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Abstract: In this study, we investigated the applicability of an automobile shredder residue (ASR)
as an energy and recycling resource. First, ASR gasification was conducted in a fixed-bed reactor
(throughput = 1 kg/h) at different temperatures (800, 1000, and 1200 ◦C) and an equivalence ratio
of 0.1–0.5. Clay bricks were prepared with the solid residue obtained from the gasification process
to address the issue of solid-residue production in pyrolysis. The syngas (H2 + CO) from ASR
gasification had maximum and minimum yields of approximately 86 and 40 vol.%, respectively.
Furthermore, the yield of syngas increased with the temperature and equivalence ratio (ER); therefore,
the optimum conditions for the ASR gasification were determined to be a temperature of 1200 ◦C
and an ER of 0.5. In addition, solid residues, such as char and ash, began to melt due to thermal
heating in the range of 1300–1400 ◦C and were converted into melting slag, which was subsequently
used to manufacture clay bricks. The absorption ratios and compressive strengths of the clay bricks
were compared to those set by Korean Industrial Standards to evaluate the quality of the clay
bricks. As a result, the manufactured clay bricks were estimated to have a compressive strength of
over 22.54 N/mm2 and an absorption ratio of less than 10%. Additionally, greenhouse gas (GHG)
emissions from the melting–gasification process were estimated and compared with those from
ASR incineration, calculated using the greenhouse gas equations provided by the Korean Ministry
of Environment. As a result, it was revealed that the GHG emissions from the combined melting–
gasification process (gasification, melting system, and clay-brick manufacturing) were approximately
ten times higher than those from the ASR-incineration process. Thus, in terms of operation cost on
the carbon capture process for GHG reduction, the combined melting–gasification process would be
a more efficient process than that of incineration.

Keywords: bottom ash; automobile shredder residue; clay brick; melting-gasification process;
greenhouse gases

1. Introduction

Recently, waste-to-energy technology using municipal solid waste has been widely
applied in renewable energy production, which is an alternative to fossil fuels [1]. However,
municipal solid waste is heterogeneous and typically contains a high level of moisture.
Therefore, recent studies have focused on developing technologies to produce a more
efficient and sustainable form of renewable energy from solid and other types of waste.
On the other hand, the annual cumulative production of plastics by 2015 was approximately
8300 Mt worldwide, and a proportion (7 wt.%) is used in the vehicle-manufacturing
process. Additionally, with regard to the supplying trend of the plastic, the amount of the
waste-plastics (7910 thousand ton) increased by around 1.76 times, compared with 2008 in
Korea [2,3]. Recently, it has been found that automobile shredder residues (ASR), containing

Energies 2022, 15, 1248. https://doi.org/10.3390/en15031248 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en15031248
https://doi.org/10.3390/en15031248
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0003-3410-5057
https://orcid.org/0000-0003-0958-3743
https://doi.org/10.3390/en15031248
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en15031248?type=check_update&version=2


Energies 2022, 15, 1248 2 of 16

various metal and non-metal materials, are more stable and homogeneous than municipal
solid waste, and ASR also contain more combustible compounds that can be used as fuel. In
Korea, since the late 1990s, standards of air pollutant emissions, which limit the emission of
carbon monoxide, nitrogen oxides, PM10, and hydrocarbon compounds, have been strictly
enforced under the Act for Resource Recycling of Electrical and Electronic Equipment
and Vehicles. Since the ASR became an alternative energy source in the 2000s, owing
to fossil-fuel depletion, an end-of-life vehicle (ELV) directive was instituted to regulate
emission pollutants generated during the recycling of these materials [4].

Most countries strictly regulate ELVs and have developed eco-friendly disposal pro-
cesses for the ASR [5,6]. According to 2000/53/EC of the European directive, ASR landfills
are not considered a suitable approach for managing ASR [7]. Furthermore, several re-
searchers have suggested the disposal of ASR using thermal-treatment technologies, such
as incineration [8,9], pyrolysis [10–21] and gasification [17,20,22–26]. However, although
incineration is a simple approach for ASR disposal, it is not a high-value technology and
releases greenhouse gases (GHGs) that negatively affect the environment. Thermochemical
technologies, such as pyrolysis and gasification, also have limitations such as high design
costs; however, these processes do not generate secondary pollutants and can be used to
produce liquid, gas, and solid fuels [27]. Pyrolysis is a widely studied process [28]; however,
its serious issue of unburned solid residue production remains unsolved. When pyrolysis is
used in a commercial plant, the production of solid residue prevents continuous operation.
Gasification can be used to overcome these disadvantages of incineration because the
underlying mechanism of gasification is partial oxidation. Furthermore, gasification plants
are relatively easy to operate, unaffected by changes in the ASR characteristics and storage
energy from produced syngas with a homogeneous composition, thereby making it easy to
process [29].

In this study, we develop a new technology for ASR recycling, whereby syngas is
produced through ASR gasification in a fixed-bed reactor, in a process based on its heating
value, carbon conversion, cold-gas efficiency, and dry-gas yield. The solid residue produced
during ASR gasification was melted and used as an aggregate to produce clay bricks to
address the issue of solid-residue production associated with pyrolysis. The potential of
the melting slag as an aggregate was evaluated based on the compressive strength and
absorption ratio measurements of the melting slag. Finally, to determine the environmental
impact of the proposed process, GHG emissions were monitored and compared with those
obtained from the simulation results of ASR incineration.

2. Materials and Methods
2.1. Thermochemical Analysis of the ASR

The ASR was procured from a domestic shredding company and classified into the
following three types: heavy fluff, light fluff, and glass/soil. Table 1 lists the physical
composition of the ASR used in this study. In general, the calorific value of heavy and light
fluff is as high as those of fossil fuels; however, light fluff also has high transportation costs
because of its low density. The ASR was subjected to mechanical separation to remove
nonferrous metal from glass and soil, and the corresponding residues were disposed of
in landfills.

The ASR used in this study was composed of light fluff (89.2 wt.%), heavy fluff
(8.1 wt.%), and glass/soil (2.7 wt.%). This is similar to the ASR compositions reported in
other studies, with only slight differences depending on the separation of the glass/soil
(Table 1) [30]. The main components of the ASR in this study were rubber, synthetic resin,
and plastic. As mentioned above, despite the minor difference in the sampling method,
heavy fluff and light fluff were solely used as feedstock for ASR gasification because these
materials consist of combustible waste.
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Table 1. Physical composition of ASR tested.

Materials

Heavy Fluff (wt. %) Light Fluff (wt. %) Glass & Soil
(wt. %)

This Study
Kuen-Song

Lin et al.,
2010

K.-H. Kim
et al., 2004

I. de Marco
et al., 2007 This Study

Kuen-Song
Lin et al.,

2010

K.-H. Kim
et al., 2004

I. de Marco
et al., 2007 This Study

Metals 0.80 - 0.20 - 1.50 - 1.00 - 0.20
Rubbers 22.10 32.47 22.20 35.10 3.80 3.52 3.80 4.10 5.80
Resins 16.60 0.28 1.50 10.50 37.50 1.12 20.60 8.00 6.40
Wires 14.00 0.65 20.10 0.70 2.90 0.33 2.90 0.40 11.50

Thermosetting
plastics 7.20 2.96 33.80 1.40 21.30 1.65 24.10 1.20 0.30

Thermo
plastics 33.80 29.41 27.60 24.10 8.20 7.50 27.30

Woods 0.10 4.74 0.020 5.60 0.20 0.57 0.030 - 0.10
Papers 2.10 - 2.00 - 1.00 - 1.00 - 0.00
Soils 1.80 7.84 - 6.10 6.90 70.45 - 75.00 17.20
Glass 1.50 - 0.80 - 31.20
others - 21.65 20.18 13.00 14.16 46.57 3.80 -
Sum 100 100 100 100 100 100 100 100 100

Owing to the heterogeneous size of the ASR, feeding it into the fixed-bed reactor
is difficult. Therefore, the ASR was cut into square pieces of less than or equal to 1 cm
using a plastic cutter mill. Substantially smaller pieces were not required considering the
scaling up of the process. Proximate, heating value, and thermogravimetric (TG) analyses
were conducted on the pretreated feedstock, following the standard Korean method for
waste materials [31]. A proximate analysis (moisture, volatile, fixed-carbon, and ash) and
TG analysis were conducted using a TG analyzer (Leco, St. Joseph, MI, USA, TGA-701)
within the same temperature range (i.e., from room temperature to 950 ◦C), and the weight
reduction was recorded. The analysis was performed under reducing conditions in a
nitrogen atmosphere to determine the weight reduction caused by thermal cracking. A
heating value analysis was conducted using a calorimeter (Leco, AC-600), and an elemental
analysis of carbon, hydrogen, nitrogen, oxygen, and sulfur was conducted using an ele-
ment analyzer (Thermo Fischer Scientific, Waltham, MA, USA, EA1112). Oxygen was not
detected directly but was instead estimated from the total ratio. Table 2 summarizes the
methods and instruments used in each analysis.

Table 2. Analysis Instruments & Methods.

Material Analysis Instrument Method
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Elemental Analysis

- EA 1112, Thermo
Fischer Scientific

- EA1110, CE
Instrument

ASTM D 5373

Proximate Analysis TGA-701, LECO ASTM D 3172
Thermo-gravity

Analysis TGA-701, LECO ASTM E 1131

Heating Value AC-600, LECO ASTM D 4809
* The diameter of coin: approximately 2.3 cm.

2.2. ASR Gasification in a Fixed-Bed Reactor

The gasification process is schematically illustrated in Figure 1. The process is divided
into reaction, purification, and analysis zones. In the reaction zone, a batch-type feeder
designed to semi-automatically input the ASR was installed at the top of the reactor. The
ASR was fed into the bottom of the reactor, and the oxygen was also injected as downdraft.
The ASR (600 g/h) was supplied to the hot fixed-bed reactor. A reactor with an inner
diameter of 134 mm and a height of 850 mm was installed under the feeder. The ash,
a solid residue from the gasification process was recovered to produce the melting slag,
and the tar, another solid residue, was also collected from the flow-tubes and cyclone
to estimate the production amount of all solid residues (char with tar). The purification
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zone, designed to enhance the removal of particulate and air pollutants, consisted of a
cyclone, scrubber, and filter. More specifically, in order to check the non-condensable
gas composition, some flue-gas was sampled without air pollutant control devices and
analyzed by micro-GC, which consisted of two columns, namely Molsieve 5A PLOT and
PLOT Q. The flue-gas was distinguished to peaks for H2, N2, CH4, C2H6 and C3H8 by
column, Molsieve 5A PLOT, respectively, whereas the CO2 was separated by PLOT Q.
The column temperatures were set to 80 ◦C at Molsieve 5A PLOT and 100 ◦C at PLOT
Q. Flame ionization Detector (FID) was applied, and argon and helium were used as
carrier gases, respectively. Finally, in the analysis zone, a temperature display and micro
gas chromatograph (GC) were installed to monitor the changes in temperature and gas
composition, respectively. Tables 3 and 4 summarize the ASR gasification conditions and
the analysis conditions of micro-GC, respectively.
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Figure 1. Process Diagram of Fixed-bed Gasification System. 1. Oxygen supply; 2. Oxygen controller;
3. Mass flow controller; 4. Feeder; 5. Feeding pipe; 6. Reactor with heater; 7. Cyclone; 8. Residue
collector; 9. Scrubber‘ 10. Fabric filter; 11. Water pump; 12. Filtering system; 13. Silica gel; 14. Gas
vacuum pump; 15. Syngas controller; and 16. Micro-GC, TC Thermocouples.

Table 3. Experimental Conditions of Gasification at a Fixed-bed Reactor.

Parameter Unit Value

Capacity kg/h 1
Feeding Rate g/min 10
Setting Temperature Range ◦C 800/1000/1200
ER * (Equivalence Ratio) - 0.1~0.5
Oxygen (Flow rate) L/min 1.440~7.201

* Oxygen demand (by ER) = [[(C × 32/12) + ((16 × H/2) − O)] × 22.4/32] × ER.
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Table 4. The Gas Analysis Methods: The Analytical Conditions of Micro-GC.

Conditions
Column

Molsieve 5A PLOT PLOT Q

Gas Inlet Temperature (◦C) 45 95
Injector Temperature (◦C) 55 95
Column Temperature (◦C) 60 100
Column Pressure (kPa [psi]) 138 (20) 207 (30)
Post Run Pressure (kPa [psi]) 138 (20) 276 (40)
Carrier gas Argon Helium
Sampling Time (s) 10 10
Inject time (ms) 30 30
Run Time (s) 240 180
Peak H2, O2, N2, CH4, CO N2, CH4, CO2, C2H6, C3H8

2.3. Manufacturing Process of Clay Brick Using the Melting Slag

The residues collected from the ASR gasification process were melted at approximately
1300 ◦C for 2 h, then the melting slag was slowly air-cooled [32]. The morphology of the
melting slag produced at different melting temperatures was observed using scanning
electron microscopy (SEM). The melting slag was then crushed using a mill, and its size
distribution was analyzed. The resulting aggregate was used as a substitute for kaolin
in clay bricks at 1–10 wt.%. These concentration levels were selected because the clay
brick mixture results in foam when the melting slag content is greater than 10 wt.%.
The clay bricks were manufactured at a firing temperature of approximately 1200 ◦C for
24 h using the methods employed by a clay-brick manufacturing company in Korea (see
Table 5). The absorption and compressive strength of the manufactured clay bricks were
measured according to Korean Industrial Standards, and Table 6 summarizes the methods
and instruments used in the measurements [33–36]. Figure 2 illustrates the overall ASR
recycling process used in the present study and presents the characteristics of the produced
syngas and clay bricks.

Table 5. Manufacturing Conditions for Clay Bricks.

Classification Kaolin Feldspar Clay
Melting Slag (◦C)

1300 1350 1400

Standard 70 10 20 0
A 69 10 20 1
B 67 10 20 3
C 65 10 20 5
D 63 10 20 7
E 60 10 20 10

Table 6. Test methods and Instrument Specifications.

Analysis Items KS Standard Specifications Value

Absorption

KS F 4201, KS F 4001,
KS F 4006, KS F 4419

- -

Compressive Strength

Max. Capacity 1 mN (100 tf)
Min. Gradation 100 N (10 kgf)

Test Space 160~310 mm
Ram Stroke 25 mm
Dimension 1160 × 560 × 1230 (H)mm

Hydraulic Pump Rotary Plunger Pump
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2.4. Estimation of GHG Emissions in the ASR Melting Gasification Process

Guidelines and equations provided by the Korean Ministry of Environment can be
used to estimate GHG emissions from various recycling facilities, including landfills,
incinerators, and co-generation plants [37]. In the present study, the carbon dioxide,
methane, and nitrous oxide emissions from the proposed ASR melting gasification process
were compared with those from the simulation of ASR incineration. The simulation used
the GHG equations and assumed that the ASR was only combusted in a reactor. For the
ASR melting gasification process, data from the gasification experiment, such as the yield
of carbon dioxide and methane, were used to estimate the GHG emissions. To compare
the theoretical and experimental GHG emissions, the temperature and equivalence ratio
(ER) were set to approximately 1000 ◦C and 0.5. In addition, nitrous oxide emissions were
ignored during the gasification process because they were considered significantly low.
Figure 3 summarizes the assumptions and equations used to compare the ASR incineration
and melting–gasification processes.Energies 2022, 15, x FOR PEER REVIEW 7 of 17 
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3. Results and Discussion
3.1. Thermochemical Characteristics of the ASR

The elemental analysis of the ASR revealed a carbon, hydrogen, oxygen, and nitrogen
contents of 52.75, 7.02, 1.78, and 15.81 wt.%, respectively. Sulfur, which can be converted
into H2S, was detected at concentrations below 1 wt.%. Furthermore, chlorine, a source of
erosion and dioxins, was present at only 1.37 wt.%. The higher heating value (HHV) of the
ASR was 21,680 kJ/kg (Table 7).

Table 7. Results of Elemental Analysis for ASR and Other Wastes.

Elemental Analysis [wt.%] HHV
[kJ/kg]C H O N S Cl

ASR 52.75 7.02 1.78 15.81 0.71 1.37 21,680
Sawdust 45.93 6.65 45.96 0.68 0.16 0.14 17,623
Plastic 80.16 12.34 0.16 0.73 0.00 2.76 34,973

SRF 50.57 6.15 37.67 0.41 N.D. 0.20 18,887

The results of the elemental analysis revealed that the ASR composition was similar
to those of other combustible wastes such as biomass or municipal solid waste, thus
making it a suitable solid refused fuel (SRF) or alternative fuel [38–40]. To confirm this,
the characteristics of the ASR used in the present study were compared with those of
other combustible wastes reported in the literature. In addition, the heating value and
elemental analysis results of the ASR was compared with those of plastic industrial waste
from a company in Korea [41,42]. It was found that sawdust has lower contents of carbon
and hydrogen (45.93 and 6.65 wt.%, respectively) than the ASR, whereas the proportion
of oxygen in sawdust is significantly higher at 45.96 wt.%. Moreover, the proportion
of sulfur in sawdust is low. In addition, the HHV of sawdust is 17,623 kJ/kg, which is
approximately 4200 kJ/kg higher than that of the ASR. Based on these results, ASR exhibits
strong potential to be used as a fuel. In contrast, plastic, which has a high molecular weight,
has significantly higher carbon and hydrogen contents (80.16 and 12.34 wt.%, respectively)
than the ASR. However, the nitrogen and oxygen contents in plastic are exceptionally low
(0.73 and 0.16 wt.%, respectively). The plastic waste also had the highest chlorine content
of the three types of waste (2.76 wt.%).Besides, the SRF demonstrated a similar elemental
composition to that of sawdust. More specifically, sulfur was not detected in the SRF, but
further analysis is needed to verify the samples, since it is an industrial waste.

Table 8 presents the proximate analysis results for each waste material. The ASR
consisted of 1.17 wt.% moisture, 63.90 wt.% volatile compounds, 18.80 wt.% fixed carbon,
and 16.13 wt.% ash. Volatile compounds and fixed carbon are particularly important for
the gasification process because a higher proportion of combustible compounds results in a
higher conversion rate of hydrocarbons into syngas [43,44]. In addition, the lower moisture
content in the ASR than sawdust is also beneficial for its use as a fuel in a thermochemical
process; additionally, a low moisture content offers higher economic efficiency because a
pre-drying process is not required.

Table 8. Proximate Analysis Result on Each Material.

Proximate Analysis [wt.%]

Moisture Volatile Fixed-Carbon Ash

ASR 1.17 63.90 18.80 16.13
Sawdust 6.27 78.11 15.04 0.58
Plastic 0.05 86.52 6.66 6.77

SRF 18.67 70.88 2.94 7.50
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The TG analysis results determine the characteristics of the feedstock or fuel, such as
the temperature of the final reaction; therefore, the results are important for determining
experimental conditions [27]. In the present study, a TG plot was generated under reduction
conditions in the presence of nitrogen as the temperature increased at a rate of 10 ◦C/min.
A TG analysis was conducted under both reduction and oxidation conditions (with nitrogen
and air, respectively), because it was necessary to measure the weight reduction under
similar conditions to those in the gasification process.

Figure 4 shows the results of the TG analysis. The ASR, wood, and plastic waste
exhibited similar reducing trends, regardless of the presence of oxygen. Unlike the other
types of waste, the ASR consisted of various materials, such as synthesis resins, rubber, and
plastic. As a result, its thermal reaction was lower than that of wood and plastic waste [28].
The TG plot for the ASR was dominated by the graph of light fluff since light fluff was
the major component of the ASR (~80 wt.%). In contrast, heavy fluff had a similar TG
graph to that of plastic waste [45]. Based on the ASR TG plot, it can be predicted that the
optimal operating temperature for ASR gasification is above 900 ◦C. The residues were
more frequently converted to gasification products such as hydrogen, carbon monoxide,
and methane above this temperature. The main purpose of gasification is to produce syngas,
such as hydrogen and carbon monoxide, which are produced from hydrocarbons [46]. Thus,
the remaining residues should be thermally cracked at temperatures higher than 900 ◦C.
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Unlike wood and plastic, the ASR did not exhibit rapid weight reduction at lower
reaction rates because the light fluff in the ASR contains plastic, synthesis resin, and rubber,
all of which have polyurethane as a raw material. Compared to other ASR materials,
polyurethane requires the highest temperature for thermal reduction. Finally, it can be
concluded that the ASR TG results were influenced by the polyurethane content [28]. In
addition, based on the combustible residue that remained at a temperature of 950 ◦C, it was
clear that higher temperature, higher pressure and longer residence times were required
for the ASR-gasification process.

3.2. Results for ASR Gasification in a Fixed-Bed Reactor

Figure 5 presents the results for syngas production at gasification temperatures of 800,
1000 and 1200 ◦C. The hydrogen and carbon monoxide levels increased with the increasing
temperature and ER, whereas the carbon dioxide levels decreased. The amount of syngas
increased with the increasing temperature because the devolatilization reaction occurred
first in the thermochemical process for the combustible waste. Thereafter, two main
reactions occurred, combustion and the water–gas-shift reactions. In general, gasification
reactions cannot be summarized by specific equations because of their complexity; however,
the results obtained from the ASR gasification can be explained using the main equations
for general gasification. Equations (1), (2) and (5) indicate that the endothermic reactions
are facilitated by an increase in the temperature. It was also found that the proportion of
carbon monoxide was higher than that of hydrogen with an increase in the ER at the same
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gasification temperature. Moreover, it was observed that carbon monoxide and hydrogen
are predominant, and reactants are more prevalent with the increasing temperature in an
exothermic reaction, whereas products are more prevalent with the increasing temperature
in an endothermic reaction [47]. Overall, syngas production was not associated with the
ER for hydrogen, whereas carbon monoxide exhibited complex reaction pathways that are
affected by the temperature and steam ratio.
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Water gas C + H2O→ CO + H2 +131.5 kJ/mol (1)

Boudouard C + CO2 → 2CO +172 kJ/mol (2)

Water-gas shift CO + H2O→ CO2 + H2 −41 kJ/mol (3)

Methanation C + 2H2 → CH4 −74.8 kJ/mol (4)

Steam reforming CH4 + H2O→ CO + 3H2 +206 kJ/mol (5)

Oxidation C + O2 → CO2 −406 kJ/mol (6)

C + 0.5O2 → CO −123 kJ/mol (7)

Unlike carbon monoxide, carbon dioxide production is affected by a change in the
ER. This is because higher oxygen levels promote oxidation and facilitate the conversion
reaction to carbon dioxide [43]. In contrast, methane production decreased with the
increasing temperature, indicating that homogeneous or secondary reactions (CH4 + 2O2
→ 2H2O + CO2) were preferred [42].

For each temperature range, the syngas proportion increased with a decrease in the
ER, which is advantageous for the ASR gasification. However, the total amount of syngas
produced increased with the increasing ER, while the solid residue content decreased. The
main goal of gasification is to obtain the highest yield of hydrogen and carbon monoxide,
which can be estimated from the dry-gas yield. Therefore, a temperature of 1200 ◦C and an
ER of 0.5 would be the optimum conditions for optimum gas production in ASR gasification.
For a gasification power plant, the amount of syngas and solid residue produced is an
important factor because increasing the syngas yield and reducing the solid-residue content
can improve the power-generation efficiency and ensure continuous operation. The HHV
of the produced syngas was estimated, and the results were found to vary with temperature.
As a result, the highest HHV of syngas was shown at a temperature of 800 ◦C (approx.
3500 kcal/kg), since the thermal cracking would be activated at increasing temperatures.
The trend observed in the HHV was similar to that of methane, ethane, and propane. The
HHV was also affected by changes in the volume of carbon dioxide. It is not economical to
transport syngas from its production facility over long distances because it is a low-calorific
fuel. However, syngas does have the advantage of being directly usable in the production
area as a gas fuel. Figure 5 shows variations in the syngas composition and HHV with
increasing ER during the ASR gasification.

During the ASR gasification process, the tar content decreased by less than 10 wt.%
with increasing temperature and ER. The conversion rate from high-molecular-weight com-
pounds to low-molecular-weight compounds increased because the compounds cracked
to a greater extent at higher temperatures. Additionally, solid residues, including ash,
were reduced by 26%. Although combustible ASR compounds did not react completely,
a high ASR gasification efficiency can be achieved by controlling oxygen, unlike in incin-
eration (Figure 6). It was also apparent that the dry-gas yield was affected by changes
in the temperature and ER; in particular, the dry gas yield increased with the increasing
ER and temperature, indicating that the ASR reaction improved under these conditions.
Thus, it can be concluded that an increased ER and high temperatures increase the yield of
syngas [48,49].

The cold-gas efficiency, calculated based on the syngas composition and cold-gas
efficiency equation, decreased with an increase in the temperature and ER. The heating
value of the syngas decreased because the production of carbon dioxide increased with an
increase in the temperature and ER. Carbon conversion and cold gas efficiency, which are
used to evaluate the gasification process, can help to measure the carbon converted into in
the ASR, because the hydrocarbon gas and the dry-gas yield are used as calculation factors.
This carbon conversion was calculated using the equation provided in Table 9. The results
in Figure 6 indicate that the carbon conversion increased with the increasing temperature
and ER; however, the cold-gas efficiency exhibited an opposite trend. As the temperature
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and ER increased, the production of carbon dioxide and other hydrocarbon gases increased
and decreased, respectively.
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Table 9. Equations of Carbon Conversion and Cold-gas Efficiency.

Carbon Conversion (%) 12×D.G.∗ × (CO + CO2 + CH4 + 2×C2H6 + 3×C3H8)÷ (22.4×C)

Cold-gas Efficiency (%) HHV ** of produced Gas (kJ/kg) ÷ HHV of feedstock (kJ/kg) × 100

* Dry Gas (Nm3/kg) = Product gas flow rate (Nm3/h) ÷ Input feedstock mass rate (kg/h), ** HHV: Higher
Heating Value.

3.3. Quality Assessment of Clay Brick Manufactured from Melting Slag

The clay brick manufactured using the melting slag was subjected to quality-control
testing for compressive strength and absorption, based on the Korean Industrial Stan-
dard (Figure 7). The manufactured clay brick exhibited a compressive strength of over
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22.54 N/mm2 and an absorption ratio of less than 10%, thus satisfying the Korean Indus-
trial Standard. The clay brick also had a higher compressive strength than the standard
clay brick, although this decreased as the melting temperature increased. In addition, as
illustrated by the SEM analysis, the porosity of the melting slag increased with higher
melting temperatures (Figure 8), indicating that porosity affects the compressive strength
of the clay bricks. However, the compressive strength increased at a higher melting slag
content, reaching 153.35 N/mm2 with a melting slag content of 10 wt.% and a melting
temperature of 1300 ◦C. Additionally, foaming of the slag was only apparent in the clay
brick when more than 10 wt.% of the melting slag was used. Overall, based on the results
of the quality control testing, it was concluded that the optimum melting slag content
was 10 wt.%. However, it should be noted that all clay bricks, regardless of the melting
slag content, met the absorption ratio standard. Moreover, the contents of heavy metals
in melting slag have to be measured before applying a commercial plant. According to
advanced research, the content of copper was revealed to 34,000 mg/kg in ASR ash [50,51].
In general, the content of heavy metal is regulated by the leaching test in Korea, but slag
has been often used to aggregate, for application in embankments, and so on. Therefore,
further study is required in future, since the contents of heavy metal could be concentrated
in melting slag.
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3.4. GHG Emissions from the ASR Melting Gasification Process

The GHG emissions obtained from the proposed ASR gasification process were com-
pared with those obtained from the simulated incineration under the same conditions
(Table 10). In order to compare via imperative criteria, we applied a general operation
temperature in the incineration process. The GHG levels were found to be affected by
the amount of carbon dioxide emissions in both the incineration simulation and ASR
gasification. Carbon dioxide accounted for the highest proportion of emissions in both
the processes because the carbon dioxide production increased with an increase in the ER,
which was set at 0.5. Furthermore, the electricity used to operate the melting and firing
furnace was also considered as an indirect emission factor, and it had a significant effect



Energies 2022, 15, 1248 13 of 16

on the overall GHG emissions. However, when the GHG emissions were calculated per
ton of waste, the ASR melting–gasification process produced GHG emissions that were
approximately ten times higher than those obtained from the ASR incineration. It was
revealed that the simulation value of ASR incineration seems to be underestimated, since it
does not reflect actual conditions, such as volumetric change induced by the incinerator
temperature. On the other hand, the ASR-gasification process seems to be overestimated
because of the indirect emission factor for melting and firing furnaces. Thus, the efficiency
of the process needs to be verified using actual data for thermochemical processes. In addi-
tion, melting gasification must be operated in an integrated facility to secure the economy
and environment from thermochemical process.
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Table 10. Results of GHG Emission for ASR Incineration and ASR Gasification. Unit: ton/ton.

Process Factor CO2 CH4 N2O GHG

ASR incineration
IEF * 0.033323 0.000378 0.000290

0.03657239Reference value 0.002574 2.52 × 10−9 7.40 × 10−6

ASR gasification
(melting & firing)

Gasifier IEF * 0.033323 0.000378 0.000290
0.304309Experimental result 0.019545 0.000707 -

Furnaces IEF * 0.245152 0.002777 0.002136

* Indirect Emission Factor for Electricity Use.

4. Conclusions

In the present study, the thermochemical characteristics of ASR were analyzed to
evaluate their applicability for use in the gasification and melting processes. Various
tests under different operating conditions were conducted, and the characteristics of the
resulting syngas were assessed. Furthermore, quality control testing was performed on
clay bricks manufactured using melting slag. Finally, the GHG emissions produced by the
overall process were estimated.
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1. The elemental analysis revealed that the ASR was composed of 52.75 wt.% carbon,
7.02 wt.% hydrogen, 15.81 wt.% nitrogen and 1.78 wt.% oxygen, while the proximate
analysis indicated that the ASR contained 1.17 wt.% moisture, 63.90 wt.% volatile
compounds, 16.13 wt.% ash, and 18.80 wt.% fixed carbon. Moreover, the ASR is more
efficient as an alternative fuel compared to other combustible wastes, since it has
higher levels of combustible compounds and a lower moisture content.

2. In the ASR gasification process, the tar and ash contents decreased by approximately
10 wt.% with increasing temperature and ER. Additionally, the cold-gas efficiency
levels and HHV also decreased with an increase in the ER. In particular, the HHV
of the gas produced at a lower ER and temperature was higher than that of the
gas produced at a higher ER and temperature because there was less oxidation and
thermal cracking at a lower ER and temperature. However, the dry gas yield increased
from 0.64 Nm3/kg to 1.20 Nm3/kg when the temperature increased from 800 ◦C to
1200 ◦C and the ER increased from 0.1 to 0.5, with the carbon conversion exhibiting
the same trend. Consequently, considering economy and efficiency, the optimum
conditions for the ASR gasification were determined to be a temperature of 1200 ◦C
and an ER of 0.5.

3. From the results of melting process, the highest compressive strength was shown to
be 153.35 N/mm2 when the melting slag content is 10 wt.% at a melting temperature
of 1300 ◦C. According to the results, it was concluded that the optimum melting slag
content is 10 wt.% and the optimal melting temperature is 1300 ◦C. However, the
leaching test has to be performed before fixing the melting slag content. In some appli-
cation cases, the amount of heavy metals could be measured since the manufactured
clay brick exhibited foaming, causing a reduction in the compressive strength.

4. The ASR-gasification process has been proven to be a low GHG emission technology
with high energy efficiency. Additionally, even though the ASR residues were melted
and fired for clay-brick manufacturing, the GHG emissions remained approximately
ten times higher than those produced in the ASR incineration process. It reveals that
the purity of carbon dioxide in the flue-gas from the gasification plant was higher
than that of the incineration plant. In terms of the operation cost of the carbon capture
process for GHG reduction, the gasification plant would be more efficient than an
incineration plant. In addition, to identify this process as an eco-friendly technology,
a further analysis of the emission levels of dioxins and leaching tests for chlorine and
heavy metals are required.
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