
����������
�������

Citation: Matyja, T.; Kubik, A.;

Stanik, Z. Possibility to Use

Professional Bicycle Computers for

the Scientific Evaluation of Electric

Bikes: Velocity, Cadence and Power

Data. Energies 2022, 15, 1127.

https://doi.org/10.3390/en15031127

Academic Editor: Vítor Monteiro

Received: 5 January 2022

Accepted: 2 February 2022

Published: 3 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Possibility to Use Professional Bicycle Computers for the
Scientific Evaluation of Electric Bikes: Velocity, Cadence and
Power Data
Tomasz Matyja *, Andrzej Kubik * and Zbigniew Stanik

Department of Road Transport, Faculty of Transport and Aviation Engineering, Silesian University of Technology,
8 Krasinskiego Street, 40-019 Katowice, Poland; zbigniew.stanik@polsl.pl
* Correspondence: tomasz.matyja@polsl.pl (T.M.); andrzej.kubik@polsl.pl (A.K.)

Abstract: The aim of this study was to check whether the data recorded by a bicycle computer paired
with typical measurement sensors can be useful for a scientific evaluation of the cyclist–bicycle
anthropotechnical system, including electric bicycles. The problem arose when the authors searched
for methods to assess the energy efficiency of electric bicycles and intelligent power management
systems provided by the assistance system, in accordance with the current needs of the bicycle
user. This can be of great importance in the efficient use of electric bicycles and their batteries, in
the event that they are rented in public access systems. This article focuses primarily on data on
bicycle speed, calculated by the GPS module or obtained from speed sensors, as well as data from the
cadence sensor, power measurement, pedaling technique and heart rate. An attempt was made to
evaluate the correctness and consistency of the data recorded by the computer through various types
of comparatives analyses. The conducted research used data recorded when traveling the same route
with various bikes, including electric ones, with and without assistance. This is the second part of the
research. The first part focusing on data obtained by a computer from a GPS system and a barometric
altimeter was published in an earlier article. In both parts, the authors presented some advantages
and disadvantages of using bicycle computers as tools for measuring and acquiring data. In general,
it seems that the existing technology used by bicycle computers and the measurement sensors that
cooperate with it can be used in the development of a system that optimizes energy consumption.

Keywords: power; velocity; cadence; electric bike; bicycle computer

1. Introduction

The rapidly growing developing market of shared urban mobility brings with it newer
and newer technical solutions. Initially, classic bicycles were one of the main means of
transport used in shared mobility systems. In recent years, the shared mobility market
has been increasingly filled with electric scooters [1]. Classic bikes used in shared mobility
systems have been dominated by scooters, which can be found on every street in larger
cities. An alternative to scooters has become bicycles with electric assistance. Electric bikes
are becoming more popular and accessible [2–4]. In 2019, the market for electric bicycles in
shared mobility systems was estimated to be 28%, and in 2020, it was already 44%. It is
expected that in the coming years, the share of electric bicycles in vehicle sharing systems
will continue to grow [5]; therefore, electric bikes will undoubtedly replace traditional
bicycles in public bicycle rental systems.

The safe use of an electric bike requires that the rider has some experience in choosing
the right assistance mode. Dangerously fast assisted driving is often observed, according to
the following principle: “I can do more with power assistance”. Manufacturers of electric
bicycles are introducing a number of safeguards, consisting mainly of disconnecting the
electric drive when the pedals stop rotating or there is no noticeable pressure on the pedals.
Sometimes, speed limits are also applied, which is very important when driving in the
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city. An electric bike has a much higher weight than a traditional bike and requires more
power to move. At the same time, it allows people with a poor physical condition and
diseases that exclude excessive physical activity to move. An important research problem
is the comparison of the energy efficiency of electric and traditional bicycles, as well as
the difference in purchase and operating costs, in the context of the profitability of the
rental company. Optimization of energy consumption and, thus, maintenance costs of
vehicles used in shared mobility systems is very important. The increased costs generated
by electric vehicles will ultimately result in an increase in the price of renting bicycles.
It is therefore important to use the battery efficiently, which will translate into overcoming
longer distances using electric motor support.

Customers of public bike rental schemes are people who vary greatly in their experi-
ence in driving electric bikes, as well as their physical condition and health. According to
the authors, it is becoming expedient to look for an intelligent electric assistance control
system that would provide only as much additional energy to the cyclist–bicycle system
as is needed at a given moment to move at a fixed and safe speed. Such a system would
have to continuously and online monitor the mechanical parameters of the bike (e.g., speed,
cadence, power generated by the human on the pedals) and human performance (e.g., pulse,
pressure, saturation). An additional advantage of using this type of system would be sav-
ings in electricity consumption, which are part of the postulate of sustainable development.
The introduction of an intelligent assistance system would mean recognizing that an electric
bike from a public rental system is to serve only the needs of transport customers and will
not be used, for example, for recreational and sports purposes. However, before such a
system is created, it is first necessary to develop tools for assessing the energy efficiency of
electric bicycles and mathematical models of control and simulation of bicycle dynamics.
Second, a system to measure and acquire data needed to control the assistance should be
chosen. For obvious reasons, the data measurement and acquisition system must be low
budget. The authors asked themselves whether the technologies used in bicycle computers
could be used for this purpose. Bicycle computers have become a typical and popular tool
for recording the basic parameters of the route and the condition of the cyclist, used by
both professional cyclists and amateurs using bicycles for recreational purposes [6]. As is
standard, the computer records data from the built-in GPS module and from the barometric
altimeter and thermometer. After installing additional measuring devices, it is possible
to record, among others: speed converted from wheel rotation, cadence, power, pedaling
asymmetry, pedaling effectiveness, pedaling smoothness and the cyclist’s heart rate.

The bicycle computer and bikes used for the research, the test route and additional
measurement sensors mounted on the bikes were discussed in the first part of this article.
The first part of this article [7] proposed methods for processing and filtering data from
the GPS module and the barometric altimeter. Data defining the trajectory of the bicycle’s
movement were analyzed, and an average route was determined on their basis. The
height of the averaged route above sea level and its slope were also determined. The
second part focuses on data obtained from external sensors. The aim of the research was to
evaluate the recorded data in terms of their suitability for the scientific evaluation of the
anthropotechnical cyclist–bicycle system. Among other things, this type of data could be
used to compare the energy efficiency of electric bicycles with conventional bicycles, to
design systems that optimize the cyclist’s effort and to prepare cycling simulators.

It is obvious that a bicycle computer cannot be treated as a professional measuring
apparatus. However, it has a number of advantages that make it a tool for measuring
and recording data. The advantages include: easy installation on bikes, low weight,
aerodynamic shapes, a large number of recorded parameters, easy attachment of additional
transducers and low energy consumption of dedicated transducers. In addition, the low
purchase cost (at the smartphone level) makes it possible to use multiple meters at the
same time (simultaneous testing), and it is also possible to obtain data from the cycling
community (many people have such equipment). The bicycle computer practically does not
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disturb the experiment compared to the professional equipment that should be mounted
on the bicycle.

2. Materials and Methods

The studies used four bicycles: two electric-assisted bicycles and two conventional
bicycles. All rides were carried out by the same cyclist on the same route with a length
of approximately 2.7 km and a difference in elevation of approximately 25 m. Since
the main purpose of the study was the evaluation of electric bicycle energy, many more
measurements were carried out and many more parameters were measured than were
later used to evaluate the bicycle computer as a tool for measurement and data acquisition.
A measurement kit was used to record the data, which included the bicycle computer
ELEMNT ROAM, Wahoo CADENCE, Wahoo SPEED, TICKR and a dual pedal system with
a built-in power sensor, Look Exact. More details on the bikes used, the measuring sensors
and the test route can be found in the first part of the article [7], in which the quality of the
trajectory, distance and slope data was evaluated. This part of the article focuses on velocity,
cadence and power data. Electric bike rides were performed in four available assistance
modes (Eco, Tour, Sport, Turbo) and without assistance. Conventional bikes were used for
comparison with electric bikes in terms of power demand during the test route.

The cycling computer records data at a frequency of 1 Hz. Methods used in signal
processing and time series analysis can be used to analyze them. It can be noted that these
are nonperiodic and nonstationary signals. In the analysis of data on speed and distance
traveled, elementary methods of numerical differentiation (of various orders) and signal
integration were used. However, they introduce additional noise, and the results require
the use of smoothing filters. The speed measured with an additional sensor (from the
wheel) may differ from the speed calculated from GPS coordinates due to the slope of
the route. In the case of a test route with a slight slope, these differences were negligibly
small. One of the important elements of cycling technique is the choice of the right gear
ratio. A method to detect the gear ratio used at a given moment of riding was proposed
on the basis of cadence and speed data, as well as available bicycle gear ratios. Due to the
freewheel, it should be taken into account that, in certain circumstances, it is not possible
to clearly determine the gear ratio. An analysis of the recorded power signals generated
by the roverist in various assistance modes was carried out. The aim was to show that a
person would not be able to use the support on their own in an optimal way. To evaluate
the asymmetry of power distribution to the pedals, the k-mean clustering method was
used. To assess the condition of the cyclist, methods were used to study the correlation of
pulse and power signals and cadence. The following analyses of the data recorded by the
bicycle computer used information on the height above sea level of the test route, which
was determined in the first part of the article based on data from the digital terrain model
(DTM) [7].

3. Evaluation of Velocity Data

As is standard, the bicycle computer calculates the speed from the change in GPS
coordinates over time. Due to the noise of the GPS data, this method is subject to a
significant error. Currently, a method of calculating speed based on the delay of satellite
signals, due to the Doppler effect, is being developed. Research shows that this method
of determining speed is much more accurate [8]. Perhaps soon this method will also be
implemented in bicycle computers.

The computer can also alternately record speed data from a speed sensor, if such
a sensor is additionally installed on the bike and paired with the computer. Such data
should be much more accurate. However, they depend on entering the correct value of the
outer diameter of the wheel into the measurement system. The error thus caused will be a
systematic error and can be easily corrected by comparison with the GPS data.

In the vast majority of cases, speed transducers work on the principle of magnetic
sensors and require a magnet to be mounted on the wheel. One of the traditional bikes
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used for the tests was equipped with such a speed measurement system. More modern
speed converters do not need a magnet to detect wheel revolutions. Instead, a three-axis
accelerometer is used to determine the rotation of the hub and thus the speed. Such a
transducer was mounted on one of the electric bikes used for the tests.

Figure 1 shows exemplary speed charts recorded by a bicycle computer and calculated
numerically from GPS coordinates (using three numerical differentiation methods: forward
and central difference, five-point scheme) and also from the recorded distance traveled.
At the very beginning of the movement, it is visible that the non-zero signal of the speed
recorded by the computer appears with a certain delay. It is most likely the effect of using
an averaging filter. This is also evidenced by the fact that the speed calculated from the
recorded GPS coordinates is greater than zero at that time. The recorded speed signal
is much smoother than the signals calculated from GPS data post factum. At the same
time, the choice of the method of determining the speed by numerical differentiation is
of no great importance, as can be seen in the enlarged fragment of the diagram (Figure 2).
The averaging of the speed signal by the bicycle computer is also evidenced by small
differences between the recorded distance and the distance calculated directly from the
speed by integration using the trapezoidal method (Figure 3).
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Figure 1. Example of velocity data.
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Figure 3. The difference between the recorded distance and the distance calculated from the speed signal.

Figure 4 compares exemplary graphs of the speeds recorded on the basis of the speed
sensor data and those calculated numerically. In this case, there is no difference in the
beginning of the movement. It is not known if the cycling computer also smoothed the
signal received from the speed sensor. As stated before, numerically calculated speed
signals are characterized by significant oscillations in relation to the recorded signal.
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4. Cadence

Further analysis was limited to the data recorded for one of the electric bicycles. A
wireless cadence sensor that does not require a magnet mounted on a crank was used.
Figure 5 shows the recorded cadence and speed signals of this bike for four different
assist modes and without assist. It can be seen that in all assist modes, the rider kept the
cadence at a similar level, but the assisted speeds were higher. This means that with power
assistance, the rider used higher gears.

Based on the speed and cadence signals, the current gear ratio of the bike can be
determined while driving. An exception is made when the freewheel engages, for example,
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when going downhill. Then, the cadence is not directly related to the driving speed, and
the value of the gear ratio is undefined. Since both the speed and cadence signals are highly
noisy, the calculated gear ratio does not correspond exactly to the value that would result
from dividing the number of teeth in the rear cassette by the number of teeth in the front
(Figure 6). In the case of calculations based on the speed recorded by the bicycle computer,
a jump in the value is observed at the very beginning of the test, which results from the fact
that the speed value is too low, probably due to the averaging filter used.
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The used bicycle has wheels with the following numbers of teeth in the rear cassette:
11, 13, 15, 17, 19, 21, 24, 28, 32, 37, 42. The front sprocket only has 20 teeth, but due to the
power steering system, it moves 2.5 times faster than the pedal crank (which is also the case
in non-assist mode). The gear ratio, resulting directly from the number of teeth, is shown
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in Figure 6 (dotted line). On the graph, some of the available gear ratios can be recognized,
but the signal is noisy. The gear ratios were calculated from formula (1):

Gr =
ωs

ωr
=

zr

zs
=

[11 . . . 42]
20

(1)

where ωs and ωr are the angular velocity of the crankshaft (cadence 2.5) and the angular
velocity of the rear wheel (calculated from the linear velocity), respectively.

If the gear ratios of the bicycle are known, a simple classifying function can be built,
automatically assigning the actual allowable values to the noisy signal of the calculated
gear ratio, except when the freewheel is engaged (Figure 7). The gear ratio data can be used
to evaluate the driving technique [9].
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5. Power, Power Balance and Torque Effectiveness Data

As in the case of the cadence, the analysis was limited to the data recorded for one of
the electric bicycles. Power metering pedals were used that measure power and cadence
simultaneously and analyze power balance, pedaling (torque) effectiveness and smoothness.
There are systems that measure power using the measurement of the forces on the crank [10].
In laboratory conditions, optical systems for image analysis are also used [11].

Figure 8 shows the human-generated power in different assist modes depending on
the position along the route. In addition, it is shown how the altitude of the route changed,
meaning that the generated power can be compared with the slope of the route. The
recorded power signal shows a very high variability. The power values in the subsequent
sampling times differ significantly. This is shown in Figure 9, which shows the calculated
forward difference of power signals in the turbo and unassisted modes. Over one second,
the cyclist made, on average, less than two turns of the crank, and theoretically, during
this time, he could rapidly change the force on the pedals. However, it is more likely to
smoothly adapt the power to the increasing demand for it, for example, when climbing
a hill. Unfortunately, with the sampling rate of 1 s, it is impossible to determine what is
the cause of such large jumps in the power value. This means that, as with other data
(e.g., GPS), the frequency of recording power every second is insufficient.
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Figure 9. Change in the power value in subsequent moments of the sampling time.

In practice, two methods are used to calculate the average power [12]. The first of
them, average angular velocity power (AAV), determines the average power per crank
revolution on the basis of relationship (2):

PAAV = FτM · lc · ωMFτM =
1
N

N

∑
k=1

Fτ(k), ωM =
2π

T
(2)

where lc—crank length; ωM—angular speed of the crank averaged per revolution (T—period
of one revolution); FM—averaged force on pedals (N—number of samples per revolution).

The second more precise method, instantaneous angular velocity power (IAV), calculates
power based on dependence (3):

PIAV =
lc
N

N

∑
k=1

Fτ(k)ω(k) (3)
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and requires sampling of instantaneous force and rotational speed. Unfortunately, the
manufacturer of the power measurement pedals used in this research does not specify
which calculation method it uses (probably AAV) [12].

The average human power generated in the turbo mode was 100 W less than the power
needed to drive in the unassisted mode (Figure 10). At the same time, the average speed of
the test route covered was significantly higher in the assisted modes. This means that the
cyclist did not behave rationally and did not try to optimize their effort. Unfortunately, it is
a human factor that will be difficult to eliminate during the trials.
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Figure 10. Comparison of average power and speed in different assist modes.

The bicycle computer determines and stores a series of information which allows for
diagnosing pedaling asymmetries, which depend on the individual, and the biomechanical
characteristics of each cyclist [13,14]. Professionals try to eliminate asymmetry through
proper training. Even a preliminary analysis of the recorded data as a function of the
distance traveled (Figure 11) shows that the asymmetry of pedaling depends on the assist
mode. It is greater in turbo and sport modes, which is when the power delivered by the
rider is lower. In general, the advantage of the right side over the left side is visible. The
ideal values would be close to 50%.
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Figure 11. Left/right power balance.
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The figure (Figure 12) shows the asymmetry of the power distribution to the pedals
of the cyclist performing the tests, in the case of two extreme support modes: turbo and
without. The L/R power balance is presented in this case as a function of human-generated
power. The points on the graph are divided into five subsets using the k-mean clustering
method. In turbo mode, where the power demand does not exceed 250 W, the asymmetry
decreases with increasing power. A similar tendency occurs in the unassisted mode, except
that after exceeding 250 W, the asymmetry increases again. Similar conclusions can also
be reached by analyzing the graph (Figure 13), which collected the results from all five
support modes.
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Figure 12. Left/right power balance as a function of power.
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Figure 13. Left/right power balance as a function of power for all modes simultaneously.
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The efficiency of the drive torque transmission to the pedals is calculated from
Formula (4) [12]:

TE =
P+ + P−

P+
· 100% (4)

where P+ and P− are the highest and lowest peak power values per crank revolution,
respectively.

The metering system provides information on pedaling efficiency for the left and right
pedals separately. Pedaling efficiency is slightly inferior to the left side. Interestingly, the
efficiency in the turbo mode is clearly lower than in the non-assist mode (Figure 14).
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Figure 14. Left/right torque effectiveness.

Pedaling smoothness is obtained from formula (5) [6]:

PS =
Pavg

Pmax
· 100% (5)

where Pavg and Pmax are the averaged and highest power values during one crank revolution,
respectively.

As stated before, the smoothness of pedaling decreases in the assisted modes (Figure 15);
this effect is most clearly visible in the turbo mode. Perhaps the reason could be found
in some overdrive of the power steering system. When changing from a traditional to an
electric bike, a cyclist has to adapt to new conditions.
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Figure 15. Left/right pedal smoothness.
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The evaluation of the quality of data related to the torque and power transmitted
by the cyclist would require additional tests with the use of specialized equipment for
measuring crank speed and pedal force with a much higher sampling rate. This type of
research was carried out for pedals with power measurement from another company [15].

6. Cyclist Health—Pulse Data

The cycling computer records the rider’s current heart rate, which it receives from
a sensor attached to the rider’s wrist. A rider’s heart rate is influenced by their effort
while riding, which is dependent on the generated power and cadence. Figure 16 shows
the recorded heart rate values while riding an e-bike in the different assist modes. Pulse
values were related to the distance traveled, which allows showing the relationship of the
pulse with the inclination of the route and the effort of the cyclist while riding. Obviously,
the heart rate increases the least in maximum assist mode and is highest in non-assist
mode. We can also see changes in the heart rate associated with changes in the slope of the
route. The nature of the charts is significantly influenced by the human factor. As shown
in Figure 17, the rider moves much faster in the assisted modes, although they may have
conserved energy.
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Figure 17. Distance travel speeds depending on the assist mode.
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Physiologists observe two characteristic phenomena, namely, heart rate response lag
and heart rate drift upward [9,16,17]. The first is a delayed response of the body to the
increased (reduced) effort and is seen in the shift in time of the peaks in the heart rate graph
and the persistence of elevated heart rate even after exercise has stopped (Figure 18). The
second is a systematic increase in heart rate to a certain limit value despite the effort being
kept at an almost constant level. This effect is also seen in Figure 18 in the range from
300 to 360 s.
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Figure 18. Power generated in a run without assistance and heart rate changes.

The cross-correlation method can be used to investigate the delay between the signals.
In order to assess the magnitude of the delay in the pulse signal, the correlation between
the pulse and cadence signals as well as the pulse and power generated by the cyclist was
investigated. Before that, all signals were normalized with their maximum values. The
correlation between the cadence signal and the heart rate signal is slightly higher than the
power generated by the rider and the heart rate. The graphs show the maximum values of
the correlation in various electric bike riding modes and the determined mutual delays of
the signals (Figure 19). In both cases, there is a time shift in the signals in the range from
about 17 to 30 s. The delay is also influenced by the assisted or unassisted riding mode, i.e.,
the rider’s effort level [18]. The lags are the smallest in turbo mode, which seems obvious
as the least effort is spent in this mode.
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It should be emphasized that the presented results are unique and characteristic of the
cyclist who conducted the tests. They can vary considerably depending on the individual
characteristics of the organism and the level of training.

7. Discussion

According to the authors’ knowledge, there are no examples of similar data-derived
analyses obtained from bicycle computers in the literature; hence, it is not possible to
compare the results. Only in [12] were algorithms for determining the average power per
revolution used. The examples presented for the analysis of data related to the measurement
of driving speed show that the best results are obtained if an additional speed sensor is
mounted on the bike. Speed can also be determined numerically on the basis of GPS data.
It has been shown that it is best to use the simplest method, i.e., the forward difference
method. The numerical differential method generates noise, which can be eliminated by
using averaging filters. The bicycle computer in the absence of a speed sensor also uses
GPS data and averaging, but the algorithms selected by the computer manufacturer are not
known. On the basis of the cadence and speed data, it is theoretically possible to determine
what the gear ratio was. However, this task is made difficult by the humming cadence
and speed data, the low sampling rate and the ability to ride on a freewheel. In the case
of an intelligent e-bike assistance system, the decision to change gears should be made by
an automaton, not a human. An alternative is to use existing automatic or continuously
variable transmission solutions [19,20]. Data on average power per rotation provided by
the rider along with speed and cadence will be key control variables in intelligent electric
bike assist systems. The analyses carried out have shown that the quality of these data is
sufficient. It would only be necessary to increase the sampling rate so that it is greater than
the maximum frequency of the rotation of the crank (cadence). An important advantage
of a bicycle computer is the ability to use cheap devices that monitor the efficiency of the
cyclist. Pulse measurements, possibly pressure and saturation, will constitute the second
group of variables controlling intelligent assistance systems. The sampling rate of 1 Hz is
sufficient in this case.

8. Conclusions

Recording data with a frequency of 1 s is insufficient and reduces the usefulness
of the recorded signal for later analyses. The same applies to the speed signal that the
computer calculates from the GPS data. A much smoother speed signal can be obtained
by using an additional specialized sensor for measuring speed connected to a computer
using ANT+ technology. Of course, in this case, recording with a higher frequency would
be very advantageous.

Cadence data can be obtained from the cycling computer from a dedicated sensor
or from pedals with power measurement. The recorded cadence signal is quite smooth,
and the sampling rate of 1 s seems acceptable. Based on the cadence and speed signals,
the current gear ratio of the bicycle can be calculated, with the proviso that, in the case of
freewheel operation, the result is ambiguous. The obtained gear values are strongly noisy.
When the gear ratios of the bicycle resulting from the number of gear teeth are known, a
simple classifying function can be built to identify the actual gear ratio on the route.

The power signal transmitted by the cyclist fluctuates significantly more than you
might expect. There is no doubt that logging a power signal every 1 s is insufficient. In the
case of the cyclist who performed the tests, the analysis showed asymmetry in pedaling.
The power transmitted to the right pedal was greater than to the left pedal. Interestingly,
this asymmetry was greater in the power-assisted modes. In general, the asymmetry was
greater when the power delivered by the rider was lower. There was also an optimal power
level with the lowest pedaling asymmetry. Similar comments can be made for the efficiency
and smoothness of pedaling. In power assist modes, these indicators deteriorate. It seems
that the control system providing the additional electrical power overdrives the dose of
energy, and the rider has a hard time adjusting to it.
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Recording a heart rate signal every 1 s seems acceptable. Based on heart rate and
cadence or power output, the delays in the rider’s physiological response to exercise can be
detected. Electric assist significantly lowers the rider’s pulse. Using the rider’s heart rate
information to control the dose of power in assist modes can be considered.

Summarizing the results of the analyses carried out in both parts of this article, it can
be stated that the frequency of data recording by the bicycle computer is too low, which
makes subsequent analyses difficult. It seems that it should be at least in the 4–5 Hz range.
This is a postulate that the manufacturers of this type of device may consider in the future.
Another problem is the lack of information about internal data processing algorithms, in
particular the smoothing filters used.

Taking into account all the advantages and disadvantages of a bicycle computer
presented above and in the first part of this article [7], it can be finally concluded that it
is a tool that can be successfully used in the research of anthropotechnical cyclist–bicycle
systems. According to the authors, the data recorded by the bicycle computer can be used
successfully to assess the energy efficiency of electric bicycles and to develop simulation
models of bicycle dynamics. This will be the subject of further research.

This is a necessary step to further develop the concept and algorithms of an intelligent
assistance system on electric bicycles. Thanks to such a system, an electric bike rented
in the public system would become even more accessible to a wide group of users with
different physical predispositions. The system would also improve traffic safety. Currently,
it is not possible to download data from a bicycle computer in online mode and transfer it
to the power control system. In the case of building such a system, it seems more likely
to use ANT+ technology to communicate with the necessary sensors. Another way is to
cooperate with bicycle computer manufacturers.
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3. Turoń, K.; Kubik, A.; Chen, F. When, What and How to Teach about Electric Mobility? An Innovative Teaching Concept for All
Stages of Education: Lessons from Poland. Energies 2021, 14, 6440. [CrossRef]
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