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Abstract: Due to their numerous advantages, Wavelet transform processor-based acoustic wave
devices constitute an interesting approach for various engineering disciplines, such as signal analysis,
speech synthesis, image recognition and atmospheric and ocean wave analysis. The major aim of this
paper is to review the most recent methods for implementing wavelet transform processor-based
surface acoustic wave devices. Accordingly, the goal of this paper is to compare different models,
and it will provide a generalized model with small insertion loss values and side lobe attenuation,
making it suitable for designing multiplexer filter banks and also to ease the way for the continued
evolution of device design. In this paper, a generalized framework on surface acoustic wave devices
is presented in terms of mathematical equations, types of materials, crystals types, and interdigital
transducer design in addition to addressing some relevant problems.

Keywords: WTP; VLSI; SAW; IDT; SER; BAW; IL

1. Introduction

Wavelet technology is considered a robust time-frequency analysis with a strong
mathematical base. It represents a relatively new scope of rapid development in applied
mathematics and engineering, i.e., instantaneous signals, picture edge identification, image
denoising, pattern recognition, data compression, and fractal signal analysis [1–7]. The
major motivation for studying the wavelet algorithm for time-frequency dispersive systems
is the accurate localization in both time and a frequency domain, which overcomes the
problems accompanying Fourier transform analysis. However, its algorithm is convoluted
and implemented with difficulty in most fields. To solve this complicated algorithm, many
researchers have adopted the concept of implementing wavelet transform processor-(WTP)
based hardware devices, such as very large scale integration (VLSI), [8–12] optical de-
vices [13,14] and surface acoustic waves (SAW) [15,16]. In 1993, Parhi et.al [8] proposed
two types of VLSI architectures, referred to as the folded architecture and the digit-serial
architecture, for the implementation of one-and two-dimensional discrete wavelet trans-
forms. The limitations and positives of the two proposed architectures have been studied
and compared. A class of VLSI architectures based on linear systolic arrays for comput-
ing the 1-D Discrete Wavelet Transform (DWT) is presented [9] endeavoring to perform
better in both computation time and in area. In 1996, Grzeszczak et.al [10] presented an
enhanced technique with a new design of that was represented by the authors in [9]. In
2006, Maurizio Martina [11] proposed a new low-complexity, efficient wavelet filter VLSI
architecture specified for compressed images. Wavelet has been proposed for biomedical
studies [12]; it represents the streaming neurophysiological data based on WTP/VLSI. The
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scheme provides efficient bandwidth utilization; conversely, communication costs meant
severe limitations on size, energy consumption and power dissipated. Recently, acous-
tics applications have been commonly used, from noise-removing to ultrasonic imaging.
Acoustic-based approaches for biological and biomedical applications have been adopted
in the last decade [17,18]. Moreover, the WTP/SAW devices not only can overcome the high
power cost for the computer system but also can avoid the big size and low reproducibility
for other physics devices, such as optical devices and VLSI [19].

Wavelet transform-based SAW devices present several advantages, as follows [19,20]:

• The complicated conversion of the signal processing is eliminated, which may elimi-
nate the signal distortion;

• Small size;
• Low cost;
• Good temperature stability;
• High reliability and reproducibility;
• Simple implementation techniques of the wavelet transform where the complication

of its mathematical algorithms is eliminated.

Based on this strategy, the goals of the paper are listed as follows:

• Provide a unified framework for WTP along with SAW devices by emphasizing
their basic elements: the crystal types, design of inter-digital transducers IDT and
frequency characteristics;

• Extend the understanding of the existing WTP algorithm by identifying their mathe-
matical relationships with the SAW device interdigital transducers envelop function;

• Simulate the existing SAW devices in the literature concerning their accompanying problem;
• Investigate the trade-offs between different SAW elements;
• Pave the way for further enhancements by providing a wider perspective on WTP

using a SAW device;
• Finally, determine the best parameter choices which provide the most side-lobe atten-

uation and least insertion loss with a neglected effect of a bulk acoustic wave.

The survey is organized as follows: Section 2 presents the wavelet concept and its
mathematical representation. The relation between the wavelet function and the envelop
function of the SAW interdigital transducer is provided in Section 3.

The dependence of SAW design on mother wavelet specification and their perfor-
mance are discussed in Section 4. IDT design is then discussed and trade-offs of the SAW
elements are investigated in Section 5, accompanying problems and proposed solutions
are mentioned in Section 6, and results and simulation are presented in Section 7, while
Section 8 concludes the paper.

2. Wavelet Analysis

A wavelet is a mathematical tool which breaks data into multiple components and
then processes each of them with a convenient scale. There are several time-frequency
analysis methods such as Fourier transforms, short-time Fourier transform (STFT) and
wavelet analysis, and Ghaderpour et. al, provide a complete study of these techniques with
their advantages and limitations including the pre-mentioned ones [21].

Wavelet analysis and Fourier are similar in dealing with the expansion of functions
based on basis function sets. However, instead of expanding in terms of trigonometric
polynomials, wavelets are generated by scaling and shifts of a function called the mother
wavelet. They have a preference for Fourier schemes in physical situations, especially the
signal, which contains interruptions and sharp hikes. Fourier transform is a mathematical
tool to represent dual dispersive systems; it presents data in frequency but does not show
when this frequency has happened. To overcome the limitations of the traditional Fourier
transforms, the signal is broken down into smaller components which short-time Fourier
transform (STFT) provides [22]. STFT adopted the idea of a fixed time window to represent
the signal, by this representation it is safe to say that the signal is stationary over a fixed
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interval of time; accordingly, it increases the complexity of implementation given the need
to choose an appropriate window size (Figure 1).
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The STFT presents both the time and the frequency at which a signal occurs. However,
determining a window (segment) size is a key problem. For doubly dispersive signal
analysis using the STFT, choosing a small window size helps obtain good time resolution
but decreases the frequency resolution, and vice versa [23].

Wavelet analysis is capable of adapting a specified function called the mother wavelet.
The adaption includes small windows representing high frequency and large windows at
low frequency [24]. The original data or function that is represented by the wavelet has
been processed by using a linear combination coefficients of those functions [22,23]. One
of the features that wavelet presents is the ability to deal with signal discontinuities as
depicted from the time-frequency resolution plane [23] (Figure 2).
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Figure 2 presents the main idea of wavelet analysis. Once a convenient wavelet
function is selected, called a mother wavelet, the analysis is performed by shifted and
dilated versions of the mother wavelet. There are scaled (dilated-vertical axis) and trans-
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lated (shifted-horizontal axis) versions. Time or space analysis is performed by the high-
frequency version of the mother wavelet while the frequency is a dilated low-frequency
one. Mathematically, a wavelet can be used to extract information from different data
representations such as audio signals and images. Wavelets may decompose the data to be
processed with no gaps or overlapping, which is mathematically reversible. Wavelet trans-
forms can be included in the continuous wavelet transform (CWT), the discrete wavelet
transform (DWT), and the least-squares wavelet analysis (LSWA). The CWT, DWT and
LSWA vary in how they evaluate the scale parameter. The CWT applies exponential scales
with radix less than 2. The discrete wavelet transform has dyadic exponential scales. LSWA
can process time signals that are irregularly sampled [25,26].

Wavelet transform comprises different wavelet families, each of them including
trading-offs between the spatial localization of the basis function (mother wavelet), and its
smoothness [27]. Several wavelet names are established according to their inventors (e.g.,
Daubechies wavelet named for Ingrid Daubechies, Morlet wavelet, Meyer wavelet, and
Coiflet wavelets, etc.). The most common types of wavelet basis functions are depicted in
Figure 3.
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Figure 3. Different Mother Wavelet Functions.

The wavelet basis is defined as [23,28,29]

ψs,l(t) =
1√

s
ψ

(
t− l

s

)
(1)

where ψ(t) is the mother wavelet function, s and l are the scale and shift factors respectively.
The scaled index indicates the wavelet width and l gives the position. The wavelet transform
can break down a signal into various decaying resolution levels by adjusting the scale and
shift factors of a wavelet function, therefore, once knowing the mother wavelet, everything
about the basis has been known. In this paper, we will focus on continuous wavelet
transform-based Morlet wavelet (Figure 4). The advantage of using a Morlet wavelet is
that it provides an optimal time-frequency resolution spectrogram [21,25], and it will be
presented in detail in the next section.
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3. SAW Design-Based Morlet Wavelet Function

Implementing WTP/SAW devices is based on designing the input interdigital trans-
ducer overlap to be a morlet function envelope. Therefore, the input IDTs is morlet-based
while, the output IDTs is uniform. Figure 5 represents the difference between a uniform
design and a morlet-based envelope. The impulse response is given by Equation (2) [20].

h(t) = Aejω0t (2)

where A is a constant.
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The Morlet wavelet is mathematically represented by the multiplication of complex
exponential and Gaussian windows as follows [30–32].

ψ (t) =
1√

s
e−

1
2 (

t
s )

2
ejω0t (3)

Comparing Equations (2) and (3), conclusively if A is a function of time A(t) = 1√
s e−

1
2 (

t
s )

2

it will establish a wavelet type of transmitting IDT impulse response. The difference
between uniform finger overlap and wavelet-based finger overlap is depicted in Figure 5.

4. The Performance of WTP-Based SAW Device

To implement a wavelet transform processor-based SAW device, two specially de-
signed interdigital transducers (IDTs) were fabricated on a substrate. The selection of the
substrate material controls the performance of the SAW device. There are some parameters
like propagation speed, the electromechanical coupling coefficient (ECC), temperature
coefficient and propagation loss, which depend on the substrate material as depicted in
Table 1 [33].

Concerning Table 1, the two most important practical material parameters employed
in SAW device design are the electromechanical coupling coefficient (K2) and the SAW
velocity. ECC is a measure of the competence of a material in turning an input electrical
signal into mechanical counterpart energy; the values are too small, so they are expressed
in percentages [33].

Table 1. SAW parameters of selected substrate materials [33].

Material Crystal
Cut

SAW
Axis

Velocity
(m/s)

K2

(%)

Temperature
Coefficient of

Delay (ppm/◦C)

Quartz ST X 3158 0.11 0
LiNbO3 Y Z 3488 4.5 +94
LiNbO3 128◦ X 3992 5.3 +75

Bi12GeO20 110 001 1681 1.4 +120
LiTaO3 Y Z 3230 0.72 +35
GaAs <001> (110) <2841 <0.06 −49

However, the values of velocity depicted in the previous table are also affected by
the physical properties of the selected material (i.e., elasticity, density and piezoelectric
properties), these parameters can all change with temperature. Also, temperature changes
will cause phase shifts that may reduce the stability of the SAW device. In addition to
the materials in the previous table, high-temperature SAW devices, such as piezoelectric
materials and metal electrodes, are proposed and studied [34,35], the studies analyze the
stability and lifetime of SAW devices in harsh environments. Several types of substrate
materials are examined such as platinum (Pt), lead zirconate titanate (PZT), calcium copper
titanate (CCTO), and carbon nanotubes (CNTs).

Generally, SAW substrate materials are anisotropic. This gives different propagation
characteristics with different crystal cut directions. It requires the use of a substrate with
appropriate crystal cuts for the avoidance of any performance degradation, and the orienta-
tion cut of the lattice diagram related to material fabrication represented in the second and
third columns is the best for the selected materials.

YZ lithium niobate (LiNbO3) is generally applied in wideband filters due to the high-
velocity values which introduce a small size in practical implementation. 128-rotated X
propagating lithium niobate is a special cut designed for reduced bulk wave generation
over its Y-Z counterpart; the bulk acoustic wave effect will be discussed in Section 6.1.

ST-X quartz (i.e., stable temperature cut), appeared efficiently in narrow-band filters
with high stability (zero temperature coefficient). Lithium tantalate has a higher ECC than
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ST-X quartz and conversely poorer temperature stability. Of the remaining SAW substrates
depicted in Table 1, bismuth germanium oxide (Bi12GeO20) has found use in long-delay
line applications with low SAW velocity. The piezoelectric coupling of gallium arsenide
(GaAs) is slightly less than quartz, while its detraction is high.

In this section, the effect of some parameters related to substrate selection will be
discussed. The foremost ECC of the substrate material affects the relative bandwidth and
insertion loss (IL), so the appropriate relationship between them helps in the selection of
substrate material.

4.1. ECC Value as a Function of Centre Frequency and Wavelet Scale

As mentioned earlier, to implement a wavelet transform processor-based SAW device,
two specially designed IDTs are required: the input IDT design-based Morlet wavelet
envelope and output uniform IDT. Accordingly, the mathematical relationship between
them will be analyzed.

The frequency domain of Equation (2) is denoted by the following expression [36]:

ψ(ω) =

√
π√
s

e−
1
2 s2(ω−ω0)

2
(4)

where ω0 is the centeral angle frequency function.

Y(ω) =
ψ(ω)
√

π√
s

= e−
1
2 s2(ω−ω0)

2
(5)

Y(ω) = 10
−3
20

then,

∆ f−3dB =
1

2πs

√
−2 ln

(
10
−3
20

)
=

0.1323
s

(6)

The output IDT is uniform and its bandwidth is much bigger than the input, so the
Morlet wavelet transform processor depends on the input, meanwhile, the maximum
fractional bandwidth for output IDT (unapodized) [33] is

∆F−3dB
f0

= 2

√
K2

π
= 1.1283

√
K2 (7)

where K2 is the ECC of the substrate material. Accordingly, from Equations (6) and (7) so
there must be ∆F−3dB ≥ ∆ f−3dB [19], ECC values may be

K2 ≥ 0.01375
f02 s2 (8)

4.2. The Influence of ECC on IL

The mathematical expression of the insertion loss of the SAW device is represented
by Equation (9) [33]. The equation provides the value of insertion loss can be held to 6 db
before external circuit responses prevail at maximum bandwidth

IL = 10 log10(
π

2K2 )
2
(

∆ f
f0

)4
(9)

where K2 is the electromechanical coupling coefficient, f 0 is the center frequency.
The frequency response is limited to the input IDT, the frequency of the output is

much bigger than the input, as it is a uniform IDT. Substituting ( ∆ f
f0

) Equation (6) given

IL = −31.215− 20 log10K2 − 10 logs4 f0
4 (10)
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According to Equation (10), choosing a material with large K2 will reduce IL, it will be
a trade-off with the design we will introduce later.

5. Interdigital Transducer Design

Implementing a wavelet processor-based SAW device requires the input IDT geometry
designed as a Morlet wavelet envelope and the output IDT to be uniformly designed [19,36]
(Figure 6).
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5.1. Specifications of the Input IDT Design

According to the wavelet principals and with Nyquist sampling theory, the sampling
time of each interdigital electrode is

∆t =
1

2 f0
(11)

Then the sampling time of all interdigital electrodes is [19]

t(n) =
n− 1
2 f0

(12)

where n: is the numbering sequence of the interdigital electrode pairs. The wavelet envelope
represented by Equation (3) can be used to determine the overlapping length of interdigital
transducer fingers by the following formula [19,37].

L(n) = Lmaxe
− (n−1)2

8s2 f0
2 (13)

So

n =

√
8s2 f02ln

Lmax

L(n)
+ 1 (14)

Let L(n) = Lmin then input IDT number (N) can be deduced from the formula

N =

√
8s2 f02ln

Lmax

Lmin
+ 1 (15)

From the previous equations, once center frequency and wavelet scale are selected, we
can get the number of IDT fingers and their overlapped lengths.

5.2. Specifications of the Output IDT Design

Mathematical relations applied to SAW design by equivalent circuit models are men-
tioned in this section. According to the Mason model, the output IDT is represented by the
electrical circuit of the parallel combination of capacitance, conductance and susceptance
Figure 7 [38].
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Where Ga( f ), Ba( f ) is the radiation conductance and radiation susceptance, respec-
tively, and the radiation conductance near the center frequency is deducted from the
equation [19,33].

Ga( f ) = Ga( f0)

(
sin(Mπ(( f − f0)/ f0))

Mπ(( f − f0)/ f0)

)2
(16)

M is the number of output IDT.
The zero crossings of the sinc function occurred when Mπ(( f − f0)/ f0) = ±π, the

3 dB bandwidth is evaluated as the halved frequency period from frequency f to the center
frequency given by Equation (17) [19].

∆ f−3dB =
f0

M
(17)

As mentioned before, the bandwidth is limited to the input IDT, applying the Ga-
bor uncertainty condition for a doubly dispersive channel, so Equation (17) will be as
follows [30].

∆ f−3dB =
0.883 f0

M
(18)

The finger number can be calculated as the value at which the 3 dB value of the input
IDT must be lower than the value of the output IDT. It will be given by

0.883 f0

M
≥ 0.1323

s
(19)

M ≤ b6.6742 f0sc (20)

where b�c provides a maximum integer less than a given number.

6. Accompanying Problems

Some problems adversely dominated the performance of wavelet processor-based
SAW; accordingly, these problems have led to some design trade-offs. We will discuss them
briefly, as well as some of the proposed solutions to reduce their impact.

The three key problems of wavelet transform processor-based SAW devices [36] are
defined as the bulk acoustic wave (BAW), the sound-electricity reclamation (SER), and the
insertion loss. The following sub-sections will discuss their effects.

6.1. The Bulk Acoustic Wave

The excitation of IDT on the piezoelectric surface generates bulk acoustic waves in
addition to the launching of surface waves. The generation of BAWs affects to the amount
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of power that is consumed from the total power. Thus, the ratio of the BAW power to the
total power must be decreased. The greater the number of finger pairs the smaller the
amount of BAW generation (Table 2) [19,33,39].

Table 2. SAW Power and BAW Power Related to Total Power [19,39].

Finger Pair M The Ratio of SAW Power to Total Power% The Ratio of BAW Power to Total Power%

1 42.8 52.7
5 87.7 12.3

20 98.3 1.7

There is another problem due to the BAWs generation. BAWs decrease the performance
of the SAW filter, causing passband ripples, the distortion of phase and amplitude, and an
increase in the insertion loss [40] Figure 8.
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From Table 2, the effect of BAWs can be omitted, as M is larger than 20. The number of
IDT fingers can a be selected value in (20, b6.6742 f0sc).

6.2. The Sound Electricity Reclamation

The sound electricity reclamation delays or stores some input energy, thus a reflection
of the incident sound wave for IDT occurs and led to performance detraction. The SER
is related to the electromechanical coupling coefficient K2, where the larger ECC is the
stronger SER effect [39].
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6.3. The Insertion Loss

Equation (10) theoretically presents the factors that affected IL value predominantly,
and the electromechanical coupling coefficient value controls the performance of the SAW
devices. It is better to choose the material with a large ECC to reduce the IL value. The ECC
is commensurate to the relative change in velocity Equation (21) [33]

K2 = 2
∣∣∣∣∆v

v

∣∣∣∣ (21)

The relative change of velocity
∣∣∣∆v

v

∣∣∣ arises from the SAW propagation across metal
finger from free crystal which causes shorting out of the tangential electric field and the
velocity to be decreased.

As a result of impedance change at the edges of IDTs, the reflection of SAWs occurs.
That reflection causes fluctuations in appearance in the passband and asymmetrical fre-
quency response. The intensity of the reflected SAW is related to the impedance ratio
Z
Z0

[41].
The change of the impedance caused by the metal film is given by [33]

Z
Z0

=

∣∣∣∣∆v
v

∣∣∣∣ = K2

2
(22)

It is more convenient to choose a substrate material with a small ECC to reduce the
asymmetry of frequency response.

There are several factors that affect the performance of WTP/SAW devices. These
factors are the electromechanical coupling coefficient, the maximum relative bandwidth,
insertion loss, the sound electricity reclamation and the reflection generated by IDT. Decreas-
ing the insertion loss requires ECC to be as large as possible as depicted by Equation (7);
on the other hand, the reflection generated by IDT and SER requires the ECC as small as
possible, it is necessary to make a trade-off.

6.4. The Selection of the Substrate Material

Many parameters determine the substrate materials such as propagation velocity vs,
the electromechanical coupling coefficient K2, the temperature coefficient, and propagation
loss. However, the critical key parameters are propagation velocity and ECC, thus choosing
material requires a trade-off between them. The effect of ECC has been mentioned, and
now the effect of the propagation velocity will be discussed.

The dimensions of the IDT fingers are the width (a) and (b) is the interval between
fingers. The lengths are related to λ, with a metallization ratio of 50% [20].

λ = 2a + 2b (23)

a = b =
vs

4 f0
(24)

6.5. The Diffraction Problem from Input IDT to Output IDT

Gao et al. [42], presented the diffraction problem occurs with SAW propagation from
input to output by the diffraction equation of classical optics as [33]

F =
λD
A2 (25)

A is the aperture width, D is the distance from the input IDT to the output IDT and
F is the dimensionless (Fresnel) parameter which may be less than 1 or greater than 1
corresponding to the Fresnel (near-field) or Fraunhofer(far-field) regions respectively as
depicted by Figure 9 [42].
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To conserve the SAW beams as parallel beams, the distance from input IDT to output
one is based on the near field region so F < 1 gives

D <
A2

λ
(26)

If the interval between the two IDT is Lg which preserves the near-field basis, then the
total length of the WTP is given by [19]

L = 2Na + 2Ma + Lg − 2a (27)
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The choice of the substrate may require a material with high propagation velocity vs
to increase the finger width (Equation (14)). Increasing the finger width and the interval
between the fingers accordingly decreases the difficulty of production, but it will be a
trade-off with the total package size Equations (14) and (17).

7. Results

To verify the equations listed later, a comparison among three related papers will be
established, and the results of those works will be presented and compared. The section
also includes verification that was established using the suitable simulation tool of selected
works for proposing a novel design for our future work. The input IDTs are uniformly
spacing Morlet apodized. As the output IDT is unapodized, accordingly, the impulse
model can be applied [43–50]. Table 3 presents the simulation parameters used in the works
being compared.

Table 3. Simulation Parameters.

Reference Substrate
Material K2

SAW
Velocity

(m/s)

Processing
Time (µs) Scale

Max
Aperture
Length

(µm)

Center
Frequency

(MHz)

Theoretical
−3 dB

Bandwidth
(MHz)

Number of
Electrode Pairs

Input Output

[39]
X 112◦ Y
LiTaO3

0.75 3295 1.7
2–1

2000
34.323 0.2645

100 242–2 68.646 0.52911
2–3 137.292 1.0582

[39] Y-Z LiNbO3 4.5 3488 1.47 2–1 2000 68.646 0.52911 100 24

[19] X 112◦ Y
LiTaO3

0.75 3295 1.7 0.3149 2200 61.6 0.42006 106 21

[51] ST-X quartz 0.11 3158 1.89 0.2152 3433.5 60 0.6148 117 49

The previous table represents the parameters the works [19,36,48] have used. The
practical results provided us with information about the effect of choosing the number of
IDT at input and output, the material selected (i.e., ECC, velocity, and processing time),
wavelet scale (controls the center frequency and bandwidth) on the insertion loss and
side-lobe attenuation to get the most efficient performance.

Lu et.al. [39] measured the bandwidth and insertion loss for different wavelet scales
using the network analyzer HP8712ET. The practical results provide decreasing insertion
loss with increasing frequency. In 2017, Wenke Lu proposed new design parameters with
the same substrate material to reduce some of the defects related to his previous design [19],
and experimental results were measured by an E5061A network analyzer. The result
presents more stability in passband ripples and side-lobe attenuation.

In 2022, Lu et al. applied the technique of unbalanced split electrode IDTs to compen-
sate the BAW, reduce passband ripples and attenuate the side-lobes [51]. The experimental
results were measured by an E5061A network analyzer.

The figures below show the simulated frequency characteristic curves of the equivalent
circuit of Figure 7. The results were measured by a simulation tool that represents a wavelet
processor SAW device [19,39,51].

Figures 10–12 represent the frequency response characteristic of different substrate
materials with different parameters selected. There is a small insertion loss with the
accepted 3dB bandwidth as depicted in Figure 10, thus conversely side-lobe attenuation
is better with ST-quartz, as in Figure 12. Table 4 represents different simulated values of
insertion loss and side-lobe attenuation of three selected works.
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Table 4. Simulated Results For Insertion Loss and Sidelobe Attenuation.

References [39] [19] [51]

Insertion loss −19 −20 −6
Sidelobe attenuation (dB) 41 52 58

The advantages and disadvantages of wavelet transform processor-based SAW devices
are listed in Table 5.

Table 5. The Advantages and Disadvantages of WTP-based SAW Devices.

Advantages Disadvantages

Complicated conversion of the signal processed is eliminated,
which may eliminate the signal distortion. Limitation on bandwidth values.

Small size. Limitation on the number of input/output IDTs fingers.

Low cost. The center frequency and wavelet scale are dependent variables
which pose a challenge in parameter selection.

Good temperature stability. The sound electricity reclamation and insertion loss are two
trade-offs related to ECC.

High reliability and reproducibility. The symmetry of frequency response is another challenge in
choosing substrate material, as it depends on the ECC value.

8. Conclusions

Wavelet transform is considered robust time-frequency analysis that provides accurate
localization in both time and frequency domains. Studying the wavelet algorithm for
time-frequency dispersive systems provides sufficient localization in both domains. In
this survey, the design of surface acoustic wave devices is a simple powerful method for
the wavelet transform processors. Wavelet processor-based SAW devices with a single
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scale are passband filters. The major motivation of this work is to compare different
substrate materials and design parameters which perform the WTP-SAW devices efficiently
as passband filters for our future work.

The survey is examined based on the concept of solving the main problems that
appear in the design. The framework categorizes the SAW device schemes based on
their substrate materials, electromechanical coupling coefficient, and bulk acoustic wave.
The survey presents a framework to apply and study new schemes of signal processing
techniques, which may pave the way for further developments of WTP-SAW based. Finally,
the motivation of this paper was to implement a generalized model that presented a WTP-
based SAW device with small insertion loss values and sidelobe attenuation, making it
suitable for designing multiplexer filter banks. Accordingly, a comparison of previous
studies has been adopted. The comparison includes several substrate materials, different
values of center frequency and scales.

Figure 13 describes the statistics of the papers related to our work; therefore it provides
information about the number of publications and the year of publication.
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