model equa-
tion, which is the same as Equation (25).

4.1.3. Small-Signal Analysis of Stage III

The state-space equations of the circuit are shown in Equation (28) and Equation (26)
as the switch S10 is turned on and off, respectively, during stage III: L diL

dt = vin + vC1 + vC4 − vo = 3vin − vo

Co
dvo
dt = iL − vo

Ro

(28)

where according to the analysis in Section 2, the voltage across the energy-transferring
capacitors C1 and C4 are treated as the input voltage, i.e., vC1 = vC4 = vin.

Sequentially, it is assumed that the switch S10 is on during the period of dTs and the
switch S10 is off during the period of (1 − d)Ts. After this, by multiplying Equation (28)
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by dTs and Equation (26) by (1 − d)Ts, the state-space averaging equations of stage III, via
summing these two corresponding results, can be obtained to be: L diL

dt = 2vin + dvin − vo

Co
dvo
dt = iL − vo

Ro

(29)

Substituting Equation (24) into Equation (29) yields the small-signal AC equation,
which is the same as Equation (25).

From above analysis, it can be seen that the small-signal ac model of the proposed
inverter is the same for any stage, and it is shown in Figure 11. From this figure, it can
be seen that the small-signal AC model of the proposed inverter is the same as that of the
conventional DC-DC buck converter. As a result, the control design can be carried out
easily and systematically.
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4.2. Controller Design

First, taking the Laplace transform of the circuit shown in Figure 11 yields the control-
force-to-output-voltage transfer function Gvd(s):

Gvd(s) =
v̂o(s)
d̂(s)

=
Vin

s2LCo + s L
Ro

+ 1
(30)

Accordingly, the system block diagram for voltage feedback control of the proposed
circuit can be obtained as shown in Figure 12, where Gc(s) represents the controller transfer
function, VM denotes the peak-to-peak triangular wave transfer function, and H(s) signifies
the voltage divider transfer function. The loop gain T(s) is equal to Gc(s) ·Gvd(s) ·H(s)/VM.
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First, let Gc(s) = 1 and s = jω, the phase angle at the crossover radian frequency ωcr
is calculated by MATLAB to be approximately −151

◦
, and based on the radian frequency

compensation parameter table as described in [30] and the designed values of components
as shown in Section 3, T(jωcr) can be obtained to be:

T(jωcr) = T(j0.8) = 0.9064∠− 151.6◦ (31)
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In general, the general system stability condition is set at the compensation phase
between 45◦ and 60◦, so the compensation phase is set at 55◦ to calculate the required angle
θ after compensation as follows:

θ = −180
◦
+ 55◦ − (−151.6◦) = 26.6◦ (32)

Substituting the phase calculated by Equation (32) into the formula of the proportional
gain kp shown in Equation (33) and the integral gain ki shown in Equation (34) to find their
corresponding values as below:

kp =
cos θ

|T(jωcr)|
=

cos(26.6◦)
0.9064

= 0.986 (33)

ki =
sin θ

|T(jωcr)|
=

sin(26.6◦)
0.9064

= 0.493 (34)

Figure 13 shows the control flow chart. The signal vsense is after no analog-to-digital
converter (ADC) sampling so it is a digital value. This value is positive and is subtracted
from the reference value vref to get VFB, which is a positive/negative number. Afterwards,
set the variable Error to store the current error value and multiply it by the coefficient kp to
get the proportional control force P. At the same time, set the variable accum to store the
cumulative value, and each operation will add the previous error value to this operation,
then multiply this variable by the coefficient ki to get the integral control force I. Finally, add
P, I, and the digital sine wave signal, called sinewave_data, to get the control force, called
Force, which is restricted by a limiter, called Duty Limiter, between −1023 and 1023.
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5. Results and Discussion
5.1. System Configuration

Figure 14 shows the system configuration for the proposed 7-level single-phase DC-
AC inverter. This system is built up by the main circuit and the feedback circuit. The
field-programmable gate array (FPGA) and digital-to-analog converter (DAC) are used
to create sinusoidal voltage reference signal vref, and no ADC sampling circuit is used
to transmit the feedback signal vFB to the FPGA to get the resulting control effort after
calculation. This control effort is then sent to the isolated gate driver to make the switch
on/off to achieve a desired output voltage.
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Figure 14. System configuration for the 7-level single-phase DC-AC inverter.

5.2. Simulation and Experiment with Discussion

Under closed loop at rated load, Figure 15 shows the output voltage vo and cur-
rent io. Figure 16 displays the output voltage vo and the unfiltered output voltage vPWM.
Figures 17 and 18 show the voltages on the energy-transferring capacitors C1, C2, C3, and
C4. Figure 19 only shows the voltage stresses on the switches S1 to S5 due to the circuit
symmetry. Figures 20 and 21 display the upload and download transient responses based
on load variations from 25% to 100% load and from 100% to 25% load, respectively.

From Figure 15, it can be seen that the output voltage vo and output current io are
both AC outputs. From Figure 16, it can be seen that the unfiltered output voltage vPWM
possesses 7 levels generated by the gate signal with high switching frequency to conduct
and cut off the switch and is filtered to get 60 Hz AC voltage with voltage gain of 3. As can
be seen from Figures 17 and 18, the energy-transferring capacitors possess self-balancing.
From Figure 19, it can be seen that all switches have voltage stresses of the input voltage
except the switches S3 and S5, whose voltage stresses are double the input voltage. From
Figures 20 and 21, it can be seen that the former has an undershoot voltage of about 50 V
and a recovery time of about 0.6 ms, and the latter has an overshoot voltage of about 45 V
and a recovery time of about 1.5 ms. From the above simulated and measured results, it is
obvious that good agreement between the simulated and experimental results validates the
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feasibility and effectiveness of the proposed single-power-source T-type 7-level single-phase
DC-AC inverter.
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Figure 16. Waveforms at rated load with (1) vo and (2) vPWM: (a) simulated; (b) measured. 
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Figure 16. Waveforms at rated load with (1) vo and (2) vPWM: (a) simulated; (b) measured.
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Figure 17. Waveforms at rated load with (1) vC1 and (2) vC2: (a) simulated; (b) measured. 
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Figure 17. Waveforms at rated load with (1) vC1 and (2) vC2: (a) simulated; (b) measured.
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Figure18. Waveforms at rated load with (1) vC3 and (2) vC4: (a) simulated; (b) measured. 
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Figure 18. Waveforms at rated load with (1) vC3 and (2) vC4: (a) simulated; (b) measured.
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Figure 21. Measured waveform of downloading from 100% load to 25% load: (1) vo; (2) io.

5.3. Voltage Harmonic Distribution

Figures 22 and 23 show the voltage harmonic distribution at 100% and 25% load,
respectively. The total harmonic distortion (THD) of the output voltage of the single
source T-type 7-phase DC-AC inverter at 100% load and 25% load are 2.01% and 3.36%,
respectively, which are small enough to remove or downsize the output filter, leading to
less volume and cost. Furthermore, the proposed DC-AC inverter can indeed meet the
IEEE 519–1992 requirement of less than 5% THD of voltage harmonics.
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Figure 22. Voltage harmonic distribution at 100% load.
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5.4. Efficiency Measurement

The efficiency of the proposed inverter circuit at various loads is measured as shown
in Figure 24. First of all, a digital meter (Fluke 179) is used to measure the input voltage and
the voltage on a current-sensing resistor (Shunt) to obtain the input current. Sequentially,
the output voltage and current, total harmonic distortion, and harmonics of each number
are measured by utilizing a power analyzer (PM1000+). Afterwards, the input and output
powers can be obtained. Moreover, an AC electronic load (Prodigit 3255) is adopted at the
load side. Eventually, the resulting input and output powers are employed to calculate
the overall efficiency as illustrated in Figure 25. From this figure, it can be seen that the
proposed inverter is based on the T-type circuit, thereby making the efficiency reduced as
load is increased. The efficiency all over the load range is above 94% and the maximum
efficiency is 97.42%.
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5.5. Comparison between Proposed Inverter and Other Topologies

Comparisons of the proposed inverter with topologies [10–12,21,25,31–33] in various
criteria and feature emphases are tabulated in Table 6. From this table, only the proposed
inverter has the feedback control design and the highest voltage gain although it has the
largest number of diodes.

Table 6. Comparisons between the proposed single-phase multilevel DC-AC inverter and
existing topologies.

[10] [11] [12] [21] [25] [31] [32] [33] Proposed

Number of Levels 7 9 9 7 7 7 7 9 7

Number of Switches 10 11 11 10 10 10 16 10 10

Number of Diodes 0 0 0 0 0 0 0 0 6

Number of Capacitors 4 2 3 4 3 0 2 2 4

Number of Transformers 0 0 0 0 0 0 0 2 0

Voltage Gain 1.5 2 2 1.5 1.5 2 3 1 3

Number of DC
Power Sources 1 1 1 1 1 3 1 1 1

Rated-load Power (W) 270 300 500 150 1000 100 45 500 300

Input Voltage (V) 100 160 70 100 200 100 30 100 56

Peak Output Voltage (V) 150 150 320 150 300 200 90 100 168

Rated-load THD (%) — 13.10 14.1 — — 19.05 — 12.25 3.36

Peak Efficiency (%) 96.52 — 97.80 98.20 96.13 99.11 96.25 93.50 97.42

Control Strategy SVPWM LS-PWM PD-PWM SHE-PWM SVM SHE-PWM SPWM SPWM LS-SPWM

Modeling x x x x x x x x v

Feedback
Controller Design x x x x x x x x v

6. Conclusions

The proposed inverter has the following features as described below:

1. This circuit has a symmetrical structure possessing voltage gain of 3 and self-balancing
along with low THD. As a result, the mass production interchangeability can be
obtained easily.

2. Only one switch operates at any time, and not only is the corresponding control quite
easy, but also any switch has very low switching losses and voltage stress.

3. Since the mathematical model of the multilevel DC-AC inverter is successfully devel-
oped using the state-space averaging method, the voltage controller for the multilevel
DC-AC inverter can be designed systematically and easily.

Furthermore, since the proposed DC-AC inverter possesses low THD, the possible
applications of the proposed inverter in the industry are mentioned below:
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1. It can be applied to a single AC motor to reduce the torque ripple.
2. It can be also applied to the low-frequency transformer to reduce the core loss.
3. It can be applied to utility parallel of green power with relatively low electric pollution.

However, two switches have the maximum voltage stress of double input voltage.
Consequently, this should be considered in practical perspective.

In addition, the possible developments of the proposed inverter in this research activity
are mentioned below:

1. Many researchers have focused on the structure and output of the multilevel inverter,
but comparatively few researchers on the THD and product usefulness. Accordingly,
THD reduction and circuit symmetry should be investigated.

2. In general, only open-loop steady-state waveforms are shown in many papers. That
is, dynamic responses are not considered. Accordingly, modeling of the multilevel
inverter and closed-loop controller design should be developed.

3. Up to now, there is no standard of the input voltage. Accordingly, by taking 12 V as a base,
a multiple of this base to get 24 V, 48 V, and 96 V makes the user commonality achieved.
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