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Abstract: In smart grids, a hybrid renewable energy system that combines multiple renewable energy
sources (RESs) with storage and backup systems can provide the most cost-effective and stable energy
supply. However, one of the most pressing issues addressed by recent research is how best to design
the components of hybrid renewable energy systems to meet all load requirements at the lowest
possible cost and with the best level of reliability. Due to the difficulty of optimizing hybrid renewable
energy systems, it is critical to find an efficient optimization method that provides a reliable solution.
Therefore, in this study, power transmission between microgrids is optimized to minimize the cost
for the overall system and for each microgrid. For this purpose, artificial bee colony (ABC) is used
as an optimization algorithm that aims to minimize the cost and power transmission from outside
the microgrid. The ABC algorithm outperforms other population-based algorithms, with the added
advantage of requiring fewer control parameters. The ABC algorithm also features good resilience,
fast convergence, and great versatility. In this study, several experiments were conducted to show the
productivity of the proposed ABC-based approach. The simulation results show that the proposed
method is an effective optimization approach because it can achieve the global optimum in a very
simple and computationally efficient way.

Keywords: microgrid; ABC; power-sharing; cost optimization; renewable energy

1. Introduction

Today, the world’s greatest challenges are the rapidly growing demand for electrical
energy [1], rising electricity prices, the increasing use of non-renewable energy, the limits
of conventional energy for power generation, global warming, global climate change, and
related environmental problems [2]. All these challenges have resulted in the world being
in a catastrophic economic and political crisis. Because of this, every government in the
world is eager to expand renewable energy generation [3]. Renewable energy generation
can help nations achieve their long-term development goal of providing safe, cheap, clean,
environmentally friendly, and sustainable energy [4]. Despite the many advantages of-
fered by renewable energy compared to conventional energy, they all have weaknesses in
common, such as high weather vulnerability, low stability, and high unpredictability [5],
all of which lead to low reliability and efficiency of energy generation [6]. Consequently,
the hybrid renewable energy system can solve important problems and constraints in
efficiency, reliability, and economy [7], which makes it an effective choice to meet the load
requirements and support and improve the system [8]. The use of a central control unit to
control the integrated power management of microgrids improves the efficiency, flexibility,
and response time to fluctuations. The optimal power flow in the grid, the voltage level
in each bus, and the transmission losses are all essential variables to be considered in
efficient power systems [9]. The actual problem is an MILP problem, and the constraints
on the optimal power flow are linear. For this purpose, a stochastic two-stage model of
the interactions between the distribution system operator and many microgrids on the
distribution line is used in [10].
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The Stackelberg game concept is used in [11] for the interconnections between genera-
tors and microgrids. This model considers all electrical power flow constraints, voltage
constraints, and line losses. The main objective of each is to maximize the profit.

MGs are classified in terms of power, control, mode, phase, and applications, as shown
in Figure 1.
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Figure 1. Classification of microgrids.

A microgrid (MG), as shown in Figure 2, consists of various distributed energy sources
(DERs), responsive loads, and critical loads. A common connection point (PCC) connects
the MG to the main grid [12]. Each DER is connected to the power electronic interface (PEI)
in both grid-connected and islanded modes to perform control, measurement, protection,
and plug-and-play functions. An MG in the grid-connected mode benefits from sharing
power with the main grid. However, in the event of a fault or failure of the main grid, MG
switches to the islanded mode to ensure system stability. In this mode, critical loads are
continuously supplied with power by efficiently integrating DERs, demand response (DR),
and load shedding (LS). The central microgrid controller (MGCC) and local controllers
(LCs) manage and coordinate the entire MG operation [13]. Efficient DER management and
coordination in MG lead to higher system performance and long-term development [14].
Due to increased environmental awareness, socioeconomic growth, and the need to reduce
greenhouse gas emissions, MGs are mainly composed of sustainable energy systems, such
as renewable energy sources and energy-efficient systems that use local heat waste [15].
Various energy storage technologies that have potential for high penetration and integration
in microgrids are mentioned in [16]. Different energy trading systems are examined for
interactive energy trading, multienergy management, and resilient operations in [17]. The
DSM technique is used in [18] to reduce the operating cost of the grid-connected microgrid.
An optimization-based energy management system is used to reduce the generation and
curtailment costs [19]. In [20], an optimization controller is developed to control the energy
management system for distributed energy sources in microgrids.

Table 1 shows a few examples of sustainable energy being used to run the energy
management system from the literature review.



Energies 2022, 15, 1067 3 of 22Energies 2022, 15, x FOR PEER REVIEW 3 of 21 
 

 

 
Figure 2. Microgrid setup. 

Table 1 shows a few examples of sustainable energy being used to run the energy 
management system from the literature review. 

Table 1. Sustainable energy (SE) system in microgrids. 

References Solar WT FC CHP EES Biomass Hydro Tidal 
[21] ✓      ✓  
[22] ✓ ✓  ✓     
[23] ✓  ✓     ✓ 
[24]     ✓    
[25]     ✓    
[26]     ✓    
[27] ✓ ✓    ✓   
[28] ✓ ✓ ✓ ✓     

[29–31]     ✓    

The microgrid EMS is a decision-making technique. For sustainable development, 
these techniques improve system efficiency, boost system reliability, decrease energy con-
sumption, reduce DER operating costs, decrease system losses, and eliminate GHG emis-
sions. 

This paper presents a model for a hybrid renewable energy system integrated with a 
smart grid. The hybrid system includes wind turbines (WTs), photovoltaic (PV) systems, 
an electricity distribution company (Disco), gas turbines (GTs), and battery storage. Each 
component of the generation and load side is represented by a model. The hourly data of 
the wind speed and solar radiation on a daily basis are used as a case study in this paper. 
The proposed approach is used to optimize the power-sharing in the MGs to minimize 
the total cost of the system and the cost of each integrated microgrid. An artificial bee 
colony (ABC), as the optimization algorithm, is designed here to deal with the proposed 
model, with the objective of minimizing the cost and power imported from outside the 
MG. The idea of this paper is represented in Figure 3. 

Figure 2. Microgrid setup.

Table 1. Sustainable energy (SE) system in microgrids.

References Solar WT FC CHP EES Biomass Hydro Tidal

[21] 3 3

[22] 3 3 3

[23] 3 3 3

[24] 3

[25] 3

[26] 3

[27] 3 3 3

[28] 3 3 3 3

[29–31] 3

The microgrid EMS is a decision-making technique. For sustainable development,
these techniques improve system efficiency, boost system reliability, decrease energy con-
sumption, reduce DER operating costs, decrease system losses, and eliminate GHG emissions.

This paper presents a model for a hybrid renewable energy system integrated with a
smart grid. The hybrid system includes wind turbines (WTs), photovoltaic (PV) systems,
an electricity distribution company (Disco), gas turbines (GTs), and battery storage. Each
component of the generation and load side is represented by a model. The hourly data of
the wind speed and solar radiation on a daily basis are used as a case study in this paper.
The proposed approach is used to optimize the power-sharing in the MGs to minimize the
total cost of the system and the cost of each integrated microgrid. An artificial bee colony
(ABC), as the optimization algorithm, is designed here to deal with the proposed model,
with the objective of minimizing the cost and power imported from outside the MG. The
idea of this paper is represented in Figure 3.
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Figure 3 shows a microgrid (MG) connected to a distribution network. This MG
contains multiple small MGs, which are connected with each other by electric lines. The
electric line can be allowed to export and impart energy from small MGs. The small MG
contains a mixture of components that consume and produce electricity (solar and wind
plants) in addition to electricity storage units. The operational status of the small MG
is divided into three sections: first, self-sufficiency in the event of equal production and
consumption, so the MG will neither import nor export energy; second, import, which
occurs when consumption is greater than production, as the MG needs energy; and third,
export, which occurs when there is a surplus of energy within the MG and it needs to be
exported.

Optimization is a mathematical problem that may be found in all engineering domains.
This term’s literal definition is “best possible or desirable”. Because optimization problems
are so broad and varied, it is a significant academic field.

Optimization algorithms are classified into two types: deterministic and stochastic.
Previously, tackling optimization issues required tremendous computational effort, which
frequently failed as the problem size grew larger. This is why bio-inspired stochastic
optimization algorithms are being used as computationally efficient alternatives to deter-
ministic approaches. Metaheuristics are based on the iterative improvement of either a
population of solutions (evolutionary algorithms or swarm-based algorithms) or a single
solution (Tabu Search) to solve a given optimization problem, and they primarily use
randomization and local search.

The literature on bio-inspired algorithms (BIAs) for solving a wide variety of issues
is vast, and various studies have reported on the usefulness of such tactics for handling
difficult problems in the main disciplines of engineering in recent years. The two most
prevalent and successful BIA classes or routes are evolutionary algorithms and swarm-
based algorithms, both inspired by animals’ collective behavior and natural development.
In order to obtain a broader view on the subject, the algorithms were divided into regions
based on where the inspiration for them came from in nature.

Swarm intelligence is a novel and rising paradigm used for creating adaptive systems
in bio-inspired computing. In this sense, evolutionary computation (EC) is an extension
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of this. Swarm intelligence is based on organisms’ collective social behaviors, whereas
evolutionary algorithms are based on species’ genetic adaptability. Swarm intelligence,
as defined in the literature, is the use of the collective intelligence of groups of simple
organisms to solve problems, based on the behavior of actual insect swarms. The term
“swarm” refers to the chaotic movement of particles in the affected region. Some important
SI algorithms are particle swarm optimization (PSO), the ant colony optimization algorithm
(ACO), the fish swarm algorithm (FSA), the firefly algorithm, and the artificial bee colony
(ABC) methods, which have all been employed as optimization methodologies. In the
foraging process, these algorithms, which were inspired by animals’ collective behavior,
exhibit decentralized self-organized patterns. However, the artificial bee colony (ABC)
approach was used in this article [32].

The ABC algorithm outperforms or is similar to other population-based algorithms,
with the added advantage of requiring fewer control parameters. The ABC algorithm also
features good resilience, fast convergence, and great versatility.

The ABC algorithm, developed by Karaboga and Basturk, replicates the intelligent
foraging behavior of a honeybee swarm. The ABC algorithm’s artificial bee colony is made
up of three categories of bees: hired bees, bystanders, and scouts. An employed bee is a
spectator who does not participate in the dance but instead travels to the food source being
frequented by the observer. The scout bee, on the other hand, performs random searches
for fresh sources. The quality (or fitness) of a solution may be measured by comparing the
location of a food source to the amount of nectar it generates. Beehives are built and then
released into the two-dimensional search space. Bees build social relationships with one
another while foraging for nectar. Intense bee–bee interactions are essential to the discovery
of a solution.

2. Problem Formulation
2.1. ABC Algorithm

In 2005, Karaboga discovered the ABC algorithm, influenced by honey bee behavior.
The algorithm of a honey bee colony has the ability to find the best quality food sources
in nature with ease. Therefore, the concept of ABC was derived from the clever foraging
behavior of honey bees to find suitable solutions to optimization problems. Generally, bee
colonies are classified into three types according to their foraging ability: employed bees,
onlooker bees, and scout bees. The employed bees are responsible for collecting nectar
(food). They investigate the location of the food supply in advance and alert the scout bees
about the quality of the food. Based on the information relayed by the employed bees, the
scout bees wait in the swarm and decide whether to take advantage of a food source. The
scout bees randomly search the environment for a new nectar supply, either from internal
motivation or from likely external cues [33]. The quality (fitness) of the feasible solution to
the optimization questions is related to the profitability of a nectar source. The presence of
a nectar source indicates a feasible solution to the optimization issues. Each nectar source
is visited by only one honey bee. In other words, the number of employed or onlooker
bees is proportional to the number of nectar sources [34]. Employed bees maintain an
excellent solution, onlooker bees accelerate convergence, and scout bees improve the ability
to eliminate local optimums [35,36].

ABC Algorithm Iteration Steps

ABC algorithm’s main steps are listed as follows [37,38]:
1. Initialization. Generate N random solutions (food sources) Xi (i = 1, 2, 3, . . . , N)

in a dimensional searching space D, where N represents the number of food sources, which
is half the size of the colony Xi (i = 1, 2, 3, . . . , D) is a D-dimensional solution vector.
For i = 1, 2, 3, . . . , N, the ith food source in the original population, and the number of
optimization population parameters is denoted by D.

2. During the honey collection stage, each employed bee creates a new nectar source in
the food source’s vicinity. When a new nectar source is compared to the previous one, the
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high probability will be memorized. Each onlooker bee assesses the attractiveness of nectar
sources received from all employed bees and selects a food source with a high probability.
Like the employed bees, she changes the source location in her memory and maintains a
higher nectar supply. In these two phases, the following formula is employed to regenerate
nectar sources:

lij = hij + θ ·
(

hij − hkj

)
(1)

where i (k = 1, 2, 3, . . . , N), (j = 1, 2, 3, . . . , D), and θ[0, 1] is a random number that de-
termines the generation range of hij′s neighborhoods. As the search comes closer to an
optimal solution, the number of neighborhoods available will decrease.

3. Food source selection. In the next step, the onlooker bees compare the probability
calculated by the fitness value to select a food source. Nectar sources with a high probability
are chosen with a high degree of certainty. The chance of being chosen for food sources is
computed using the equation below:

Pi =
Fiti

∑N
i Fiti

(2)

The fitness value of the ith solution, Fitii(i = 1, 2, 3, . . . , N) may be determined using
following equation:

Fiti =


1

1 + fi
, i f fi ≥ 0,

1 + | fi|, i f fi ≤ 0
(3)

If the quality of the new food source location is the same as or better than the previous
one, the old one is updated with a new one, where fi is the value of the objective function
for i = 1, 2, 3, . . . , N, which is unique to the optimization problem. Otherwise, the old one
will be kept the same as the stage of employed bees.

4. Population elimination. A solution is considered to have fallen into a local optimum
solution if it has not improved significantly after a specified number of trials, known as
“max iteration”, and the starting position is abandoned. As a consequence, the matching
employed bees will become scout bees, and a new solution, which may be described as
follows, will be generated at random in place of the discarded solution:

h_ij = θ ∗ (h_maxj− h_minj) + h_minj (4)

where h_maxj and h_minj are the jth and ith individual maximum and lowest values,
respectively, and i and j are the same (1).

The ABC algorithm may be expressed in the following stages based on the preceding
phases [39].Flowchart of ABC algorithm is shown in Figure 4.
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3. Mathematical Modeling

The microgrid architecture studied in this paper is represented in Figure 5. It includes
wind turbines (WTs), gas turbines (GTs), photovoltaic (PV), batteries (BT), additional
storage components, general loads, and essential loads with different characteristics. The
connection point, also known as the point of common coupling (PCC), is the interface
between this architecture’s utility and microgrid systems. As a result, there are two types
of modes.
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When the MG is connected to the main grid via PCC, it is in the grid-connected mode,
and when it does not connect with the main grid, it is in the islanded mode.

Renewable energy sources (RESs) can be connected via a DC, AC, or a hybrid DC/AC
bus. For most generators and loads, the appropriate configuration is determined by the type
of output power. Therefore, DC bus coupling is preferred when both loads and generators
are DC [40]. When the loads and generators are AC, then AC bus coupling is preferred [41]
when the generation and load are mixed, such as AC and DC hybrid renewable energy
sources (HRESs). A hybrid AC, DC bus coupling system is used [42], as shown in Figure 6.
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3.1. Hybrid Wind/PV/Battery Storage/Gas Turbine

The configuration shown in Figure 6 consists of wind energy, a PV energy system,
battery storage, a gas turbine, and the main load. The response of this configuration is
simple and easy to understand. Due to the bidirectional converter, the WT and the PV
system are mainly responsible for supplying the main load. The excess power generated
by wind and/or PV is stored in a battery storage system until the battery is fully charged
to SOCmax . Excess power generated above SOCmax is supplied to dedicated loads, i.e.,
dummy loads, such as loads for cooling, home appliances and heating, and charging the
batteries of emergency lights when the battery storage is full. When the load power exceeds
the generated power, the batteries are used to make up the difference until they reach
the minimum SOC (SOCmin). Suppose the battery is fully discharged by SOCmin and the
hybrid renewable energy sources cannot meet the microgrid’s load demand. In this case, it
imports energy from another microgrid. Moreover, when it is unable to purchase energy
from another microgrid, the microgrid purchases power from the main grid to balance the
load demand [43].

3.1.1. Wind Energy System

Wind generation depends on both the wind speed and the height of the hub at a given
location. The power–law equation [44] is used to calculate the wind speed at the hub height
of WT using data collected at the anemometer height: u(h) and u(hg) are the wind speeds
at the hub height (h) and the anemometer height (hg), respectively, and α is the roughness
factor. The value changes from location to location and over time at the same location:

V(h) = V
(
hg
)( h

hg

)α

(5)

where V(h) and V
(
hg
)

are the wind speeds at hub height h and anemometer height hg. α
is a roughness factor and varies from location to location and time to time.
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The output power of WT from the typical WT curve is as follows [45]:

pwt =


0, vwt< vci, vwt >vco

pr ∗ v2
wt−v2

co
v2

r−v2
ci

, vci < vwt < vr

pr, vci < vwt < vco

(6)

where pwt is the output power of the wind turbine, pr is the rated output power of the
wind turbine, vci is the cut in wind speed of WT, vr is the rated wind speed of WT, and vco
is the cut off wind speed of the wind turbine.

3.1.2. PV Energy System

The solar radiation on a tilted surface (Ht) can be calculated using solar insolation,
the ambient temperature, data from the PV panel manufacturer, the PV panel slope, and
the site latitude and longitude [46,47]. The following equation [48] is used to compute the
PV system’s output power:

ppv(t) = ht(t) ∗ PVA ∗ µc(t) (7)

where µc(t) is the PV system’s hourly generating efficiency, which may be calculated in
terms of the cell temperature using Equation (8) [49]:

µc(t) = µcr[1− βt ∗ (Tc(t)− Tcr)]) (8)

where βt is the temperature coefficient, µcr and Tcr are the solar cell efficiency and tempera-
ture at maximum radiation solar flux Tc(t), It is an hourly solar cell temperature at ambient
temperature (Ta):

Tc(t) = Ta + λht(t) (9)

where λ (Ross coefficient) is a coefficient that represents how the temperature increases
above ambient as solar flux increases. The overall output of the PV array is:

ps =

(
Gpv

Go

)
∗ pr (10)

where ps is the PV array output power, Gpv is the irradiation of solar, Go is the solar
irradiance under standard test conditions (1000 W/m2). pr is the rated power of solar [49].
Table 2 represents the PV parameter values.

Table 2. PV panel parameters. Reproduced from [49], the (Journal of Energy storage): 2021.

Parameters Values Unit

Go 1000 W/m2

µ 20 %
TM,O 25 ◦C

NOCT 44 ◦C
ΠPV 0 Cent/kWh

3.1.3. Battery Storage

The state of charge (SOC) of a battery is determined based on the energy balance
between the wind, PV energy systems, and the load as given by the following equations
after a particular time (t):

Eb(t) = Eb(t− 1)(1− σ) + Ps ∗ ηbc (11)
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where (11) is the battery charging mode equation:

Eb(t) = Eb(t− 1)(1− σ)− pd
ηbd

(12)

where (12) is the battery discharging mode equation. Eb is the energy of the battery bank,
and ηbc, ηbd is the charging and discharging efficiency of the battery storage system. It is
considered to be 90% and 85%, respectively, in [50], where σ is the battery self-discharge
rate and is assumed to be 0.2% per day for most batteries [51]. Ps is the surplus power, and
pd is the deficit power.

The battery bank should always follow the following limitations:

Eb,min ≤ Eb(t) ≤ Eb,max (13)

Eb(t) = Eb(t− 1)(1− σ) (14)

where Eb,max and Eb,min are the battery bank’s maximum and minimum storage capacity,
respectively. The following equation can be used to calculate Eb,min:

Eb,min = DOD ∗ Eb (15)

where Eb is the battery nominal storage capacity, and DOD is the depth of discharge of a
battery opposite to the SOC of a battery.

4. Mathematical Modeling of the Proposed Approach

The proposed approach of this article is to optimize the power transfer between
microgrids to minimize the overall cost of the system and each microgrid. For this purpose,
a mathematical model is designed for a net load for each microgrid first. The proposed idea
is represented in Figure 3, and the proposed work is represented by the flowchart shown in
Figure 7.

The proposed approach has two main tasks: storage; the other is energy sharing
in the first part, which is energy storage. If the net load is greater than zero, storage is
used to discharge energy to meet the load requirements. If the net load is less than zero,
the extra system energy is either shared with other microgrids or stored in the storage
system to reduce the total cost of electricity. Data about the load, PV, and wind in each
MG is calculated. After obtaining data of the load, PV, and wind in each MG, the sharing
parameters are initialized, such as the SOC of the battery, the size of the battery, and
the minimum and maximum generation in each MG, the net load is calculated using the
generation and load balance equations.

The proposed work shown in Figure 7 is about energy management in small MGs and
is an attempt to reduce imports from energy distribution networks as much as possible, by
linking several small microgrids together. These MGs contain different mixtures of energy
production and consumption, which helps to increase the reliability of these small MGs and
gradually dispense with power distribution networks. The novelty is that the difference
in the energy mix between these small MGs and linking them together will help dispense
with distribution networks, which will reduce energy losses and the price of electricity
and provides the possibility for small consumers to benefit from the production and sale
of energy.

Suppose a microgrid has a battery energy storage system. In this case, it will have two
possibilities if the net load exceeds zero. The SOC of a battery is checked to observe whether
it is above 20%, and the battery will be discharged to meet the load requirements. Still, if
the net load is not greater than zero, there is some extra energy in the system, which may be
used to charge the battery if the SOC of a battery is less than the maximum storage capacity.
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In the second task of the proposed approach, whether the net load is greater than or
less than zero is checked. If it is greater than zero, the microgrid will import energy from
other microgrids or the main grid. If the net load is less than zero, the microgrid will export
energy to other microgrids or the main grid.

The above process is iterated until optimal power-sharing among the microgrids is
achieved.

4.1. Microgrids’ Net Load

The mathematical equation for Disco is:

Disco Net Load = LD − GD (16)

where LD is the load of the distribution company (Disco) and GD is the conventional
generation in Disco:

MG1 Net Load = LMG1 − PVMG1 ∗ PFPV (17)
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where LMG1 is the load of MG1, PVMG1 is the rated power of PV in MG1, and PFPV is the
24 h PV profile:

MG2 Net Load = LMG2 − GD1 − GD2 −WTMG2 ∗ PFWT (18)

where LMG2 is the load of MG2, GD1, GD2 are the generation of conventional generators 1
and 2, WTMG2 is the wind turbine generation in MG2, and PFWT is the wind profile of 24 h

MG3 Net Load = LMG3 − PVMG3 ∗ PFPV (19)

LMG3 is the load of MG3, PVMG3 is the rated PV power, and PFPV is the PV profile for
24 h.

MG4 Net Load = LMG4 −WTMG4 ∗ PFWT (20)

LMG4 is the load of MG4, WTMG4 is the wind turbine generation in MG4, PFWT is the
24 h wind profile:

MG5 Net Load = LMG5 − GD −WTMG5 ∗ PFWT (21)

where LMG5 is the load of MG5, GD is the generation of a conventional generator, WTMG5
is the wind generation in MG5, and PFWT is the 24 h wind profile.

The net load is the difference between the load and generation inside the MG itself. It
is used to determine whether the microgrid has a shortage or excess of energy to import or
export to other microgrids with a shortage of energy, store it in battery energy storage, or
sell it to the main grid.

4.2. Energy Management Strategy

The proposed HRES management algorithm is described in the following strategy.
If the amount of power generated by RES surpasses the amount needed to meet the load
requirements, the excess power will be used to charge the batteries until they reach their
maximum capacity, Eb,max. The extra power in the batteries will be used to power the
dummy load, Pdummy. The reason behind this can be described as follows:

i f Pg(t) > PL(t) and SOC < Eb,max then;

Pbc = [Pw(t)− PL(t) + PPV(t)]ηbc Charging Process
(22)

i f Pg > PL(t) and SOC ≥ Eb,max then

Pbc(t) = 0

Pd(t) = [Pw(t)− PL(t) + PPV(t)]
(23)

where Pd is the power to the dummy load:

i f Pw(t)< PL(t) , [Pw(t) + PPV(t)] >PL(t) and

SOC < Eb,max then

Pbc(t) = [PPV(t)− (PL(t)− Pw(t))]ηbc,
(24)

Equation (24) shows the charging process:

i f Pw(t)< PL(t) and (Pw(t) + PPV(t)) >PL(t) and

SOC > Eb,max then;

Pbc(t) = 0

Pd(t) = [Pw(t)− PL(t) + PPV(t)]

(25)
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If the load demand requires more power than RES can provide, the battery will meet
the demand until it is reduced to its minimal level Eb,min. If there is still a power shortage,
the DG will make up for the deficit load demand. The equations that describe this logic are
as follows:

i f [Pw(t) + PPV(t)]< PL(t) and SOC >Eb,min then;

Pbd(t) =
[PL(t)−Pw(t)−PPV(t)]

ηbd
,

(26)

where Pbd(t) is discharging power, and this is a discharging process:

i f [Pwt(t) + PPV(t)] < PL(t) and SOC < Eb,min then;

Pbd(t) = 0

All the above equations and details of the generation, load, and storage indicate how
the energy management strategy is effectively working in this case. When the generation
of HRES in the microgrid is higher than the load, the surplus energy is stored in the
battery energy storage system. When the generation of the HRES is less than the load of
the microgrid, then the shortage of energy is met by the battery storage system. If the
generation of HRES is less than the load and the battery energy is less than the minimum
level of stored energy, then the microgrid will import energy from another microgrid to
meet the demand. In the above equations, SOC is the state of the charge of the battery, Pbc
is the power used to charge the battery, and Pbd is the discharging power of the battery. ηbc,
ηbd is the battery charging and discharging efficiencies, respectively.

The power flow constraints of the HRES and battery are as follows:

0 ≤ PG ≤ Pmax Conventional Generation (27)

0 ≤ PPV ≤ Pmax PV Generation (28)

0 ≤ Pwt ≤ Pmax WT Generation (29)

Pmin ≤ Pb ≤ Pmax Battery power (30)

SOCmin ≤ SOC ≤ SOCmax Battery State o f Charge (31)

4.3. Microgrid Energy Sharing Problem

The microgrid has an excess or shortage of energy. The microgrid with excess energy
will export the energy to other microgrids, which need a power through-line between
them (S1, S2, S3, . . . , S15). The microgrid with a shortage of energy will import the en-
ergy from other microgrids, which have an excess power through-line between them
(S1, S2, S3, . . . , S15). If all microgrids do not have enough energy to cover the shortage in
the system, the system will import energy from the main grid. If we consider a sequence
of 1 : Disco, 2 : MG1, 3 : MG2, 4 : MG3, 5 : MG4, 6 : MG5, if sending end SN = 1 and
receiving end RN = 2, it means the line is connected from Disco to MG1 and so on.

5. Power Balance

The power balance in the generation and load is represented as:

System Load− PPV − Pw − Pcon − PGrid = 0 (32)

MG Load + Export Energy−MG Generation− Import Energy = 0 (33)

Objective Function

The objective function is a cost reduction of the generated power, transfer power, and
import and export power:

CT = ∑G
1 CG + CDis + CMG + CB + CP (34)
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where CG is the total conventional generation cost, CDis is the total transfer energy cost
from Disco to MG, CMG is the total transfer energy cost from MG to MG, CB is the total
energy cost from the battery, and CP is the penalty cost for the unsupplied energy.

Mathematically, all of the above costs are represented as:

CG = (GDis + G1MG2 + G2MG2 + G5MG5) ∗ Pgas (35)

where GDis is conventional generation in Disco, G1MG2 is conventional generation in MG2,
G2MG2 is conventional generation in MG2, G5MG5 is conventional generation in MG5, and
Pgas is the gas price:

CDis = (S1 + S2 + S3 + S4 + S5) ∗ PDis (36)

where S1, S2, S3, S4, S5 transfer power from Disco to MG1, MG2, MG3, MG4, MG5,
respectively, and PDis is the energy cost of Disco:

CMG = (S6 + S7 + S8 + . . . + S15) ∗ PMG (37)

where (S6 + S7 + S8 + · · ·+ S15) is the power transfer from MG to MG, and PMG is the
cost of energy from MG to MG:

CB = (BESDisco + BESMG2 + BESMG4 + BESMG5) ∗ PB (38)

In Equation (38), BESDisco is the energy of the battery in Disco, BESMG2 is the energy
of the battery in MG2, BESMG4 is the energy of the battery in MG4, BESMG5 is the energy
of the battery in MG5, and PB is the cost of energy from the battery:

CP = Ens ∗ PP (39)

where Ens is the unsupplied energy and PP is the penalty price that is fixed [49].
Table 3 represents the cost data of different parameters (also taken from [49]).

Table 3. Cost data. Reproduced from [49], the (Journal of Energy Storage): 2021.

Parameters Values Unit

Pgas 5 Cent/kWh
PMG 15.75 Cent/kWh
PDis 15.3 Cent/kWh
PB 3 Cent/kWh
Pp 40 Cent/kWh

6. Simulations and Results Analysis

As discussed above, in all the mathematical formulations regarding the objective
functions and microgrid components, an ABC optimization technique reduces the system’s
total cost and minimal sharing cost of all the microgrids. Microgrids consist of conventional
generation and intermittent energy sources, such as PV, wind, and battery energy storage
systems. Among all the sources, conventional generators produce 24 h electricity, and wind
generation is wind speed dependent and PV dependent on solar irradiations. Conventional
generation occurs in Disco, MG2, and MG5. If their capacity fails to meet the desired load
demands, they will import energy from the main grid if there is an unavailability of energy
from other microgrids.

There are different power-through lines between Disco and microgrids and from micro-
grids to microgrids. The lines connecting Disco and microgrids are (S1, S2, S3, S4, S5), i.e.,
from MG1 to MG5. From MG1 to (MG2, MG3, MG4, MG5), the lines are (S6, S7, S8, S9);
from MG2 to (MG3, MG4, MG5), the lines are (S10, S11, S12); from MG3 to(MG4, MG5),
the lines are (S13, S14); and the last connection between MG4 and MG5 is S15. These lines
from S1, S2, . . . , S15 represent power transfer from Disco to MG and MGs to MGs. If the
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value of S1 to S15 is negative, power is transferred from the receiving to the sending end
and vice versa if it is positive.

A cost convergence curve is shown below in Figure 8, which shows how the best
solution deals with each iteration. We can see the best solution decreases when the iteration
increases until it reaches the best one. The maximum number of iterations considered in
the proposed idea is 150, upon which it converges to an optimal value.
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Regarding the MG with only PV generation source, Figure 9 shows that it can only
generate power according to the solar irradiance data in the PVWT profile. For the rest of
the hours, it imports energy from outside, and from 11 to 13 h, it sells energy as it exceeds
the load demand. MG1 has only one PV generation source, and as per Equation (7), PV
generation is dependent on thee tilted surface, PV array, and its efficiency. Maximum
generation is achieved when maximum sunlight is available for the tilted surface, and
it is generally from 7 to 19 h that power is generated. Moreover, the intensity of light is
very high, from 11 to 13 h, during which the generated power reaches th maximum and is
available to sell to other MGs or the main grid. In the absence of sunlight, MG1 will not
generate electricity. Hence, it will purchase electricity from other MGs.

Microgrid 2 contains wind generation, battery storage, and 2 thermal units. The wind
is almost always the available generation source, as shown in Figure 10. From 1–6 h, the
load demand can easily be met by the wind generation source and thermal unit generation.
During this time, extra power is used for charging the battery. From 7–8 h, EES is used to
meet the load demand along with the wind and thermal generation sources. From 9–23 h,
wind generation, thermal generation, and EES are not able to meet the load demand; hence,
electricity is purchased from outside.

Microgrid 3 has one source of PV and load demand, as shown in Figure 11. To meet
the load demand with just one PV source, it will purchase electricity from other microgrids
in the absence of sunlight. When sunlight becomes available, it will gradually overcome
the load demand and at high intensity, sunlight from 11–13 h MG3 will be able to meet the
entire demand. The extra amount of electricity will be sold to other MGs.
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MG4 contains wind generation and battery storage, and the load demand is shown
in the Figure 12. The result in Figure 12 shows that from 1–6 h, wind generation is able to
meet the required load demand and the extra amount of electricity will be used to charge
the battery. Due to the intermittent nature of wind, it will purchase electricity if the wind
generation is less than the load demand. As shown in Figure 12, from 7–10 h, the load
demand exceeds wind generation; hence, EES is used to meet the load demand along with
wind generation, and some energy is still required to meet the required demand, it will be
purchased from other microgrids. From 11–24 h, wind generation cannot meet the required
load demand; hence, the extra amount of electricity needed will be purchased from other
microgrids.
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MG5 contains wind generation, battery storage, and one thermal unit. The load
demand is shown in Figure 13. Wind generation is available 24 h as shown in the figure.
From 1–6 h, the load demand is met by wind and thermal generation and the extra amount
of electricity is used to charge the battery. From 7–8 h, the load demand exceeds the wind
and thermal generation; hence, EES is used to meet the required demand. From 9–24 h, as
the load demand is higher than the inside generation, the extra energy required to meet the
demand is purchased from other microgrids.
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Disco contains battery storage and one thermal unit. The thermal generation is a
constant source of generation as shown in Figure 14, and the load demand of Disco is
shown in the figure. From 1–6 h, thermal generation alone cannot meet the load demand.
Therefore, energy is purchased from other microgrids at the optimal rate and the battery is
charged during this time. From 7–8 h, thermal generation and EES are both used, and the
extra amount needed to meet the load demand is purchased from outside. From 9–24 h,
thermal generation is used, but the generation is not sufficient to meet the required demand.
Therefore, the extra amount is purchased from outside.
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The cost optimization results of the microgrids and total systems are shown in
Figure 15. It is clearly shown in the figure that the total cost of MG2, MG4, and MG5
is zero, which means that they do not import energy from other microgrids or the amount
of electricity that is bought or sold is the same; hence, they compensate for their cost effects,
which is why their cost is zero.
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7. Conclusions and Future Work

The microgrid has emerged as a new paradigm shift for global energy systems to
replace remote centralized power plants with more efficient, localized, and distributed
generation systems, especially in various cities and towns around the globe. It provides
more stable, flexible, and energy-efficient solutions for the power grid so that an increasing
number of loads can be handled without new infrastructure needing to be built. This work
provides a new iterative ABC optimization method that addresses HRESs, such as solar,
wind, GT, and battery. In particular, this work optimizes the power transmission between
different microgrids to minimize the cost of each microgrid and the whole system while
maintaining the load requirements and stability. The optimization problem was solved
by the new iterative method ABC. This study also conducted several experiments with
historical data to test the proposed method for the HRES model. The simulation results
show that the proposed method is efficient in finding the best solution and adjusting the
optimization parameters and constraints. This method can also be applied to any site with
meteorological data and any WT with technical information.

Future research will focus on the use of hybrid swarm intelligence systems, such as
the particle swarm algorithm and the artificial bee colony algorithm or the differential
evolution algorithm, for the economic dispatch of microgrids. In addition, flexible switching
techniques for real-time scheduling in microgrids that consider more constraint situations
is an interesting future research direction.
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