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Abstract: Relay-based traffic control systems are still used in railway control systems. Their correct-
ness is most often verified by manual analysis, which does not guarantee correctness in all conditions.
Passenger safety, control reliability, and failure-free operation of all components require formal proof
of the control system’s correctness. Formal evidence allows certification of control systems, ensuring
that safety will be maintained in correct conditions and the in event of failure. The operational safety
of systems in the event of component failure cannot be manually checked practically in the event
of various types of damage to one component, pairs of components, etc. In the article, we describe
the methodology of automated system verification using the IMDS (integrated model of distributed
systems) temporal formalism and the Dedan tool. The novelty of the presented verification method-
ology lays in graphical design of the circuit elements, automated verification liberating the designer
from using temporal logic, checking partial properties related to fragments of the circuit, and fair
verification preventing the discovering of false deadlocks. The article presents the verification of an
exemplary relay traffic control system in the correct case, in the case of damage to elements, and the
case of an incorrect sequence of signals from the environment. The verification results are shown in
the form of sequence diagrams leading to the correct/incorrect final state.

Keywords: railway traffic control safety; relay-based railway traffic control systems modeling;
railway traffic control system verification; integrated model of distributed systems; model checking

1. Introduction

The safe operation of railway traffic is ensured by railway traffic control systems. Light
signals, barriers at level crossings, and detection systems able to detect railway vehicles in
a particular part of tracks are some tools used to prevent disasters such as train-to-train
and train-to-car collisions. These devices must be appropriately coordinated and managed
by logic systems that ensure work safety even in numerous device failures, including own
(internal) ones.

Relay technology has traditionally been used to construct control systems. A control
system is a network of interconnected analog and stateful electromechanical components,
such as a power supply, circuit breakers, relays, fuses, etc. Relays can be considered
logical elements as they can only be energized or de-energized, although this is a huge
simplification. The relays do not operate immediately (they need time to change state),
and there are transients when the state changes. As a result, the simple implementation of
a logic function is, in fact, a rough abstraction of a series of unstable intermediate states.
The relays are also prone to errors that could cause the system to malfunction or delay its
operation. Therefore, relay networks are often built redundantly to minimize the impact of
errors and ensure safety (at the expense of longevity) in all circumstances.

Railway traffic control devices can be constructed in various technologies, including
interlocking and executive systems. Mechanical solutions are the oldest. There are relay,
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electronic, and computer devices among the electrical solutions. Relay solutions have been
widely developed in Poland since the 1950s. The experience related to the construction of
these systems and their operation allowed for formulating general rules for the construction
of such circuits. These rules would allow avoiding typical abnormal behavior in the event
of faults or disturbances in their operation. One of the basic rules is to use relays with better
than standard and additional properties.

It can be said that the application of such principles is a necessary condition to con-
struct a system that will meet the requirements (in the event of damage it will come in a
deterministic way to the safe state specified by the designer) but not sufficient to confirm
that it will behave correctly under all possible circumstances.

Railway traffic control systems should be deterministic automata. Their correct opera-
tion is based on states strictly defined at the design stage. The states that should be reached
in the event of potential failure and/or incorrect command are also specified.

The Eap line block [1], described in more detail in Section 3, performs its functions
thanks to logic circuits (combinational and sequential) implemented through relay circuits.
Potential damage to relays and other elements (resistors, diodes, capacitors, transformers)
used in the construction of railway traffic control systems are classified [2,3]. In developing
new solutions or modifying the existing ones, the discussed classifications should be used
to verify whether the device will behave in an intended manner due to a defect and/or
incorrect command.

In order to increase the reliability of the systems, quality standards have been in-
troduced for the components used, design methods, security solutions etc., for example
CENELEC, EN50126 [4,5], and EN50129 [3]. System verification undoubtedly helps achieve
the highest safety standards SIL4 [6,7]. Verification carried out using traditional methods,
by analyzing the system’s operation by a specialist and testing, does not ensure that the
system is always working correctly. Formal proof of its correct operation guarantees that
the system works properly in every situation. Regarding the sequences of system behavior
in response to external forces, and the sequences of systems cooperation, model checking
methods based on temporal logic are invaluable. Unfortunately, the great difficulty is
the intellectual skills necessary to carry out the verification, requiring the knowledge of
temporal logic to formulate the appropriate requirements. Several different approaches to
verification are outlined in Section 2.

In this article, we focused on automating the verification process. We used the original
formalism of the integrated model of distributed systems [8]. Its unique features supporting
automatic verification are:

• The graphic formalism for modeling, having the same semantics as the algebraic
model for verification, so there is no need to translate from the description of the
system to the verification language [9];

• A limited set of examined features, but verified automatically, without specifying
temporal formulas; these are deadlocks and termination;

• Finding partial deadlocks and termination concerning parts of the system or even its in-
dividual elements; while the rest of the system may not experience the effects of partial
deadlocks/termination, most verifiers find only total deadlocks/termination, and the
user has to ask for partial properties by formulating appropriate temporal formulas;

• Fairness of verification is a little-known feature among non-specialists; however, most
verifiers are unfair or weakly fair, which can lead to the detection of non-existent
deadlocks [10].

In the article, we show the methodology of temporal checking the fragment of the line
block system Eap. The correct operation of the system will be demonstrated, as well as
the safety of the system, both in the event of an incorrect sequence of signals at the input
and in the event of damage to individual components. This methodology is a research
contribution of the authors.

The article is structured as follows: Section 2 presents the related work on verifying
relay switching systems. Section 3 presents the subject of the study: Eap. Section 4 presents
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the IMDS verification formalism and the verification environment. Section 5 describes the
verification process and results. The summary and subject of further research are described
in Section 6.

2. Related Work

Relay systems are still an important part of railway controllers, and more broadly in
industrial control systems. Several methods have been developed to verify such systems.
Most commonly, the states of systems and state transitions are expressed as Boolean
expressions (for example, with BDD graphs) and then verified with verifiers such as
Spin [11] or NuSMV [11]. System logic can also be expressed as UML state diagrams [12].
The latter work concerns only the situation of train collisions.

There are several methods of verification of relay systems in the literature. In [13],
the RAISE specification and the SAL verifier were used, and in [14], the authors build
the Kripke structure directly and verify the properties with SONOLAR SMT in bounded
model checking. In [15], the railway network DSL (domain-specific language) specification
was used and again bounded model checking in RT-Tester. NORMA [16] has a built-in
graphical circuit editor and uses Timed SMV for verification. The article [17] presents the
specification in B-Method and verification with ProB.

In the papers [7,18], timed automata were used to model the system and verify it
with Uppaal [19]. Automatic observers were used for verification, similar to our method.
However, temporal formulas are still required but applied to the observers and not to the
system itself.

Many papers concern the verification on a higher abstraction level, in which control
systems are treated as black boxes, interchanging signals. For example, in [20,21] B-Method
and Atelier-B toolkit are used. The application of CSP‖B and ProB is described in [22]. A
similar approach in [23] uses the specification in UML that is converted to B. In [24], two
compositional approaches using RT-Tester and NuSMV are proposed. Checking the viola-
tion of safety rules expressed as invariants, performed in SMT solver, is described in [25].
Invariant verification using ABS (abstract behavioral specification) and Key-ABS verifier
is covered in [26]. The authors of [27] use colored petri nets for modeling interlocking
equipment, but without verification. Petri nets can be verified using numerous verifiers,
for example [28]. The authors of [29] use the S3 tool providing bounded model checking
and theorem proving.

Failure analysis based on system log analysis with Uppaal is presented in [30]. The
presented methods of higher-level verification generally require the designer to specify the
properties as temporal formulas.

The operation of rail traffic control system under wrong signal sequences, using
NuSMV and OCRA (a tool for checking the refinement of temporal contracts), is investi-
gated in [31].

Theorem-proving using PERF, the alternative verification method to the model check-
ing, is applied in [32].

The mentioned verification methods lack the features that are present in our method:

• Specification in languages specific for the verifier rather than a graphical form conve-
nient for the designer;

• Automatic checking only total deadlocks, other properties must be specified as tempo-
ral formulas (except [7,18,19]);

• Strong fairness of verification (weak fairness or no fairness leads to the possibility of
finding false deadlocks [10]).

3. The Study
3.1. Line Block Eap

The line block is used to regulate the traffic on the open line and is a set of devices that
make setting activities addictive directly between two stations or taking into account block
sentinels on the open line. By means of a line block, the sequence of trains on the open
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line is regulated at set intervals of the track and in the set direction of movement on the
open line. Driving traffic using a line block is called a fixed distance method, which is a
block distance. The devices guarantee adequate safety and efficiency of the traffic. The
primary function of the block is to prevent more than one train from being in the controlled
distance [33].

There are many technical solutions for line blocks. A popular solution in Poland is a
single-block, semi-automatic, relay-type Eap block [1].

The block fragment consists of two sets containing electromagnetic relays, transform-
ers, and small electronic components (diodes, capacitors). Each of the sets is installed at
the traffic station located at the end of the route and, in addition to being connected by
two wires to the other set (the so-called transmission line, it also has connections with the
operator’s panel that allows for issuing commands, monitoring the current state, power
supply, and interlocking with which a given station is equipped (Figure 1).
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3.2. The Checked Fragment of the System

The subsystem selected for the verification is the fragment of the Eap block. It consists
of two relays: switching W and releasing Z. When the block is set towards the station,
this subsystem detects the sequential passage of the train through two sections (Jt and Jz)
located at the beginning of the station (and at the end of the route at the same time). This
enables the personnel operating the equipment to confirm that the train has left the route
(only if the W and Z relays are picked up). If the W and Z relays are not picked up, it is
impossible to confirm that the train has left the track, and therefore it is impossible to send
another train to the track.

The exemplary Eap block subsystem has been studied in several ways. Basic testing
concerns the inevitability of a correct operation with the correct sequence of input signals.
Correct operation means pick-up and then release of specific relays in the system as a
result of receiving a sequence of signals indicating the train’s movement. The next test
verifies that the system behaves safely when it is not receiving the input signals in the
correct order. An example of such a scenario is the movement of a train in the opposite
direction, generating a different sequence of input signals than the basic one. In such a
situation, the relays W and Z (Figure 2) should not pick up, which is a safe behavior of
the system. Another test is to damage the system and check whether the system is also
safe in this case. Of course, the system can be damaged in many ways, and in the case of
certification, it would be necessary to investigate all possible, and even multiple, defects.
We limit ourselves to two examples of faults: short-circuiting the input with the output of
one of the switches (i.e., reacting only to power supply and no reaction to switching) and
permanent opening of one of the relay contacts.
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4. Temporal Verification

Temporal verification (model checking) consists of checking the presence or absence
of specific features in the sequence of the system behavior. Such verification makes sense
when there are concurrent elements in the system, because the sequence (even in the case of
non-determinism) can be easily traced manually. Putting together parallel activities results
in such many possible behaviors that it is impossible to trace them. Temporal verification
checks all possible system behaviors, giving evidence of a specific action.

Model checking in the IMDS formalism answers questions about deadlock, inevitable
process termination, or its possible termination. These features may refer to a specific
process or group of processes. An essential feature of model checking is the preparation
of evidence, which is an exemplary sequence leading to such a situation, in the case of a
deadlock, termination, or non-termination detection. In the case of a deadlock or unsuc-
cessful termination, this sequence is called a counterexample and provides evidence: the
sequence that leads to the deadlock is evidence that the processes may be stuck (although
there may be other undisplayed deadlock sequences). In the absence of termination, the
example sequence occurs in which the processes do not terminate. In the latter case, the
counterexample ends in a deadlock or a loop with no way out: both demonstrate that the
processes are not terminated.

In case of a positive answer to the question of inevitable or possible termination, the
sequence is called a witness and shows an example path to the termination. In the case of
inevitable termination, this path is not proof but only an example of how termination is cor-
rectly achieved, as there may be many such sequences. Evidence of inevitable termination
is the verifier’s response. In the case of possible termination, the path is also the proof.

4.1. Verification Tools: IMDS/Dedan

In our study, we use the integrated model of distributed systems [8] formalism, which
we have already used to verify real systems, such as the Karlsruhe production cell [34]
or a fragment of the Rome metro [35]. This verification differs in that it is carried out at
a low abstraction level of the switching circuits, and the transmitted signals are electrical.
However, we believe that formalism is up to the task. IMDS is attractive because it has
a graphical version of DA3 distributed automata [9], allowing the design of models in
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terms of automata, consistent with the intuition of engineers performing verification. The
automata-based model fully complies with the IMDS algebraic formalism in which the
verification is performed.

The verification is performed in the Dedan tool, which automatically checks three
types of temporal properties. The formulas verifying those properties are hidden inside
the tool, so the user need not know any temporal login and verification rules. The checked
properties concern deadlock and termination. Using those basic properties, higher level
features can be expressed and verified. The questions asked when verifying the sample
circuit are:

• Testing correct operation and the correct sequence of input signals: will the system in-
evitably reach the predicted final state, going through all the required states beforehand?

• The introduction of damage and the correct sequence of input signals: whether the
system does not reach the final state, but also does not pass through dangerous states?

• Checking the correct system and the incorrect sequence of input signals, does the
system not reach the final state, but also does not go through dangerous states?

• Of course, the required and unsafe states must also be defined, which will be discussed later.

4.2. IMDS Formalism

The IMDS formalism is based on defining the system’s configuration under test (we do
not use the word “state” because it is reserved for a specific configuration component). A
detailed description of the IMDS can be found in [8]; here is its brief description. The system
consists of servers (distributed, independent nodes) and agents representing distributed
computations performed on servers. Agents move between servers using messages. The
configuration is a set of all server states and all agent messages, except the agents that have
finished their work. System behavior is described by transitions from configuration to
configuration, which are called actions. The action “takes” a pair from the configuration
(agent message, server state) creates a new configuration in which the state is replaced by the
new state of the same server, and the message is replaced by a new message of the same
agent, addressed to the same or a different server. The exception is an agent terminating
action that produces a new state but does not produce a new message.

The initial system configuration consists of the initial states of all servers and the
starting messages of all agents. The verification takes place in the reachability space, created
from the initial configuration by applying defined actions (transitive closure). However,
designing the model is best done in the graphic version of the DA3 distributed automata,
which are formally compatible with IMDS, but are closer to the designer’s intuition. The
system is a set of distributed DA3 automata, in which each automaton represents changes of
the states of a specific server as a result of performing actions triggered by agents’ messages.
An IMDS action in the form of a pair of pairs ((message, state), (new message, new state)) is
described by a transition in the automaton, leading from state to new state, with the label
being the pair (message, new message).

The system configuration is a subset of the 2M222AP power set, where M is the message
set and P is the state set. From a formal point of view, the system is an action relation Λ in
the Cartesian product (M × P) × (M × P), where we attach functions mapping messages
to the set of agents M→ A and to the set of servers to which they are addressed M→ S,
and states to servers P→ S. Obviously, the requirements are that the input elements (input
message, input state) refer to the same server, states (input state, output state) to the same
server, and messages (input message, output message) to the same agent. Terminating actions
are defined in the product (M × P) × (P) as there is no output message. The configuration
has exactly one state for each server and at most one message for each agent (there are no
messages for agents that terminated).

The system starts from an initial configuration that includes all servers’ initial states
and the agents’ staring messages. An action in a given configuration is enabled, if the input
pair (message, state) of this action belongs to this configuration. The reachability graph of
configurations consists of vertices that are configurations and edges that represent actions.
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The graph is created in such a way that for a vertex of a given configuration, all possible
actions are applied, creating edges to the vertices of the configuration containing the output
pairs (new message, new state) of these actions. It can be said that the action “takes” an input
pair (message, state) from some input configuration containing that pair, and replaces it by an
output pair (new message, new state) in the output configuration. In the output configuration,
all states of servers other than the server participating in the action remain the same, and
messages of all agents, except the one who triggered the action, remain unchanged.

4.3. DA3 Graphical Notation

For design using server types and their instances, the (server, value) notation is used
for states, where values from a finite set V distinguish between different states of the same
server. The same agent can trigger various actions on the same server. Therefore, the
concept of service is introduced to servers. Services distinguish between server actions.
The message is a call of a specific service by a given agent on a given server. Thus, the
notation (server, agent, service) is used for messages, where a service is from a finite set R.
The full label of the action in the automaton has the form (server, agent, service)/(target
server, agent, target service). Since the server is known (this is the name of the automaton
being designed) and the agent in both messages is the same, the simplified version of the
action is (agent, service)/(target server, target service). Additionally—if the target server is
obvious—the agent can appear only by sending a message from a specific server—and it is
only a response confirming the action, then the target server can be omitted. These three
cases are shown in Figure 3 (a: complete action, b: simplified label, c: label without target
server). The parentheses are omitted from the state and transition labels.

This is an action in server W, so its name can be omitted in states (W, state1) and (W,
state2). In the action agent A calls the on service on server W. This action sends the agent
message to server S, calling its service ok. The states state1 and state2 refer to the same server,
and it is the same server to which the input message is directed, in this case W. We can
therefore replace the states that are pairs, such as (W, state1) with the state values as state1.
We can also omit the server in the input message (server, agent, service), leaving a pair (agent,
service), for example (A, on). The output message is of the same agent as the input one, so
we can omit the agent in the output message, which shortens it to a pair (server, service),
such as (S, ok). However, the server to which the output message is directed cannot be
omitted in the general case. In exceptional cases, when the server in the output message is
known, only the service may be left. However, this only applies to specific cases where it is
“natural” to route the message to a specific server, for example, to route an ok reply to the
server, which is the only source of the input message.
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5. Verification

The verification in the IMDS formalism consists in reviewing the configuration reacha-
bility graph. Verification in CTL temporal logic consists in finding a fixed point of a specific
functional, which exceeds the scope of this article and can be found in [36]. The verification
algorithm works as if it browses all possible system execution sequences simultaneously
(and not one by one, because it is impossible), looking for a configuration with specific
characteristics. The Dedan verifier uses the CBS algorithm (checking by spheres [37]) to find
the following system properties: deadlock, inevitable termination, and possible termination.
For this purpose, for each configuration T in the reachability graph, the logical value of the
atomic formulas is determined:

• DT(s), s∈S — for a server s, the formula is true in every configuration T, for which there
is a message of some agent and directed to server s, i.e., ∃p∈P,p = (a,s′ ,r) p∈T ∧ s = s′,

• ET(s), s∈S — for a server s, the formula is true in every configuration T, for which
at least one action is enabled on the server s, i.e., ∃λ∈Λ ,λ = (((a,s′ ,r),(s′ ,v)),((a,s”,r”),(s′ ,v′)))
(a,s′,r)∈T ∧ (s′,v)∈T ∧ s = s′.

A server s deadlock is defined as a configuration in which at least one message is
waiting in the server, but in the present and future of this server (in the reachability graph
in the T configuration and all configurations reachable from T), no action is allowed on
the server s. It is the temporal formula in CTL logic: AG (DT(s) ∧ −ET(s)). The AG
operator means “always on all paths”, obviously starting in the T configuration. In the
system, we always ask about the possibility of a deadlock, so the complete formula is
EF AG (DT(s) ∧ −ET(s)). The EF operator means “there is such a path”. The whole sentence
can therefore be read as “there is a configuration on each path where a message waits at
a server, but no action can be performed in the present R and the future of this server”.
Since the truth of the DT(s) and ET(s) formulas can be determined statically, it is possible
to automatically test the occurrence of deadlocks of a given server without knowing the
temporal formulas, so they are hidden in the Dedan verifier. We can also ask for a deadlock
in a set of servers, and then the formula will be Sx = {s1,s2, . . . }⊂S: EF AG (DT(s1) ∧ −ET(s1)
∧ DT(s2) ∧ −ET(s2) ∧ . . . ). Such a formula is also automatically verified by the Dedan
program after selecting a set of servers (in particular, all servers can be appointed).

For each configuration T, the truth of the atomic logical formulas is also determined:

• DT(a), a∈A—for an agent a, the formula is true in every configuration T, in which a
message of the agent a is present, i.e., ∃p∈P,p = (a′ ,s,r) p∈T ∧ a = a′, that is, the agent did
not terminate.

• ET(a), a∈A — for an agent a, the formula is true in every configuration T, in which at
least one action is enabled with the participation of the agent a, i.e.,
∃λ∈Λ,λ = (((a′ ,s,r),(s,v)),((a′ ,s′ ,r′),(s,v′))) (a′,s,r)∈T ∧ (s,v)∈T ∧ a = a′.

• FT(a), a∈A—for an agent a, the formula is true in every configuration T in which no
message of the agent a is present, i.e., ∀m∈T,m = (a′ ,s,r) a 6= a′.

We define an agent deadlock as a configuration in which agent a message occurs, but
in the present and the future of this agent (in the reachability graph in configuration T
and all configurations reachable from R), no action is allowed with the agent’s message on
input. Because we ask for the possibility of a deadlock, it is written in a temporal formula in
the logic of CTL: EF AG (DT(a) ∧ −ET(a)). Similarly to servers, we can ask about common
deadlocks of a set of agents, and then the formula will have the form Ax = {a1,a2, . . . }⊂A:
EF AG (DT(a1) ∧ −ET(a1) ∧ DT(a2) 3 −ET(a2) 3 . . . ) and even we can ask about all agents.

Termination is a situation in which the agent has performed a terminating action, so
the inevitability of termination is the occurrence of a configuration on each path in the
reachability graph that does not contain the agent’s message, which is expressed by the
formula AF (FT(a)). The AF operator means “eventually on every path”.

Possible termination, in turn, is a situation where a configuration without an agent
message occurs on some path, as expressed by the formula EF (FT(a)).
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It should be emphasized that the TempoRG algorithm works according to the principle
of strong fairness (compassion) [10]. Compassion means that for any cycle in the reachability
graph, if it is possible to escape from this cycle, then the agent must escape from it after
many possible executions of the cycle. This feature ensures that the system does not get
stuck in any “starvation” of any of its servers if it can perform the specified action. The same
goes for agents. Lack of compassion can lead to the detection of non-existent deadlocks or
an indication of a false non-termination [10].

Thus, verification consists in indicating the servers/agents and the feature we want to
check. For example, the inevitable termination of agents that terminate after experiencing
certain desired events in the system.

5.1. Modeling System Elements

The primary task is to isolate relatively independent elements in the system that
cooperate by transmitting widely understood signals. These signals are either applying
to a specific point Vcc (Voltage common collector) or ground, or acting on a specific
contact. It does not make any difference whether the contact is influenced by a human
(button/switch), or it is a contact controlled by the relay coil. Therefore, the basic modeled
elements will be the contact and the coil. Bringing to a specific point of Vcc or ground
will be hereinafter referred to as a positive signal (or giving a signal or simply a signal),
and withdrawal of Vcc/ground as a negative signal (or withdrawing a signal or simply no
signal), and acting on the contact as causing a short circuit (closing) or an opening. The
agent giving/withdrawing the signal or the closing/opening must return to the element
from which it came to be able to propagate the signal to other elements.

The excitation of the relay coil activates the agent, which causes the closing/opening
of the contacts of this relay. De-energizing the relay coil causes the opposite action (the
agent is also triggered, causing the opening/closing of the contacts). The agent provid-
ing/withdrawing the signal returns to the element it came from, and the coil “triggers” its
own controlling relay contacts. The coil acts as an AND gate as it requires signals from
both sides (Vcc and ground) to wake up. As the controlled contacts are mechanical, it is
assumed that they can be closed/opened in any order. The relays used in the actual system
switch the contacts in such a way that between the normally open (NO) contacts and the
normally closed (NC) contacts there is a state in which all contacts are open simultaneously.
This is a standard function called rigid contact guidance, implemented in relays used
in safety-related systems [38], including railway [39–41], and ensuring the possibility of
considering a limited number of states that a relay may be in, including during a fault.
Simultaneous contact operation is not modeled because the mathematical model is inter-
leaved, but Manna and Pnueli proved that interleaved semantics (first and then second or
vice versa) is equivalent to the behavior of a coincidence circuit [42].

The research assumes one-way propagation of signals (from Vcc/ground to the el-
ements, then to the next elements, etc.). In this case, the contact acts as an AND gate;
that is, the input signal and the short-circuit must work for the signal to be propagated to
the output. The output signal—Vcc or ground propagation—can drive multiple elements,
which we assume is at zero time so that this signal can be sequentially sent to these elements
in an arbitrary order. We assume that the agent that triggers the AND gate (which gives
the input signal or causes the short circuit) propagates the output signal to the output.
The same happens in the case of signal withdrawal or opening. A particular version of
the contact is one that outputs the signal as one of many sources. In this case, we limit
the number of output items to one. The last type of element is a connection that works
like an OR gate, i.e., when a signal is sent to any input, it sends a signal to all outputs,
and the withdrawal of the signal from all inputs causes the signal to be withdrawn from
the outputs.

The connection diagrams of the modeled elements are shown in Figure 4. This is
an overview drawing showing the different types of elements and their surroundings.
They are: (a) coil, (b) contact, (c) contact with the connection of signals at the output,
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(d) connection. The coil (a) requires two signals to be given: Vcc (in the figure from the
top) and ground (from the bottom). Contact (b) has two inputs: a signal source and a
short-circuit source. The contact with a connection on the output (c) is specific because the
model must consider which input caused the signal to be passed to the output S, and the
agent must return to this input.
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Figure 4. Connection diagrams of selected logical elements: (a) coil, (b) contact/switch being the only
source of signal, but potentially for many elements at the output (c) contact/switch not being the only
source of signal (with number x), for one element at the output (d) galvanic connection. A [1 . . . ] is a
vector of all agents (any agent can give a signal). S [1 . . . ] is a vector of elements on output.

The connection (d) is made for the two signal sources, and it is an OR-type gate.
There are two signal sources at the input, and any number of them may be output. The
combination of more sources can be realized in series or as a separate model. An additional
technical element is an intermediary element used where the same element is the source
of both the signal and the short-circuit. It can be treated as connection with 1 input and
1 output. In the diagram, coils are marked with rectangles, relay contacts with ovals of
the same color as the coil, contacts controlled “from the environment” by red diamonds,
connections by yellow clusters of bold segments, and intermediary elements as elongated
purple rectangles.

The logical model of the system is presented in Figure 5. The ENV environment has
been added to the elements described above, which is the source of power and ground,
and closes and opens the switch contacts. In fact, these contacts belong to the relays of the
circuit covering the circuit under consideration, which in this case, is irrelevant. Straight
arrows indicate Vcc supply, dotted arrows—ground supply, and dashed arrows—contact
operation. The types of elements are: O1—contact for controlling 1 element, O2—contact
for controlling 2 elements, O1_1—contact for controlling 1 element for which it is the
first source, O1_2—contact for controlling 1 element for which it is the second source,
ENV—environment whose design will be discussed further, OR21—connection of two
wires which is a source for 1 element, OR22—connection of two wires which is a source for
2 elements. Three primary agents are used in the model, with their numbers 1-E (the agent
from the ENV automaton supplying Vcc, ground and closing/opening contacts operated
from outside the circuit), 2-W relay agent, 3-Z relay agent.
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Figure 5. Identification of logical elements on the schematic diagram of the line block, and marking
their types.

Figure 6 shows the contact model, which in this case, has two outputs. One of the
agents A[i] closes the contact or gives a signal from the input. The parts of the model
outlined with dashed red ovals are stable states: on the left, the state does not provide a
signal to the output (these are three states as the contact corresponds to the AND gate, i.e.,
it requires both a short-circuit and a signal from the input). The initial state—open and
no input signal—is indicated by a solid triangle. In the case of an initially closed contact,
the initial state is indicated by a hatched triangle. The paths leading from one red oval to
the other are the feeding or withdrawing of the signal successively at individual outputs.
The colors of the message mean: green—message from the input, red—sending a signal
to the output element, blue—message from the output element (agent returning from the
output element), violet—confirmation message for the input element (agent returns to
the input element). An action in box—ignored messages in steady states, for example,
withdrawing a signal that has already been withdrawn, or giving a signal that has already
been applied once. The m signal represents voltage or ground (m1—giving a signal, m0—
signal withdrawal). Contact closing is on, and the opening is of. The contact, which is not
the only source of the signal, is not shown because it differs only in that the signal m1/m0
is indexed by the source number (m1 [1], m1 [2], m0 [1], m0 [2]).

The coil model (Figure 7) is similar, but differs in that it receives two types of signals:
v and g (Vcc and ground), and has its own agent P, which is inactive in a steady state (idl
message). The g signal comes from the C input, and the v signal from the B input. Stable
states in which the winding is de-energized are shown in the red oval on the left (the AND
function is performed). Giving both the signal v and g causes the coil to be energized, and
then agent P successively closes the contacts—in any order—and returns to inactivity with
the message idl. These are paths between stable states. The contacts can also be normally
closed, as shown by the alternative actions for the S2 contact surrounded by a dashed
line. It was assumed that the relay has two normally open contacts, or one normally open
contact (S1) and the other normally closed (S2)—actions with a dashed border. As before,
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a solid line surrounds actions that ignore the signal that has already been given, or its
withdrawal when it has already been withdrawn.
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The model of the galvanic connection is shown in Figure 8. It is a connection of two
wires, having two elements at the output.
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The system model uses the following types of elements: contacts controlled from the
outside Jt1:O1, Jt2:O1, Jz1:O1_2 (it is the second source for OR21 on the ground input Z),
Jz2:O1, Dp:O2 (gives a signal to two elements w2 and K), K:O1_2 (it is the second source
for OR22), connections OR21 (used twice) and OR22, and relays: W in NO contacts w1:O1,
w2:O1_1 (first source for OR22), w3:O1_2 (second source for OR21) and Z with NO contact
z1:O1_1 (first source for OR21 at ground input Z) and NC z2:O1_1 (first source for OR21 at
ground input W). Additionally, we add the letter B for some elements on the Vcc side, for
example, OR22B, and the letter C for the ground side.

Attached to the layout model is an environment model with its own agent (number 1).
It is an automaton that consecutively feeds ground to the system (to elements z1, Jt1, Jt2,
w3), Vcc to K, and then it closes the Dp contact, closes K, opens Jt1 and closes Jt2 (in arbitrary
order), opens K, closes Jz1 and opens Jz2 (in arbitrary order), closes Jt1 and opens Jt2 (in
arbitrary order), opens Jz1 and closes Jz2 (in arbitrary order). It is an automaton with
a boring structure that sends signals and closes/opens specific contacts in the required
order. The last step is sending the environment agent to the observer’s automaton, about
which later.

The observer automaton (Figure 9) tracks the correct end of the system operation. Each
of the relay coils has an additional agent that starts at the moment of excitation and informs
the observer’s automaton about this fact. If such messages are received from both coils,
the environment agent that arrives at the observer after all operations in the environment
automaton are completed, terminates.
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5.2. The Course of the Verification
5.2.1. Basic Checking

The model consists of many elements, connected in various ways. Therefore, it is
not difficult to make a mistake, for example, giving a signal instead of withdrawing it, or
confirming it to the wrong source. Finding such a situation is quite simple as it typically
leads to a deadlock. A deadlock is defined in IMDS as a server state in which a message is
waiting that will never be handled. Some of such situations are harmless, in our case the
relay agents closing/opening the contacts due to the excitation/de-excitation of the relay
coil should wait inactive at the end of the system operation. This is a “technical” deadlock
situation because the current message of such an agent is “idle” and this message will not
be handled due to termination of the system operation sequence. The model is considered
correct as soon as the relay agents go into a deadlock and the rest either terminate or fall
into an actual (unexpected) deadlock signifying a failure in the circuit design.

5.2.2. Unexpected Error

The basic test is to check whether, with all the elements working properly, and with
the correct sequence of shortings/openings of contacts controlled from the outside, the
system reaches the designated final state. In our case, this is the excitation of both relay
coils. In typical engineering practice, proper operation of a system is demonstrated by
manual analysis, which is like running a finger across a system scheme and pinpointing
the excitation and short-circuit sequences. However, this cannot be considered proof of cor-
rectness as it is impossible to demonstrate the inevitability of proper termination manually.
Model checking verifies all possible behavioral paths of the system simultaneously, which
leads to proof of correctness. It should be distinguished here that the formal evidence
prepared by the verifier concerns all behaviors, and the witness obtained as a result shows
one, exemplary path of the system behavior. Other paths can be obtained through layout
simulation, available in the Dedan verification environment.

Verification of the system after removing modeling defects should lead to the correct
operation of the system, i.e., pick up of both relays (and then drop away, which we omit in
the study, but we could test). However, an unexpected deadlock occurs during the test; the
final sequence of the counterexample is shown in Figure 10 (placed horizontally to save
space). It is the “lifeline” of one of the elements—the OR22B connection from Figure 5. This
lifeline was cut from the parallel lines of other elements, which can be seen further in the
example of the correct verification result. The lifeline begins with the element name and
initial state, and a zigzag line covers the compressed part of the diagram. This is followed
by the states of the element (server) on a blue background and messages on a yellow
background. The names of the agents sending the messages are shown on a light-yellow
background. A thick gray line separates the sequence of changes from the final state and
final message. This final message is unhandled, so it means the agent and the OR22B
element deadlock at the same time.

We can see how the OR22B connection receives the signal b1 [1] (the equivalent of
supplying Vcc from the first input), but before it propagates it to its output elements,
it receives the signal b0 [2], i.e., withdrawing the power through the second input. It
will not be “serviced” because the connection is not yet in a stable state and deals with
the propagation of the signal to the output elements. Note that this is a sequence of
closing/opening by the relay of its contacts, which may mean that they will not effectively
close when the voltage necessary for excitation is withdrawn too early. Consultations
with a specialist have shown that in the system presented in this way, such a situation
may actually occur. The protection consists in adding a delay circuit (not visible in the
circuit diagram), causing the K switch to keep the W relay energized long enough for it
to have enough time to maintain its power supply for contact w2. This could be modeled
in a real-time model, but instead, we introduced an additional dependency: the switch K
withdraws the power to the relay W only after the ENV receives the information about the
completion of the contact switching.
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We describe this situation in detail, because this situation shows an important feature
of verification in the IMDS formalism, which retains in the verified model information
about component processes and allows to distinguish expected deadlocks from those that
show system design errors. This confirms the considerable “sensitivity” of the method to
subtle errors—in this case, the need to protect against signal changes in unstable states of
the system.
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After modifying the system by introducing the above-described change, a similar error
occurred on the ground side in the Z relay. It turns out that there is adequate protection
here, but it was obtained by a different method—through the physics of the controlled
physical system. It turns out that the ground supply to the Z relay is “watched over” by the
train itself, which cannot travel so fast that after applying ground to the Z coil, the ground
supply through the Jz1 contact immediately stops. However, when designing the system,
proper vigilance should be exercised, if we limit the speed range of trains at which the
control system works correctly.

5.2.3. Correct Sequence

Getting rid of the instability errors described in the previous section should result
in a good circuit where the circuit inevitably achieves its goal of energizing both relays.
This test checks for the inevitable termination of the AEnv agent, which terminates it after
receiving a message that both relays have worked. The two observer agents, AobsW and
AobsZ, are used to transmit these messages. The result of the test in the Dedan program is
shown in Figure 11.
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Figure 12 shows the initial witness sequence, with the enlarging of the start of the
environment agent Aenv (red rectangle), and Figure 13 shows the final fragment containing
the termination of this agent (green rectangle).
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5.2.4. Element Failure—Short Circuit between Input and Output

A damaged element behaves differently than a correct one, therefore it requires special
modeling. Figure 14 shows a contact whose input and output are closed, so it does not
react to opening attempts: it is permanently closed. Actions that disappear are marked
with a dashed line and a crossed-out label, and actions replacing them are marked in red
with a label in a red box.
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Figure 14. Damaged element—a permanent short-circuit between input and contact output.

The fault was defined in switch K. Surprisingly, the system still behaves correctly
despite the constant short-circuit of the switch. After consulting a specialist, it turns
out that the K switch does not perform a logical function in the system, but only has a
protective function.

5.2.5. Damage to the Element—Permanent Opening

A permanent opening of the contact should lead to a safe situation, i.e., none of the
coils should be excited. The damage model is quite simple, shown in Figure 15. The model
of the damaged element was used for contact z2.
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The verification shows that the termination of the environment agent (after energizing
both coils) is not inevitable, but in this case, it should rather be checked whether termination
is possible. The security condition says that termination should not be possible. This is
indeed the case, as shown in the final fragment of the environment agent that gets stuck in
a deadlock (Figure 16).

The Env agent models the environment, so it sends signals to the system regardless of
whether it is working correctly or not. However, this agent terminates when it gives all
signals to the system, and additionally receives information that both relays have worked.
This is illustrated in Figure 9: agent Env terminates only from the all state, which is achieved
after both observers AObsW and AObsZ report operation of relays. The analysis of the
counterexample shows that the coil W receives the power signal b1, then its recall b0, and
never receives the ground signal c1. Likewise, coil Z receives a ground signal but does not
receive a power signal. Therefore, none of the relays can work, which causes the Env agent
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to remain in the start state with the end message, so this message will never be handled,
which is a deadlock, so the agent will not terminate.
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5.2.6. Incorrect Sequence of Actions Controlled from the Environment

We can think of all sorts of incorrect sequences, but the best test is the behavior of
the system in the case of a train going in the opposite direction: it closes the Dp contact, it
closes K, it closes Jz1 and opens Jz2 (in arbitrary order), opens K, opens Jt1 and closes Jt2
(in arbitrary order), opens Jz1 and closes Jz2 (in arbitrary order), closes Jt1 and opens Jt2
(in arbitrary order). The behavior of the model is similar to the previous point, only the
environment agent gets stuck in deadlock in a different state.

6. Conclusions and Further Work

The experiments were successful in confirming the correct functioning of the line block
fragment, and as part of this study, the identification of time-sensitive fragments. The proof
of the inevitability of the correct termination of the work by the system with the correct
sequence of input signals was made. Example possible failures were also modeled, and
it was shown that the system behaves safely in each of them, i.e., it does not generate a
sequence of output signals that would allow two trains to enter the same track section.

The research methodology consists of:

• Specification of circuit elements using a graphical form of distributed automata DA3.
In a case of safety checking in the occurrence of faults, specification of faulty elements
in the same fashion.

• Specification of observer agents that investigate the required/unwanted changes of
states of individual elements.

• The proving of the correctness of the system is done by the inevitability of reaching
their termination by the specified agents. This feature is checked automatically. Ter-
mination is partial in this case (which is also a rare feature among verifiers) because
other agents may be in a “technical” deadlock state.

• Checking inevitable termination in the case of correct termination (required property),
or possible termination in the case of safety checking of a faulty circuit or faulty
input sequence (unwanted property). Finding partial deadlocks, causing the lack of
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termination, discovers malfunctioning elements or subsystems while the rest of the
circuit can work properly.

Note that even very subtle situations are detected where correct operation depends on
specific input signal durations. Note that this is done in a timeless model. The designer must
demonstrate that the input signals last long enough and modify the model to overcome the
effect of too short times.

Comparing to other verification environments, the novelty and research contribution
of our approach lies in the following:

• Graphical modeling of systems is rare. Among the works on relay systems, only [12,14]
use UML state diagrams, and [16] schematic diagrams. Both of these approaches,
however, require translation into a Kripke structure, which may subtly influence
the semantics of the model. The remaining works cited use little readable switch
tables [15] or text input in the form of complex formulas or a domain-specific language
or B method [17]. In our approach, the design of element models takes place directly
in the intuitive form of graphical distributed automata, fully compatible with the
algebraic model subject to verification. The semantics of both specification methods
(graphical and algebraic) are identical, so the specification does not require translation
into the verifier’s input data. The same applies to the approaches based on the Uppaal
specification [7,18].

• The investigated properties of systems are typically specified using temporal formulas
(or ProB verifier formulas [17]). As industrial practice shows, for the vast majority of
designers, this is an entry threshold that is (subjectively) difficult to overcome. And
it is rarely possible to invite a researcher familiar with temporal logic to permanent
cooperation in the checking of systems. Some of the cited works replace temporal
formulas with typical, predefined properties that are internally replaced by sentences
in temporal logic [15,16]. Instead of temporal formulas examining individual char-
acteristics, we introduce observer automata, which can be easily designed by the
user. These automata report that the system has achieved certain states, as shown in
this article. A similar approach using Uppaal observers is only shown in [18]. The
observer automaton achieves the “deliberate” deadlock state in the event of a system
malfunction (primarily in the case of security testing).

• Our original idea is to introduce damaged elements to the library of models. Replacing
an element (or several elements) with a damaged one, and subjecting the system to
an incorrect sequence of external events, allows for checking whether the system will
behave safely in such circumstances. The system should not reach a supported end
state in such a situation, but should protect the managed system from a catastrophe,
for example, by letting two trains onto the same track. If the system does not behave
safely, then again, the possibility of simulating a counterexample on component
automata would make it possible to find the reason for this behavior. Demonstrating
the safety of the system even in the event of damage may be necessary in the process
of its certification.

• A feature that is automatically detected by all verifiers is a total deadlock. Some
verifiers detect partial deadlocks, but this requires a specific structure of the system
under investigation, or the user specifies an appropriate temporal formula. Our
verification method is specific in that it automatically detects partial deadlocks where
some components are stuck while others are still working correctly. This allows a
broader class of errors to be detected.

• The fairness aspect of the verifier is significant but often overlooked. Most of the
verifiers available do not provide fairness at all, or only weak fairness. Among the
verifiers used in the cited articles, Spin and Uppaal do not provide strong fairness.
NuSMV ensures fairness as long as the user specifies special formulas for each expected
fair divergence in the operation of individual automata. The work [10] shows how
the lack of strong justice (compassion) can lead to the detection of a non-existent
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deadlock. The verification algorithm we use as well as the one used in ProB [17]
provide strong fairness.

The manual design of system elements, which differ slightly in structure, is quite
burdensome. We plan to introduce a library of parameterized elements; in our opinion,
only a few of them are enough. This also applies to the library of damaged items.

After verifying that the specified component failure leads to a safe state, the state of all
system components can be registered. In this way, it is possible to classify what condition
of the damaged system as suggested by the damage, i.e., the creation of a diagnostic tool.

Many system features can be checked in the verification without time, but we also
provide testing with real-time constraints.

Author Contributions: Conceptualization, J.K., W.B.D., W.G. and A.K.; methodology, J.K., W.B.D.
and W.G.; software, W.B.D.; validation, J.K, W.B.D., W.G. and A.K.; formal analysis, J.K., W.B.D. and
W.G.; investigation, J.K. and W.B.D.; resources, J.K and W.G.; data curation, J.K.; writing—original
draft preparation, J.K. and W.B.D.; writing—review and editing, J.K., W.B.D. and W.G.; visualization,
W.B.D.; supervision, W.B.D. and A.K.; project administration, A.K.; funding acquisition, A.K. All
authors have read and agreed to the published version of the manuscript.

Funding: Research was funded by Warsaw University of Technology within the Excellence Initiative:
Research University (IDUB) program.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
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