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Abstract: This paper devises an output-feedback multi-loop positioning technique adopting the speed
observer and multi-motor synchronizer, targeting the dual (master and slave) motor elevator system
applications, providing the three contributions. First, the order-reduction observer continuously
extracts the speed information from the motor position measurement, independent of the system
model information. Second, the order-reduction stabilizer accomplishes the speed synchronization
tasks for both the master and slave motors. Third, the resultant feedback system guarantees to
exponentially recover the desired first-order transfer function from the reference to the actual motor
position despite the model-plant mismatches. The prototype elevator system adopting the dual motor
experimentally validates the practical advantages of the proposed technique.

Keywords: elevator system; motor positioning; dual motor synchronization; order-reduction;
active damping

1. Introduction

The ride comfort and dynamic performance of elevator systems greatly depend on
their hardware (motor configuration) and software traction mechanism (feedback software
structure with its tuning result). The main traction motor solely accomplished the pivotal
positioning task for the passenger cart, requiring the high-power mechanical and electrical
specification [1–5]. The multi-motor actuation systems have been recently adopted for large
power applications due to the practical benefits, such as fault tolerance and power load
reduction to the master motor (e.g., tug-of-war) [6–9]. This advanced system forming the
master-slave motoring structure requires high-precision speed synchronization technology
to improve both the positioning performance and rapid power distribution capability
between the master and slave motors.

The conventional multi-loop proportional-integral (PI) controller for each master and
slave motor enables us to address the positioning and speed synchronization problems
simultaneously with the simple implementation [10]. The corresponding feedback gains
were founded to satisfy the time or frequency domain specification via an ad hoc process
and Bode/Nyquist plots for a fixed load condition. Thus, the operating condition changes
in the actual applications raise the performance inconsistency problem due to the load
and motor parameter variations. The gain scheduler including the database of multiple PI
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gains data would be considered as a solution to this problem, incorporating the additional
computational complexity in the controller [11,12].

The pole-zero cancellation PI control partially alleviated this problem by constraining
the feedback gain structure and including feed-forward terms, assigning the first-order
closed-loop transfer function to each loop. However, this required the exact passive
damping, rotor inertia, and stator inductance information to guarantee this benefit [10].
The recent parameter identification technologies could be adopted to address this practical
challenging point, requiring the extra numerous dynamics and tuning factors for the
adaptation process in the controller indirectly [13–15]. The nonlinear adaptive controls
directly performed the parameter estimation tasks to accomplish the main mission of
closed-loop stabilization by solving an optimization problem subject to the linear matrix
constraints [16–18]. A similar adaptive controller solved the same serving problem through
the integral back-stepping technique (multi-variable approach) whose closed-loop design
and analysis tasks incorporated the complicated numerous matrix algebra [17]. There were
passivity-based controllers including the disturbance observers (DOBs) for each loop and
interesting online auto-tuning mechanisms while avoiding the matrix equality/inequality
analysis processes [19,20]. The active disturbance rejection controls enlarged the feasible
operating regions and improved the closed-loop performance, incorporating the state
observer and DOBs estimating the lumped disturbances [21,22].

The extant solutions from the literature survey above leave the technical challenging
points needed to be addressed as follows: (C1) the performance inconsistency depending on
the operating conditions, (C2) the requirement of online parameter identifier to ensure the
closed-loop stability and beneficial properties, and (C3) the involvement of the complicated
matrix calculation process to tune the closed-loop performance. This study proposes an
advanced and simple solution for the industrial elevator systems adopting the multi-motor
by handling the challenging points C1–C3 whose contributions are recapitulated as:

• The design of the speed observer makes it possible to derive the output-feedback multi-
loop solution invoking the order reduction by the specially designed gain structure,
independent from any model and load information;

• The observer-based order-reduction speed stabilization technique results in both the
pivotal inner loop for the positioning system (master motor) and the speed synchro-
nizer (slave motor) through the specially designed gain structure and the combination
of the integrator and DOB;

• The proof of the exponential convergence property recovering the desired first-order
positioning performance by specifying the admissible ranges of design factors.

The experimental setup adopting the two 80-W BLDCMs and 32-bit digital signal
processor (DSP) demonstrates the improved positioning and speed synchronization perfor-
mances from the beneficial properties proved by the rigorous closed-loop analysis.

2. System Model

This study considers the DC servo system (including DCMs and BLDCMs) to demon-
strate the main idea of the proposed solution as clearly as possible. The DC servo system
has two mechanical and one electrical variable as the states given by θ(t) (rotor position in
rad), ω(t) (rotor speed in rad/s), ia(t) (stator current in A) triggered by the control input
va(t) (stator voltage in V), which satisfies the dynamical relationships:

dθ(t)
dt

= ω(t), (1)

J
dω(t)

dt
= −Bω(t) + Te(t)− TL(t), (2)

La
dia(t)

dt
= −Raia(t)− φa(t) + va(t), ∀t ≥ 0, (3)
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where the output torque Te(t) := kTia(t) (Nm) with kT > 0 representing the torque
coefficient causes the rotational motion of the rotor position against the unknown load
torque TL(t) (in Nm, acting as the matched disturbance). Another matched disturbance
φa(t) (back electromotive force (EMF)) drops the stator voltage va(t), proportional to the
rotor speed such that φa(t) := keω(t) (V) with ke > 0 denoting the back EMF coefficient.
The remaining coefficients J (kg/m2), B (Nm/rad/s), La (H), and Ra (Ω) represent the
(rotor) inertia, viscous damping, (stator) inductance, and resistance, suffering the unknown
dramatic variations from their known nominal values; for example, J = ∆J + J0 with
nominal inertia J0 and variation ∆J.

The Equation (3) yields the static relationship between the stator current ia(t) and
voltage va(t) such that

ia(t) =
1

Ra

(
va(t)− keω(t)− La

dia(t)
dt

)
,

which results in another expression of the speed dynamics (2):

cω
dω(t)

dt
= va(t) + d(t), ∀t ≥ 0, (4)

where the known coefficient cω and unknown disturbance d(t) are defined as cω := J0Ra,0
kT,0

and d(t) := −( BRa
kT

+ ke)ω(t)− Ra
kT

TL(t)− La
dia(t)

dt − (
J0Ra,0
kT,0
− JRa

kT
) dω(t)

dt . The resultant two
dynamical Equations (5) and (6) simplify the master and slave servo system equations:

dθi(t)
dt

= ωi(t), (5)

cωi

dωi(t)
dt

= va,i(t) + di(t), ∀t ≥ 0, (6)

subject to the known coefficient cωi (e.g., cωi =
J0,i Ra,0,i

kT,0,i
) and unknown time-varying dis-

turbance di(t) for each i = 1, 2 (1: master servo system, 2: slave servo system), which
derives the proposed output-feedback solution, handling the three technical challenging
points C1–C3. Figure 1 presents the elevator hardware configuration equipping the dual
servo system.

������

��	�


��
������

�
��
��
�
�
��

�
��
	

�


�
�
	�
�

�

��
�
�
	

�
��
�
�

,1eT,2e
T

�
��
�

�
��
�

���	�
�

��	�


��
������

����������

������


�

������


�

2
θ

1
θ

ref
p

�����
���������

,2a
v ����	����

��������

��
�������

������

,1a
v ����	����

��������

��
� �� ��

Figure 1. Hardware and software configuration of dual-motor elevator system.
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3. Proposed Solution
3.1. Mission

For any position reference θre f (= L−1{Θre f (s)}, corresponding to the target elevator
level), the desired position motion of the master servo system is denoted as θ∗1 (t) (=
L−1{Θ∗1(s)}), which defines the target closed-loop transfer function:

Θ∗1(s)
Θre f (s)

=
λpc

s + λpc
, ∀s ∈ C, (7)

subject to the cut-off frequency λpc (rad/s, fpc =
λpc
2π Hz). Then, the guarantee of exponen-

tial convergence (positioning)

lim
t→∞

θ1(t) = θ∗1 (t) (8)

renders the closed-loop system to rapidly recover the target performance (7), which is
adopted as the main mission of the master motor. The additional mission (exponential
synchronization):

lim
t→∞

ω2(t) = ω1(t), (9)

is assigned for the slave motor to reduce the required power level of the master motor
through the injection of the additional output torque of the slave motor to the closed-
loop system. Therefore, it is desirable to shorten the transient period for the exponential
synchronization (9), independent from the operating conditions.

3.2. Speed Observer

The motor position θi(t) evidently satisfies the relationship dθi(t)
dt = ωi(t) and dωi(t)

dt =
do,i(t) where ωi(t) = ωi,0 (DC component) + ∆ωi(t) (AC component) and do,i(t) :=
d∆ωi(t)

dt (|do,i(t)| ≤ d̄o,i, ∀t ≥ 0), yielding the observable linear system for

xi(t) :=
[

θi(t) ωi(t)
]T :

dxi(t)
dt

= Aoxi(t) + bodo,i(t), θi(t) = cT
o xi(t), ∀t ≥ 0, (10)

where bo :=
[

0
1

]
, Ao :=

[
0 1
0 0

]
, and co :=

[
1
0

]
, which satisfies for O =

[
cT

o
cT

o Ao

]
that rank(O) = rank(

[
1 0
0 1

]
) = 2 (observability).

To handle the challenging points C2 and C3, this study suggests an advanced model-
free solution by specifying the gain structure of the Luenberger-type observer such that

dx̂i(t)
dt

= Aox̂i(t) + lo,i(θi(t)− θ̂i(t)), θ̂i(t) = cT
o x̂i(t), i = 1, 2, ∀t ≥ 0, (11)

where the two tuning factors ζo,i > 0 and λo,i > 0 constitute the observer gain:

lo,i =

[
lo,i,1
lo,i,2

]
:=
[

ζo,i + λo,i
ζo,iλo,i

]
(12)

which makes it possible to design an observer-based output-feedback system for each
master and slave motor.
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Remark 1. The tuning factor ζo,i plays a role in attenuating the disturbance intensity do,i(t) to
ensure the first-order observer error dynamics for eθi (t) := θi(t)− θ̂i(t) and eωi (t) := ωi(t)−
ω̂i(t):

deθi (t)
dt

= −λo,ieθi (t),
deωi (t)

dt
= −λo,ieωi (t), ∀t ≥ 0,

by constraining ζo,i into some interval through the order-reduction property. See Section 4
for details.

3.3. Master Motor Output-Feedback System (for Positioning)
3.3.1. Outer Loop

The position dynamics of the master motor can be rewritten from (5) by extracting the
design variable ω0(t):

dθ1(t)
dt

= ω1(t) = ω0(t)− ∆ω1(t), ∀t ≥ 0, (13)

where ∆ω1(t) := ω0(t)−ω1(t). This study chooses a simple feedback for θ̃1(t) := θre f −
θ1(t) as the update rule for ω0(t):

ω0(t) = λpc θ̃1(t), ∀t ≥ 0, (14)

resulting in the closed-loop outer loop (by combining (14) and (13)):

dθ1(t)
dt

= λpc θ̃1(t)− ∆ω1(t), ∀t ≥ 0. (15)

The controlled system (15) accomplishes the main mission (8) (e.g., the exponential
convergence limt→∞ θ1(t) = θ∗1 (t)), provided that

lim
t→∞

∆ω1(t) = 0

exponentially, which is adopted as the primary mission for the inner loop in the follow-
ing section.

3.3.2. Inner Loop

The open-loop system (6), second subsystem of the observer (11), and control (14)
yield the open-loop dynamics for the estimated error ∆ω̂1(t) := ω0(t)− ω̂1(t) as

cω1

d∆ω̂1(t)
dt

= cω1

dω0(t)
dt

− cω1

dω̂1(t)
dt

+ cω1

dω1(t)
dt

− cω1

dω1(t)
dt

= −va,1(t)− cω1 λpcω1(t)− d1(t) + cω1

deω1(t)
dt

, (16)

whose stabilization action for the stator voltage va,1(t) is suggested as

va,1(t) = kP,ω1 ∆ω̂1(t) + kI,ω1

∫ t

0
∆ω̂1(τ)dτ − cω1 λpcω̂1(t)− d̂1(t), (17)

where ζω1 > 0 and λω1 > 0 constitute the feedback gains kP,ω1 and kI,ω1 :

kP,ω1 := ζω1 + cω1 λω1 , kI,ω1 := ζω1 λω1 . (18)

The observer-based DOB driven by the state variable zd1(t) obtains the estimated distur-
bance d̂1(t) as its output such that
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dzd1(t)
dt

= −ld1 zd1(t) + l2
d1

cω1 ∆ω̂1(t) + ld1 p̂ω1(t), (19)

d̂1(t) = zd1(t)− ld1 cω1 ∆ω̂1(t), ∀t ≥ 0, (20)

subject to the gain ld1 > 0 with the estimated signal p̂ω1(t) for the actual signal pω1(t)

defined as pω1(t) := −va,1(t)− cω1 λpcω1(t) and p̂ω1(t) := pω1(t)
∣∣∣∣
ω1(t)=ω̂1(t)

(e.g., p̂ω1(t) =

−va,1(t)− cω1 λpcω̂1(t)). The proposed solution (17) results in the controlled system (by
substituting (17) to the open-loop dynamics (16))

cω1

d∆ω̂1(t)
dt

= −kP,ω1 ∆ω̂1(t)− kI,ω1

∫ t

0
∆ω̂1(τ)dτ − cω1 λpceω1(t)− ed1(t)

+cω1

deω1(t)
dt

, (21)

where ed1(t) := d1(t)− d̂1(t), whose properties are analyzed in Section 4.

Remark 2. The introductions of the specially structured feedback gains (18) and observer-based
DOB (19) and (20) address the challenging points C1–C3. Specifically, the tuning factor ζω1 plays
a role in attenuating the disturbance intensity d1(t) to ensure the first-order dynamics for the actual
error ∆ω1(t) = ω0(t)−ω1(t):

d∆ω1(t)
dt

= −λω1 ∆ω1(t), ∀t ≥ 0,

by constraining ζω1 into some interval through the order-reduction property. See Section 4 for details.

3.4. Slave Motor Output-Feedback System (for Speed Synchronization)

The open-loop system (6) and second subsystem of the observer (11) yield the open-
loop dynamics for the estimated synchronization error ∆ω̂2(t) := ω̂1(t)− ω̂2(t) as

cω2

d∆ω̂2(t)
dt

= cω2

dω̂1(t)
dt

− cω2

dω̂2(t)
dt

+ cω2

dω2(t)
dt

− cω2

dω2(t)
dt

= −va,2(t) + cω2 lo,1,2eθ1(t)− d2(t) + cω2

deω2(t)
dt

, (22)

whose stabilization action for the stator voltage va,2(t) is suggested as

va,2(t) = kP,ω2 ∆ω̂2(t) + kI,ω2

∫ t

0
∆ω̂2(τ)dτ + cω2 lo,1,2eθ1(t)− d̂2(t), (23)

where the two tuning factors ζω2 > 0 and λω2 > 0 constitute the feedback gains kP,ω2 and
kI,ω2 :

kP,ω2 := ζω2 + cω2 λω2 , kI,ω2 := ζω2 λω2 . (24)

The observer-based DOB driven by the state variable zd2(t) obtains the estimated
disturbance d̂2(t) as its output such that

dzd2(t)
dt

= −ld2 zd2(t) + l2
d2

cω2 ∆ω̂2(t) + ld2 pω2(t), (25)

d̂2(t) = zd2(t)− ld2 cω2 ∆ω̂2(t), ∀t ≥ 0, (26)
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subject to the gain ld2 > 0 with the estimated signal p̂ω2(t) for the actual signal pω2(t)
defined as pω2(t) := −va,2(t) + cω2 lo,1,2eθ1(t). The proposed solution (23) results in the
controlled system as (by substituting (23) to the open-loop dynamics (22))

cω2

d∆ω̂2(t)
dt

= −kP,ω2 ∆ω̂2(t)− kI,ω2

∫ t

0
∆ω̂2(τ)dτ − ed2(t) + cω2

deω2(t)
dt

, (27)

where ed2(t) := d2(t)− d̂2(t), whose properties are analyzed in Section 4. Figure 2 illus-
trates the proposed multi-loop positioning system including the speed synchronizer for
master and slave motor where pre f denotes the floor command of the elevator system
(e.g., pre f ∈ {BN , · · · , B2, B1, 1, 2, · · · , N}). Figure 3 summarizes the design factors of the
proposed solution.
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Figure 2. Proposed algorithm with speed synchronizer for output-feedback multi-loop positioning
system.
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Remark 3. The introductions of the specially structured feedback gains (24) and observer-based
DOB (25) and (20) addresses the challenging points C1–C3. Specifically, the tuning factor ζω2

plays a role in attenuating the disturbance intensity d2(t) to ensure the first-order dynamics for the
actual synchronization error ∆ω2(t) := ω1(t)−ω2(t):

d∆ω2(t)
dt

= −λω2 ∆ω2(t), ∀t ≥ 0,

by constraining ζω2 into some interval through the order-reduction property. See Section 4
for details.
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4. Analysis

This section checks whether the proposed multi-loop system with speed synchro-
nization accomplishes the main mission (8) (in Section 4.2) and additional mission (9) (in
Section 4.3). To this end, Section 4.1 begins with the analysis of the auxiliary systems, such
as observer and DOB used for both the master and slave motors, where ḟ (t) represents the
time derivative operation on f (t) (e.g., ḟ (t) = d f (t)

dt , ∀t ≥ 0). Note that all the proofs of the
analysis results are included in the Appendix A.

4.1. Auxiliary Systems for Master and Slave Motors
4.1.1. Observer

Lemma 1 derives the first-order output error dynamics of the observer obtained from
the order-reduction property triggered by the specially designed gain structure.

Lemma 1. The observer output error eθi (t) from (11) and (12) satisfies

ėθi (t) = −λo,ieθi (t) + xo,i(t) (28)

with xo,i(t) denoting the perturbation from the system

ẋo,i(t) = −ζo,ixo,i(t) + do,i(t), ∀t ≥ 0. (29)

Lemma 2 specifies the admissible range for the design factor ζo,i constraining the
output error dynamics (28) into its desired version (31).

Lemma 2. The choice for ζo,i such that 2d̄o,i
ζo,i
≈ 0 ensures the exponential convergence

lim
t→∞

eθi (t) = e∗θi
(t) (30)

for the system

ė∗θi
(t) = −λo,ie∗θi

(t), ∀t ≥ 0. (31)

Remark 4. The result (30) showing |e∗θi
− eθi | ≈ 0 provides a rationale to use the equation (by

combining (30) and (31)):

ėθi = −λo,ieθi

which implies the chain reasoning tasks such that (based on (11))

ëθi = −λo,i ėθi ⇔ θ̈i − ¨̂θi = −λo,i(θ̇i − ˙̂θi)

⇔ ω̇i − (lo,i,1 ėθi +
˙̂ωi) = −λo,i(ωi − (lo,i,1eθi + ω̂i))

⇔ ėωi + λo,ilo,i,1eθi = −λo,ieωi + λolo,i,1eθi ,

concluding

ėo,i = −λo,ieo,i, ∀t ≥ 0, (32)

for some range of ζo,i > 0 where eo,i =
[

eθi eωi

]T , which is the main message of this subsection.

4.1.2. DOB

Lemma 3 derives the disturbance estimation error dynamics for edi
(t) = di − d̂i

(i = 1, 2) by further examining the DOB dynamics (19) and (25) and its outputs (20)
and (26).
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Lemma 3. The output error edi
(t) driven by the DOBs (19) and (20) for master motor and (25)

and (26) for slave motor satisfies

ėdi
(t) = −ldi

edi
(t) + qT

di
eo,i(t) + fdi

(t) (33)

for some qdi
∈ R2 where fdi

(t) := ḋi(t) and | fdi
(t)| ≤ f̄di

, i = 1, 2, ∀t ≥ 0.

Remark 5. The setting eωi ≈ 0 (by (32)) for the result (33) leads to the system ˙̂di = ldi
(di − d̂i)

showing

D̂i(s)
Di(s)

=
ldi

s + ldi

, ∀s ∈ C, (34)

where Di(s) = L{di} and D̂i(s) = L{d̂i}, suggesting for the design factor ldi
tuned as the cut-off

frequency of the transfer function (34) (e.g., ldi
rad/s or, equivalently, fdi

=
ldi
2π Hz).

4.2. Multi-Loop Positioning System for Master Motor

Using the analysis results of Section 4.1, this subsection proves the accomplishment of
the main mission (8) by analyzing the inner (Section 4.2.1) and entire loop (Section 4.2.2)
sequentially.

4.2.1. Inner Loop

Lemma 4 derives the first-order estimated speed error dynamics for ∆ω̂1(t) = ω0(t)−
ω̂1(t) obtained from the order-reduction property triggered by the specially designed
gain structure.

Lemma 4. The estimated error ∆ω̂1(t) driven by the control law (17) and its gain (18) satisfies

∆ ˙̂ω1(t) = −λω1 ∆ω̂1(t)−
1

cω1

xω1(t) +
1

cω1

e1(t) (35)

and its filtered version such that

ẋω1(t) = −
ζω1

cω1

xω1(t) +
ζω1

cω1

e1(t) (36)

where e1(t) := −ed1(t)− cω1(λpc + λo,1)eω1(t), ∀t ≥ 0.

Theorem 1 specifies the admissible range for the design factor ld1 constraining the
estimated speed error dynamics (35) for ∆ω̂1(t) into its desired version (38).

Theorem 1. The choice for ld1 such that
2 f̄d1
ld1
≈ 0 ensures the exponential convergence

lim
t→∞

∆ω̂1(t) = ∆ω∗1 (t) (37)

for the system

∆ω̇∗1 (t) = −λω1 ∆ω∗1 (t), ∀t ≥ 0. (38)

Remark 6. The result (37) showing |∆ω∗1 − ∆ω̂1| ≈ 0 provides a rationale to use the equation (by
combining (37) and (38)):

∆ ˙̂ω1 = −λω1 ∆ω̂1, ∀t ≥ 0,
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equivalently,

∆ω̇1 = −λω1 ∆ω1 + qT
ω1

eo,1 (39)

for some range of ld1 > 0 where qω1
:=
[

0 λo,1 − λω1

]T , which renders the positive definite

function V∆ω1 := 1
2 ∆ω2

1 +
ηω1

2 ‖eo,1‖2, ηω1 > 0, to be

V̇∆ω1 = ∆ω1(−λω1 ∆ω1 + qT
ω1

eo,1)− ηω1 λo,1‖eo,1‖2

≤ −λω1

2
∆ω2

1 − (ηω1 λo,1 −
‖qω1
‖2

2λω1

)‖eo,1‖2, ∀t ≥ 0.

Thus, the choice of ηω1 = 1
λo,1

(
‖qω1

‖2

2λω1
+ 1

2 ) concludes this section with the inequality:

V̇∆ω1 ≤ −α∆ω1 V∆ω1 , ∀t ≥ 0, (40)

where α∆ω1 = min{λω1 , 1
ηω1
}, which is the main message of this subsection.

4.2.2. Entire Loop

Theorem 2 proves that the proposed solution depicted in Figure 2 attains the main
mission (8) incorporating the inequality (40) obtained from Section 4.2.1 as its main message.

Theorem 2. Under the same settings of Lemma 1 and Theorem 1, the master positioning system
shown in Figure 2 accomplishes the main mission (8) (e.g., ensuring limt→∞ θ1(t) = θ∗1 (t)
exponentially).

4.3. Speed Synchronization System for Slave Motor

Using the analysis results of Section 4.1, this subsection proves the accomplishment
of the additional mission (9) by analyzing the synchronization loop in a similar way to
that used in Section 4.2.1. To this end, Lemma 4 derives the first-order estimated speed
error dynamics for ∆ω̂2(t) = ω̂1(t)− ω̂2(t) obtained from the order-reduction property
triggered by the specially designed gain structure.

Lemma 5. The estimated error ∆ω̂2(t) driven by the control law (23) and its gain (24) satisfies

∆ ˙̂ω2(t) = −λω2 ∆ω̂2(t)−
1

cω2

xω2(t) +
1

cω2

e2(t) (41)

and its filtered version such that

ẋω2(t) = −
ζω2

cω2

xω2(t) +
ζω2

cω2

e2(t) (42)

where e2(t) := −ed2(t)− cω1 λo,2eω2(t), ∀t ≥ 0.

Theorem 3 specifies the admissible range for the design factor ld2 constraining the
estimated speed error dynamics (41) for ∆ω̂2(t) into its desired version (44).

Theorem 3. The choice for ld2 such that
2 f̄d2
ld2
≈ 0 ensures the exponential convergence

lim
t→∞

∆ω̂2(t) = ∆ω∗2 (t) (43)



Energies 2022, 15, 9147 11 of 20

for the system

∆ω̇∗2 (t) = −λω2 ∆ω∗2 (t), ∀t ≥ 0. (44)

Remark 7. The result (43) showing |∆ω∗2 − ∆ω̂2| ≈ 0 provides a rationale to use the equation (by
combining (43) and (44)):

∆ ˙̂ω2 = −λω2 ∆ω̂2, ∀t ≥ 0,

equivalently,

∆ω̇2 = −λω2 ∆ω2 +
2

∑
i=1

qT
ωi

eo,i

for some range of ld2 > 0 where qω1
:=
[

0 −(λo,1 − λω2)
]T and qω2

:=
[

0 λo,2 − λω2

]T ,

which renders the positive definite function V∆ω2 := 1
2 ∆ω2

2 + ∑2
i=1

ηω2,i
2 ‖eo,i‖2, ηω2,i > 0

(i = 1, 2), to be

V̇∆ω2 = ∆ω2(−λω2 ∆ω2 +
2

∑
i=1

qT
ωi

eo,i)−
2

∑
i=1

ηω2,i λo,i‖eo,i‖2

≤ −λω2

3
∆ω2

2 −
2

∑
i=1

(ηω2,i λo,i −
3‖qωi

‖2

4λω2

)‖eo,i‖2, ∀t ≥ 0.

Thus, the choice of ηω2,i =
1

λo,i
(

3‖qωi
‖2

4λω2
+ 1

2 ) concludes this section with the inequality:

V̇∆ω2 ≤ −α∆ω2 V∆ω2 < 0, ∀t ≥ 0, (45)

where α∆ω2 = min{λω2 , 1
ηω2,1

, 1
ηω2,2
}, ensuring the accomplishment of exponential synchronization

(9), e.g., limt→∞ ω2(t) = ω1(t), exponentially.

5. Experimental Results
5.1. Configuration

Figure 4 presents a prototype elevator system including the two 80-W BLDCMs as ac-
tuators (for master and slave) whose feedback systems were constituted by the 32-bit digital
signal processor (Texas Instruments (TI) LUNCHXL-F28379D) using the two commercial
three-phase inverter boards (TI DRV8305EVM). The 1-kW DC power system supplied 24-V
for each three-phase inverter board connected to the BLDCM used as master and slave.
The pulse-width modulation (PWM) period was set to 0.1 ms synchronized to the internal
interrupt service routines for the analog-to-digital conversion and control tasks.

For each master (i = 1) and slave motor (i = 2), the datasheet of the 80-W BLDCM
provided the coefficient values as (inertia) Ji = 3.3× 10−5, (torque constant) kT,i = 0.06, and
(stator resistance) Ra,i = 0.8, yielding the coefficient cωi =

J0,i Ra,0,i
kT,0,i

for the controller with the
use of the nominal BLDCM coefficients J0,i = 1.2Ji, kT,0,i = 0.9kT,i, and Ra,0,i = 0.8Ra,i. The
tuning results of the proposed solution are summarized as follows: for the master motor,
(observer) ζo,1 = 1000, λo,1 = 600, (outer loop) fpc = 0.06 Hz, (inner loop) ζω1 = 0.05,
λω1 = 1.8, ld1 = 100, and, for the slave motor, (observer) ζo,2 = 1000, λo,2 = 600, (synchro-
nizer) ζω2 = 0.05, λω2 = 1.8, and ld2 = 100. The active damping integral back-stepping
controller (AD-IBSC) was chosen for comparison, resulting in for master, (outer loop)
ω0(t) = λpc θ̃1(t), (inner loop) va,1(t) = −kd,1ω̂1(t) + cω1 λω1 ∆ω̂1(t) + kd,1λω1

∫ t
0 ∆ω̂1(τ)dτ

and for slave, (synchronizer) va,2(t) = −kd,2ω̂2(t) + cω2 λω2 ∆ω̂2(t) + kd,2λω2

∫ t
0 ∆ω̂2(τ)dτ,

under the use of the same settings λpc, λωi (i = 1, 2) with the proposed controller, except
for the active damping coefficients kd,i = 0.1 (well tuned for the best performance).
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Figure 4. Experimental setup.

5.2. Case 1: Stair Reference Tracking

This section sets the floor reference pre f in the stair function from 1st to 3rd floor such
that pre f : 1→ 2→ 3→ 1 under the light load to the passenger cart of the elevator system.
This experiment was conducted three times for increasing cut-off frequency fpc = 0.03, 0.06,
and 0.1 Hz to evaluate the maintenance performance of the desired closed-loop transfer
function (7). Figure 5 shows that the proposed controller almost perfectly matches the
closed-loop performance to the desired one (7) for different transient performances, as
lowering the inner loop feedback gain λω1 . As shown in Figure 6, the lowered feedback
gain λω2 for the slave motor considerably improves the speed synchronization performance
due to the specially designed PI gain structure and auxiliary systems (observer and DOB),
resulting in the enlarged stability margin. Figure 7 presents the speed estimation error and
estimated disturbance rapidly converging their desired steady states.

5.3. Case 2: Constant Reference Regulation

This section fixes the floor reference to pre f = 2nd floor under the settings of fpc = 0.06 Hz
and the no-load condition (no payload for the elevator system). To investigate the floor
regulation performance, the light (TL,1), medium (TL,2), and heavy (TL,3) loads were sud-
denly applied to the passenger cart initialized to the no-load condition (TL,0). Figure 8
presents the position regulation results by the two controllers. The improvement of con-
trol and estimation mechanisms by the proposed controller effectively reduces not only
over/undershoot levels but also transient periods for different load changes. The speed
synchronization results shown in Figure 9 indicate the considerable reduction in the tran-
sient periods by the proposed controller, which contributes to improving the transient
positioning behavior presented in Figure 8.
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Figure 5. Position response comparison (master motor) for different outer loop cut-off frequency.
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Figure 6. Speed synchronization error comparison (slave motor) for different outer loop cut-off
frequency.
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Figure 9. Speed synchronization error comparison (slave motor) for different load variations.
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5.4. Numerical Comparison

This section concludes this experimental section by calculating the evaluation func-

tion feval :=
√∫ ∞

0 |θre f (t)− θ1(t)|2 + |ω1(t)−ω2(t)|2dt over the experimental data in
Sections 5.2 and 5.3. The table in Figure 10 presents the 52 % of performance improvement
from the proposed solution in an average manner, which will be significant in practice.
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Figure 10. Numerical comparison result.

6. Conclusions

The order-reduction technique was applied to devise the model-free speed observer,
performance recovery positioning controller, and speed synchronizer, guaranteeing benefi-
cial convergence properties. The closed-loop analysis confirmed to accomplish the control
missions under the practical three concerns (marked as (C1), (C2), and (C3) in the introduc-
tion section). Finally, a prototype elevator system including the dual BLDCMs as actuators
experimentally validated the effectiveness of the proposed controller. The extension to a
large power elevator system operated by the three motors will be considered as the future
study platform.
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Appendix A

This section presents the proofs of lemmas and theorems of Section 4. First, the proof
of Lemma 1 is attached as follows.

Proof. The definitions eo,i :=
[

eθi eωi

]T and r := 0 and subtraction (11) from (10) yield
the system:

ėo,i = Ao,cleo,i + brr + bodo,i, eθi = cT
o eo,i, (A1)

with system and input matrices defined as

Ao,cl := Ao − locT
o =

[
−(ζo,i + λo,i) 1
−ζo,iλo,i 0

]
and br :=

[
λo,i

ζo,iλo,i

]
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(bo =
[

0 1
]T defined in (10)). An equivalent form of the system (A1) is obtained by

taking the Laplace transforms (e.g., Eθi = L{eθi}, R(s) = L{r}, Do,i(s) = L{do,i}) such that

Eo,i(s) = cT
o (sI−Ao,cl)

−1brR(s) + cT
o (sI−Ao,cl)

−1boDo,i(s)

where

cT
o (sI−Ao,cl)

−1bo =
1

(s + ζo,i)(s + λo,i)

and (by the order reduction property triggered by the gain structure (12))

cT
o (sI−Ao,cl)

−1br =
(s + ζo,i)λo,i

(s + ζo,i)(s + λo,i)
=

λo,i

s + λo,i
, ∀s ∈ C.

This results in

(s + λo,i)Eo,i(s) = λo,iR(s) + Xo,i(s), Xo,i(s) =
1

s + ζo,i
Do,i(s), ∀s ∈ C,

which verifies the result of this lemma (R(s) = 0 and xo,i = L−1{Xo,i(s)}).

The proof of Lemma 2 is attached as follows.

Proof. The definition of error δθi := e∗θi
− eθi satisfies that (by (28) and (31)) δ̇θi = −λo,iδθi −

xo,i, which renders the positive definite function

Vo,i :=
1
2

δ2
θi
+

ηo,i

2
x2

o,i, ηo,i > 0, ∀t ≥ 0,

to be (along the trajectory (29) and Young’s inequality xy ≤ ε
2 x2 + 1

2ε y2, ∀x, y ∈ R, ∀ε > 0)

V̇o,i = δθi (−λo,iδθi − xo,i)−
ηo,iζo,i

2
x2

o,i + ηo,ixo,i(−
ζo,i

2
xo,i + do,i)

≤ −λo,i

2
δ2

θi
− 1

2
(ηo,iζo,i −

1
λo,i

)x2
o,i + ηo,ixo,i(−

ζo,i

2
xo,i + do,i), ∀t ≥ 0.

The choice for ηo,i such that ηo,i =
1

ζo,i
( 1

λo,i
+ 1) leads to

V̇o,i ≤ −λo,i

2
δ2

θi
− 1

2
x2

o,i

≤ −αo,iVo,i, ∀t ≥ 0, ∀|xo,i| ≥
2d̄o,i

ζo,i
,

where |do,i| ≤ d̄o,i, ∀t ≥ 0, and αo,i := min{λo,i, 1
ηo,i
}, completing the proof.

The proof of Lemma 3 is attached as follows.

Proof. For master motor, the time derivative of (20) along (19) with the relationship
(16) obtains

˙̂d1 = żd1 − ld1 cω1 ∆ ˙̂ω1

= −ld1(d̂1 + ld1 cω1 ∆ω̂1) + l2
d1

cω1 ∆ω̂1 + ld1(−va,1 − cω1 λpcω̂1)− ld1 cω1 ∆ ˙̂ω1

= ld1(d1 + cω1 λpceω1 + cω1 ėω1 − d̂1) = ld1 ed1 + ld1 cω1(λpc − λo,1)eω1 .

For the case of the slave motor, it can be easily verified the result through the same process
above by taking the time derivative of (26) along (25) with the relationship (22), completing
the proof.
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The proof of Lemma 4 is attached as follows.

Proof. The controlled system (21) shows the state-space representation for the state z1(t) :=[
z1,1 z1,2

]T through the definitions z1,1 := ∆ω̂1, z1,2 :=
ζω1 λω1

cω1

∫ t
0 (r− ∆ω̂1(τ))dτ, r = 0,

e1(t) = −ed1(t)− cω1(λpc + λo,1)eω1(t) (using ėω1 = −λo,1eω1 ):

ż1 = Az1z1 + bz1,1r + bz1,2e1, ∆ω1 = cT
z1

z1, ∀t ≥ 0, (A2)

where Az1 :=

 − ζω1+cω1 λω1
cω1

1

− ζω1 λω1
cω1

0

, bz1,1 :=

[
λω1

ζω1 λω1
cω1

]
, bz1,2 :=

[
1

cω1
0

]
, and cz1 :=[

1
0

]
. The Laplace transforms (e.g., ∆Ω1(s) = L{∆ω1}, R(s) = L{r}, and E1(s) = L{e1})

show another form of (A2) such that

∆Ω1(s) = cT
z1
(sI−Az1)

−1bz1,1R(s) + cT
z1
(sI−Az1)

−1bz1,2E1(s)

where

cT
z1
(sI−Az1)

−1bz1,2 =
1

cω1

s

(s +
ζω1
cω1

)(s + λω1)

and (by the order reduction property triggered by the gain structure (18))

cT
z1
(sI−Az1)

−1bz1,1 =
(s +

ζω1
cω1

)λω1

(s +
ζω1
cω1

)(s + λω1)
, ∀s ∈ C.

This results in (involving s
s+

ζω1
cω1

= 1−
ζω1
cω1

s+
ζω1
cω1

)

(s + λω1)∆Ω1(s) = λω1 R(s) +
1

cω1

Eω1(s)−
1

cω1

Xω1(s), Xω1(s) =

ζω1
cω1

s +
ζω1
cω1

E1(s), ∀s ∈ C,

which verified the result of this lemma (R(s) = 0 and xω1 = L−1{Xω1(s)}).

The proof of Theorem 1 is attached as follows.

Proof. The definition of error δω1 := ∆ω∗1 − ∆ω̂1 satisfies that δ̇ω1 = −λω1 δω1 +
1

cω1
xω1 −

1
cω1

e1 (by (35) and (38)), which derives the system for zδ1 :=
[

δω1 xω1

]T :

żδ1 = Aδ1zδ1 + bδ1(ed1 + κδ1 eω1) (A3)

where Aδ1 :=

 −λω1
1

cω1

0 − ζω1
cω1

, bδ1 :=

 1
cω1

− ζω1
cω1

, and κδ1 := cω1(λpc + λo,1). The facts

ζω1 > 0, ζω1 > 0, and cω1 > 0 always preserves the stability of Aδ1 making it possible to
solve the equation AT

δ1
Pδ1 + Pδ1Aδ1 = −I regarding an unique solution Pδ1 = PT

δ1
> 0. The

solution Pδ1 renders the positive definite function

Vδ1 :=
1
2

zT
δ1

Pδ1zδ1 +
ηδ1,1

2
e2

d1
+

ηδ1,2

2
‖eo,1‖2, ηδ1,1 > 0, ηδ1,2 > 0, ∀t ≥ 0,

to be (along the trajectories (32), (33), and (A3) and Young’s inequality)
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V̇δ1 = zT
δ1

Pδ1 (Aδ1 zδ1 + bδ1 (ed1
+ κδ1 eω1 )) + ηδ1,1 ed1

(−
ld1

2
ed1

+ qT
d1

eo,1)− ηδ1,2 λo,1‖eo,1‖2

+ηδ1,1 ed1
(−

ld1

2
ed1

+ fd1
)

≤ −1
6
‖zδ1‖

2 − 1
2
(ηδ1,1 ld1

− 3‖Pδ1‖
2‖bδ1‖

2 − 1)e2
d1

−(ηδ1,2 λo,1 −
3‖Pδ1‖2‖bδ1‖2κ2

δ1

2
−

η2
δ1,1
‖qd1
‖2

2
)‖eo,1‖2 + ηδ1,1 ed1

(−
ld1

2
ed1

+ fd1
),

∀t ≥ 0. The choices for ηδ1,1 and ηδ1,2 such that ηδ1,1 = 1
ld1

(3‖Pδ1‖
2‖bδ1‖

2 + 2) and ηδ1,2 = 1
λo,1

(
3‖Pδ1

‖2‖bδ1
‖2κ2

δ1
2 +

η2
δ1,1
‖qd1

‖2

2 + 1
2 ) lead to

V̇δ1 ≤ −1
6
‖zδ1‖

2 − 1
2

e2
d1
− 1

2
‖eo,1‖2 + ηδ1,1 ed1(−

ld1

2
ed1 + fd1)

≤ −αδ1 Vδ1 , ∀t ≥ 0, ∀|ed1 | ≥
2 f̄d1

ld1

,

where | fd1 | ≤ f̄d1 , ∀t ≥ 0, and αδ1 := min{ 1
3λmax(Pδ1

)
, 1

ηδ1,1
, 1

ηδ1,2
} (λmax(Pδ1) : maximum

eigenvalue of Pδ1 ), completing the proof.

The proof of Theorem 2 is attached as follows.

Proof. The trajectory θ∗1 from the target transfer function (7) satisfies θ̇∗1 = λpc(θre f − θ∗1 )
whose another form for δθ1 := θ∗1 − θ1 is obtained by using (15):

δ̇θ1 = −λpcδθ1 + ∆ω1,

which renders the composite-type positive definite function using V∆ω1 (defined in Remark 6)

Vθ1 :=
1
2

δ2
θ1
+ ηθ1 V∆ω1 , ηθ1 > 0,

to be (using the inequality (40))

V̇θ1 = δθ1(−λpcδθ1 + ∆ω1) + ηθ1 V̇∆ω1

≤ −
λpc

2
δ2

θ1
− (ηθ1 α∆ω1 −

1
λpc

)V∆ω1 , ∀t ≥ 0.

Therefore, the choice such that ηθ1 = 1
α∆ω1

( 1
λpc

+ 1) leads to

V̇θ1 ≤ −
λpc

2
δ2

θ1
−V∆ω1

≤ −αθ1 Vθ1 < 0, ∀t ≥ 0,

where αθ1 := min{λpc, 1
ηθ1
}, confirming the result of this theorem.

The proof of Lemma 5 is attached as follows.

Proof. The controlled system (27) shows the state-space representation for the state z2(t) :=[
z2,1 z2,2

]T through the definitions z2,1 := ∆ω̂2, z2,2 :=
ζω2 λω2

cω2

∫ t
0 (r− ∆ω̂2(τ))dτ, r = 0,

e2(t) = −ed2(t)− cω2 λo,2eω2(t) (using ėω2 = −λo,2eω2 ):

ż2 = Az2 z2 + bz2,1r + bz2,2e2, ∆ω2 = cT
z2

z2, ∀t ≥ 0, (A4)
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where Az2 :=

 − ζω2+cω2 λω2
cω2

1

− ζω2 λω2
cω2

0

, bz2,1 :=

[
λω2

ζω2 λω2
cω2

]
, bz2,2 :=

[
1

cω2
0

]
, and cz2 :=[

1
0

]
. The Laplace transforms (e.g., ∆Ω2(s) = L{∆ω2}, R(s) = L{r}, and E2(s) = L{e2})

show another form of (A4) such that

∆Ω2(s) = cT
z2
(sI−Az2)

−1bz2,1R(s) + cT
z2
(sI−Az2)

−1bz2,2E2(s)

where

cT
z2
(sI−Az2)

−1bz2,2 =
1

cω2

s

(s +
ζω2
cω2

)(s + λω2)

and (by the order reduction property triggered by the gain structure (24))

cT
z2
(sI−Az2)

−1bz2,1 =
(s +

ζω2
cω2

)λω2

(s +
ζω2
cω2

)(s + λω2)
, ∀s ∈ C.

This results in (involving s
s+

ζω2
cω2

= 1−
ζω2
cω2

s+
ζω2
cω2

)

(s + λω2)∆Ω2(s) = λω2 R(s) +
1

cω2

Eω2(s)−
1

cω2

Xω2(s), Xω2(s) =

ζω2
cω2

s +
ζω2
cω2

E2(s), ∀s ∈ C,

which verified the result of this lemma (R(s) = 0 and xω2 = L−1{Xω2(s)}).

The proof of Theorem 3 is attached as follows.

Proof. The definition of error δω2 := ∆ω∗2 − ∆ω̂2 satisfies that δ̇ω2 = −λω2 δω2 +
1

cω2
xω2 −

1
cω2

e2 (by (41) and (44)), which derives the system for zδ2 :=
[

δω2 xω2

]T :

żδ2 = Aδ2zδ2 + bδ2(ed2 + κδ2 eω2) (A5)

where Aδ2 :=

 −λω2
1

cω2

0 − ζω2
cω2

, bδ2 :=

 1
cω2

− ζω2
cω2

, and κδ2 := cω2 λo,2. The facts ζω2 > 0,

ζω2 > 0, and cω2 > 0 always preserves the stability of Aδ2 making it possible to solve the
equation AT

δ2
Pδ2 + Pδ2 Aδ2 = −I regarding an unique solution Pδ2 = PT

δ2
> 0. The solution

Pδ2 renders the positive definite function

Vδ2 :=
1
2

zT
δ2

Pδ2zδ2 +
ηδ2,1

2
e2

d2
+

ηδ2,2

2
‖eo,2‖2, ηδ2,1 > 0, ηδ2,2 > 0, ∀t ≥ 0,

to be (along the trajectories (32), (33), and (A5) and Young’s inequality)

V̇δ2 = zT
δ2

Pδ2 (Aδ2 zδ2 + bδ2 (ed2 + κδ2 eω2 )) + ηδ2,1 ed2 (−
ld2

2
ed2 + qT

d2
eo,2)− ηδ2,2 λo,2‖eo,2‖2

+ηδ2,1 ed2 (−
ld2

2
ed2 + fd2 )

≤ −1
6
‖zδ2‖

2 − 1
2
(ηδ2,1 ld2 − 3‖Pδ2‖

2‖bδ2‖
2 − 1)e2

d2

−(ηδ2,2 λo,2 −
3‖Pδ2‖2‖bδ2‖2κ2

δ2

2
−

η2
δ2,1
‖qd2
‖2

2
)‖eo,2‖2 + ηδ2,1 ed2 (−

ld2

2
ed2 + fd2 ),
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∀t ≥ 0, The choices for ηδ2,1 and ηδ2,2 such that ηδ2,1 = 1
ld2

(3‖Pδ2‖2‖bδ2‖2 + 2) and ηδ2,2 = 1
λo,2

(
3‖Pδ2

‖2‖bδ2
‖2κ2

δ2
2 +

η2
δ2,1
‖qd2

‖2

2 + 1
2 ) lead to

V̇δ2 ≤ −1
6
‖zδ2‖

2 − 1
2

e2
d2
− 1

2
‖eo,2‖2 + ηδ2,1 ed2(−

ld2

2
ed2 + fd2)

≤ −αδ2 Vδ2 , ∀t ≥ 0, ∀|ed2 | ≥
2 f̄d2

ld2

,

where | fd2 | ≤ f̄d2 , ∀t ≥ 0, and αδ2 := min{ 1
3λmax(Pδ2

)
, 1

ηδ2,1
, 1

ηδ2,2
} (λmax(Pδ2) : maximum

eigenvalue of Pδ1 ), completing the proof.
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