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Abstract: The work presents the laboratory studies on permeability of two bituminous coal briquettes
under confining pressure conditions. The research was carried out in order to assess the possibility of
using bituminous coal as a sorbent for CO2 storage in underground seams. Coal permeability tests
were carried out on an original apparatus for testing seepage processes under isobaric conditions
on samples subjected to confining pressure. In order to determine the impact of the load on the coal
briquettes’ permeability, the tests were carried out at four confining pressures: 1.5, 10, 20 and 30 MPa.
The obtained results showed that the coal permeability decreases with an increase in confining
pressure. At depths below 250 m, the coal can be a rock poorly permeable to CO2, and under such
conditions, the applicability of technologies related to the underground storage of CO2 to coal seams
is limited or even impossible.

Keywords: bituminous coal; permeability; CO2 sequestration; coal briquette

1. Introduction

There are many materials of natural origin which have applications as sorbents [1].
Bituminous coal is a sedimentary rock of plant origin, but it has very good reservoir rock
properties and is often used as a sorbent [2,3]. In particular, it finds its application for the
capture and storage of greenhouse gases, due to its good sorption properties [4,5].

The possible impact of CO2 emissions on climate change was discussed as early as the
late 19th century [6]. However, in the following years, despite the deteriorating forecasts
of the effects of greenhouse gas emissions into the atmosphere, no specific solutions were
proposed and implemented by global authorities. It was not until the end of the 20th
century that the problems related to Earth’s climate change began to be discussed more and
more often in the media, conferences and international congresses. As a result, the search
for new solutions to prevent climate change due to greenhouse gas emissions into the
atmosphere has begun. Hence, the idea of CCS (Carbon Capture and Storage) technology
was developed [7].

The technology of CO2 sequestration in deep coal seams has been studied for many
years [8,9] and continued to be developed. This technology involves the injection of carbon
dioxide into underground coal seams, resulting in the release of methane and is based on the
principle of CO2/CH4 exchange sorption [10] and coal preference for sorption of CO2 over
CH4 [11–13]. Due to its sorption and structural properties, coal is a rock which is probably
the most promising reservoir rock for CO2 storage [14]. Laboratory studies of CO2/CH4
exchange sorption in the context of assessing the possibility of underground storage of CO2
in coal seams are carried out on a large scale [15–25]. There have also been many ECBM
(Enhanced Coalbed Methane recovery) pilot/demonstration test projects in the world (e.g.,
in USA, Canada, China, Japan and Poland), by injecting CO2 into coal seams [26].

The first European field study of CO2-ECBM technology, started in 2001 and managed
by the Central Mining Institute in Katowice (GIG), was carried out as part of the European
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RECOPOL project (Reduction of CO2 Emissions by Means of CO2 Storage in the Silesian
coal basin of Poland). The main goal of the project was to verify the applicability of the
ECBM technology in the natural conditions of Europe, by injecting CO2 into coal and storing
it in a long-term and safe manner. According to the project plan, 760 tons of CO2 were
injected into the coal seams and the CH4 production increased from around 100 m3/day
to over 700 m3/day. Field tests carried out within the RECOPOL project showed, among
other things, that a major limitation in the implementation of CO2-ECBM technology is
the low permeability of coal at a depth of 1000 m. This was caused, among other things,
by the confining pressure and sorption swelling of coal. To prevent these problems, coal
fracturing was performed, followed by improved permeability and gas flow [27]. Despite
these technical problems, the results of the RECOPOL project were very promising.

Poland is estimated to have 20–415 billion m3 of CBM resources with the potential to
store 470 tons of CO2 in the Upper Silesian basin according to Sloss [28], and according
to Kędzior [29], the CBM estimate for the Upper Silesian Coal Basin is 350 billion m3 and
proven reserves of over 98.6 billion m3.

More recent studies, including in situ and laboratory studies, prove that the release of
methane from Polish coal seams is a slow process and it is necessary to accelerate it in order
to achieve greater efficiency [18]. The analysis of several pilot, field projects showed low
coal permeability and its sorptive swelling, which limited the possibility of CO2 injection
into the coal seam [30].

Previous studies performed at the Strata Mechanics Research Institute of the Polish
Academy of Sciences on the effect of stress on the coal permeability to N2 and CH4 have
shown that confining pressure reduces the porosity of coal, which in turn reduces its perme-
ability [31,32]. Coal permeability decreases exponentially with increasing effective stress,
due to reducing and closing of flow channels in pores and fractures [33–43]. Increase of the
depth of the coal seams and resulting increase of confining pressure induces pronounced
decrease of its permeability in comparison with unburdened coal, even to several orders of
magnitude, at depths below 1000 m [44–46]. Furthermore, rock permeabilities to sorbed
gases are lower than rock permeabilities to non-sorbed or poorly sorbed gases [47].

Problems with the applicability of the CO2-ECBM technology in underground coal
seams are mainly due to the limited coal permeability under in situ conditions. The purpose
of this study was to investigate in detail the impact of the confining pressure, corresponding
to in situ conditions, on the permeability of coal to gases (He and CO2). This research was
aimed at identifying possible causes of failures of field studies of CO2-ECBM processes in
underground coal seams.

2. Measuring Apparatus

Coal permeability tests were carried out on an original, innovative apparatus for
testing seepage processes under isobaric conditions on samples loaded by the confining
pressure [48]. This apparatus (Figure 1) provides measurements under isobaric gas and
load conditions. The test sample is placed in a high-pressure chamber filled with water. The
water applies a confining pressure to the sample corresponding to the in situ conditions.
Constant confining pressure is provided by a precise mechanical actuator. Gas is injected
into the sample inlet at a constant pressure, which is ensured by a pressure regulator. At the
outlet of the sample, the pressure is also kept constant and the gas flow rate is measured.
All necessary measurement parameters are registered by the control system.

The measuring apparatus used in the permeability tests ensures, among others [48]:

• The confining pressure regulation in the range of 0.1–40 MPa, and the stabilization
accuracy equal to ±0.02 MPa;

• The gas pressure regulation at the sample inlet and outlet in the range of 0.1–1.6 MPa
and 0.1–1.0 MPa, respectively, and the stabilization accuracy of 0.12% of the full scale;

• The flow rate measurement at the outlet of the sample in the range of 0–5 cm3/min,
and the accuracy of 1.0% of the full scale.
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3. Research Material

Two bituminous coal samples with different degrees of coalification were used in the
study. The coals originated from the Upper Silesian Coal Basin, Poland. Table 1 presents
select technical and petrographic parameters of the samples.

Table 1. Technical and petrographic parameters of the studied coal samples.

Origin Coal Rank Ro
[%]

Vdaf

[%]
Ad

[%]
Wt
[%]

ρsk
[g/cm3]

φ
[%]

Sobieski mine medium-rank
D Para-bituminous coal 0.565 39.63 8.41 5.35 1.410 32.3

Silesia mine medium-rank
C Ortho-bituminous coal 0.678 39.32 12.00 2.65 1.411 24.3

Ro is the vitrinite reflectance; Vdaf is the volatile matter; Ad is the ash content; Wt is the moisture content; ρsk is the
skeletal density; φ is the porosity.

Based on the classification of coal according to the average vitrinite reflectance, in
line with the UN-ECE International Classification of In-Seam Coals, the Sobieski sample,
with the reflectance of 0.565%, represents a medium-rank D Para-bituminous coal, while
the sample Silesia, with the reflectance of 0.678%, represents a medium-rank C Ortho-
bituminous coal [49].

The samples used for the permeability tests were briquettes prepared from bituminous
coal grains. Briquettes were made by pressing grains on a hydraulic press with a pressure
of about 40 MPa. The value of the sample forming pressure was set to obtain a briquette
porosity similar to the original coal. Such sample preparation made it possible to obtain
test material that can be considered representative of the original coal material [50]. In
order to protect the sample from water applying a confining pressure on the sample, it was
prepared in a thin Teflon sealing coat. In addition, during the pressing of the sample, two
needles were embedded in it, which made it possible to measure the pressure inside the
sample. A picture of the coal briquette sample prepared for testing is shown in Figure 2.

Before the permeability measurement, the bituminous coal material samples were
subjected to scanning electron microscopy (SEM) and low-pressure nitrogen adsorption
(LPNA) analyses at the temperature of 77 K. Example surface images of both coal briquette
samples, at 500× magnification, obtained by SEM are shown in Figure 3.



Energies 2022, 15, 715 4 of 11

Energies 2022, 15, x FOR PEER REVIEW 4 of 11 
 

 

inside the sample. A picture of the coal briquette sample prepared for testing is shown in 
Figure 2. 

 
Figure 2. Coal briquette sample prepared for measurements. 

Before the permeability measurement, the bituminous coal material samples were 
subjected to scanning electron microscopy (SEM) and low-pressure nitrogen adsorption 
(LPNA) analyses at the temperature of 77 K. Example surface images of both coal briquette 
samples, at 500× magnification, obtained by SEM are shown in Figure 3. 

 
Figure 3. SEM images (magn. 500×) of the microstructure of the surface of coal briquette. 

The results of low-pressure nitrogen adsorption analyses (LPNA method) at temper-
ature of 77 K, as well as pore size distribution of both coal samples, are presented in Figure 
4. These tests were performed on the ASAP2020 analyser (Micromeritics). The obtained 
sorption capacity of “Sobieski” coal was about twice as high as that of the “Silesia” sample. 
The maximum quantity of adsorbed of the “Sobieski” coal was 12.37 cm3/g, and of the 
“Silesia” coal 7.08 cm3/g, at the relative pressure p/p0 = 1. 

 

Figure 2. Coal briquette sample prepared for measurements.

Energies 2022, 15, x FOR PEER REVIEW 4 of 11 
 

 

inside the sample. A picture of the coal briquette sample prepared for testing is shown in 
Figure 2. 

 
Figure 2. Coal briquette sample prepared for measurements. 

Before the permeability measurement, the bituminous coal material samples were 
subjected to scanning electron microscopy (SEM) and low-pressure nitrogen adsorption 
(LPNA) analyses at the temperature of 77 K. Example surface images of both coal briquette 
samples, at 500× magnification, obtained by SEM are shown in Figure 3. 

 
Figure 3. SEM images (magn. 500×) of the microstructure of the surface of coal briquette. 

The results of low-pressure nitrogen adsorption analyses (LPNA method) at temper-
ature of 77 K, as well as pore size distribution of both coal samples, are presented in Figure 
4. These tests were performed on the ASAP2020 analyser (Micromeritics). The obtained 
sorption capacity of “Sobieski” coal was about twice as high as that of the “Silesia” sample. 
The maximum quantity of adsorbed of the “Sobieski” coal was 12.37 cm3/g, and of the 
“Silesia” coal 7.08 cm3/g, at the relative pressure p/p0 = 1. 

 

Figure 3. SEM images (magn. 500×) of the microstructure of the surface of coal briquette.

The results of low-pressure nitrogen adsorption analyses (LPNA method) at tempera-
ture of 77 K, as well as pore size distribution of both coal samples, are presented in Figure 4.
These tests were performed on the ASAP2020 analyser (Micromeritics). The obtained
sorption capacity of “Sobieski” coal was about twice as high as that of the “Silesia” sample.
The maximum quantity of adsorbed of the “Sobieski” coal was 12.37 cm3/g, and of the
“Silesia” coal 7.08 cm3/g, at the relative pressure p/p0 = 1.
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The results of adsorption analyses performed by the LPNA method are presented in
Table 2. The specific surface areas determined by BET and Langmuir models were about
three times larger for the “Sobieski” sample in comparison with the “Silesia” sample.

Table 2. Adsorption properties of samples.

Coal Sample
Maximum Quantity

Adsorbed
[cm3/g]

BET Surface Area
[m2/g]

Langmuir Surface
Area

[m2/g]

BJH Adsorption
Cumulative Volume of

Pores
[cm3/g]

“Sobieski” 12.37 10.92 16.49 0.019
“Silesia” 7.08 3.72 5.71 0.011

4. Methodology

Two gases, helium (He) and carbon dioxide (CO2), were used to study the permeability
of coal samples under confining pressure conditions. In order to determine the influence
of the load on the coal permeability, the tests were carried out at 4 confining pressures:
1.5, 10, 20 and 30 MPa. The gas inlet and outlet pressures were regulated in the range of
0.1–0.8 MPa.

The permeability of coal was determined from Darcy’s law [51]:

kg =
2·Q·patm·µ·l

A·(pin
2 − pout2)

, (1)

where: kg
[
m2]—is the Darcy permeability coefficient Q

[
m3

s

]
—is the gas flow rate at

the outlet of the sample; patm [Pa]—is the atmospheric pressure; µ [Pa·s]—is the dynamic
viscosity coefficient of gas; A

[
m2], l [m]—are the surface and length of the sample;

pin, pout [Pa]—are the inlet and outlet pressure of the gas.
The Darcy permeability coefficient depends on the gas pressure. In order to describe a

coal sample with a single permeability coefficient value at a given confining pressure, the
Klinkenberg correction was applied, which determines the permeability for a gas pressure
close to infinity [52]:

kg = k∞

(
1 +

b
pavg

)
, (2)

where: k∞
[
m2]—is the Klinkenberg absolute permeability at a gas pressure tending to

infinity; b [Pa]—is the Klinkenberg slippage factor; pavg [Pa] = pin+pout
2 —is the average gas

pressure in the sample.
The procedure for determining the permeability coefficients followed that presented

in Kudasik [31] and Braga and Kudasik [32] and consisted of measuring the gas flow rate
Q at the outlet of the sample at different gas pressures at its inlet pin and outlet pout. By
substituting these parameters into Equation (1), it was possible to determine the Darcy
permeability coefficients. Figure 5 shows schematic diagrams of the changes in pin, pout,
and Q parameters (Figure 5a) and the method of determining the Klinkenberg permeability
coefficients k∞ (Figure 5b), based on the values obtained for these parameters at the seepage
tests of a specific gas under stationary conditions (points P1, P2, P3, P4, and P5). These
measurements were repeated at 4 different confining pressures (ph) for both helium (He)
and carbon dioxide (CO2). Based on the determined Klinkenberg absolute permeability
coefficients k∞, at different confining pressure ph conditions, it is possible to determine
the relationship k∞(ph) (Figure 5c). In the work, this relationship was the main subject of
detailed analysis.
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The tests were carried out in isothermal conditions at a temperature of 30 ◦C, which
was ensured by placing the measuring equipment in a Q-Cell 1400 (Pol-Lab) thermo-
static cabinet.

5. Results

Based on the registered measurements, it was possible to calculate the Klinkenberg
absolute permeability coefficients k∞ of both coals, at 4 different confining pressures and in
relation to two gases (He and CO2). The values of the determined coefficients are shown in
Table 3.

Table 3. Results of coal permeability to He and CO2 at different confining pressures.

Sample

Confining
Pressure

ph
[MPa]

Klinkenberg Permeability Coefficients in Relation to:

He CO2

k∞[mD] b k∞[mD] b[Mpa]

“Sobieski”

1.5 81.032 0.004 71.696 0.003
10 33.798 0.027 23.435 0.049
20 26.029 0.029 18.563 0.040
30 21.902 0.023 16.218 0.033

“Silesia”

1.5 6.615 0.005 2.038 0.020
10 2.248 0.039 0.657 0.011
20 1.413 0.030 0.427 0.011
30 0.758 0.020 0.258 0.016

Changes in the permeability of coal to He and CO2 due to increasing confining
pressure are shown in Figure 6. For each value of the Klinkenberg permeability coefficient
determined from the fit in accordance with the procedure presented in Figure 5, error bars
were also determined, which are the uncertainty of determining the y-intercept constant of
Equation (2). The maximum error bar value was about 20% of the k∞ value for the highest
confining pressure. Based on the obtained results, it can be seen that coal permeability
decreases with an increase in confining pressure, and this decrease can be described by an
exponential function:

k∞ = κ1 + κ0· exp
(
− ph

ϑ

)
, (3)

where: κ1, κ0—are the permeability constants; ϑ—is the confining pressure constant.
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Using Equation (3), it is possible to determine the Klinkenberg absolute permeability
coefficient for a stress-free sample (ph = 0), and this value will be κ1 + κ0. The permeability
of “Sobieski” coal to He under stress-free conditions was calculated at 100.4 mD. Under
confining pressure condition (ph = 30 MPa), this value decreased almost 5 times. A similar
decrease in k∞ value was for CO2. The calculated permeability of “Silesia” coal to He at
the stress-free sample was 8.16 mD, and an increase in the confining pressure to 30 MPa
caused a decrease in permeability by more than an order of magnitude. A similar order of
magnitude decrease was observed for CO2.

The permeability of coal to He was higher than to CO2, which results, among others,
from the particle size of both gases, where the kinetic diameter of He is 0.26 nm, and the
kinetic diameter of CO2 is 0.33 nm.

The “Sobieski” coal sample, which was characterized by almost two times higher
sorption capacity and almost three times higher specific surface area, had about one order
of magnitude higher permeability to He and CO2 than the “Silesia” coal.

By substituting the parameter of the confining pressure on the x axis (Figure 6) to
the depth of the coal seam, using the formula for hydrostatic pressure, the following
relationship can be obtained:

h =
ph − patm

ρavg·g
, (4)

where: h [m]—is the depth of the coal seam; ρavg

[
kg
m3

]
—is the average density of overbur-

den rock (ρavg ≈ 2.5), g
[

m
s2

]
—is the acceleration of gravity.

Using Equation (4), it is possible to estimate the dependence of coal permeability in
relation to CO2, depending on the depth of the coal seam (Figure 7). This procedure was
performed for CO2 in the context of assessing the possibility of using bituminous coal as a
sorbent for underground CO2 storage.

When analysing the relation between the permeability of both coals and their depth of
deposition (Figure 7), it may be noticed that according to the classification [53], the sample
of “Sobieski” coal belongs to the rocks with good permeability. In case of the “Silesia” coal,
below the depth of deposit of 250 m, this coal is classified as poorly permeable rock.
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6. Conclusions

Fluid transport processes in a porous medium can be divided into diffusion—which
occurs mainly in micropores, and seepage—which takes place in meso- and macropores [54].
Among the investigated coals, the sample “Sobieski” was characterized by a higher dis-
tribution of meso- and macropores (Figure 4b), which also resulted in higher values of
permeability coefficients than the sample of “Silesia” coal. The difference in grain and pore
size of the two coal samples can also be seen in the SEM images (Figure 3), which also has a
direct impact on their permeability differences.

The poorly developed pore network of both samples (Figure 4) resulted directly
into their low permeability to He and CO2. An additional factor changing the structural
properties as well as reducing the seepage properties of the coals was the confining pressure,
which simulated in situ conditions.

Bituminous coal is a rock with good sorption properties which has been used for
many years for injection and underground storage of CO2. However, many of the attempts
to inject CO2 into coal seams have been unsuccessful or the effectiveness of in situ tests
has not been satisfactory [29]. In addition to good sorption properties and preferential
sorption to CO2 in relation to CH4 of coal, permeability is an important parameter for
effective application of CCS and CO2-ECBM technologies. The obtained results showed that
the coal permeability decreases with an increase in confining pressure, and this decrease
can be described by an exponential function. The coal briquettes tested had different
permeabilities, where the “Sobieski” sample was highly permeable and the “Silesia” sample
was poorly permeable. The study did not take into account swelling, which, in addition to
confining pressure, could also affect the reduction in permeability. By relating the obtained
results to the in situ conditions, it can be concluded that at depths below 250 m, coal can be
a rock poorly permeable to CO2. However, coal briquette samples with porosities similar
to the original raw coal were used in this study, which means that under in situ conditions,
raw coal permeability values may differ from those determined in the laboratory.
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