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Abstract: Geothermal power plants typically show decreasing heat and power production rates over
time. Mitigation strategies include optimizing the management of existing wells—increasing or
decreasing the fluid flow rates across the wells—and drilling new wells at appropriate locations. The
latter is expensive, time-consuming, and subject to many engineering constraints, but the former
is a viable mechanism for periodic adjustment of the available fluid allocations. In this study, we
describe a new approach combining reservoir modeling and machine learning to produce models
that enable such a strategy. Our computational approach allows us, first, to translate sets of potential
flow rates for the active wells into reservoir-wide estimates of produced energy, and second, to
find optimal flow allocations among the studied sets. In our computational experiments, we utilize
collections of simulations for a specific reservoir (which capture subsurface characterization and
realize history matching) along with machine learning models that predict temperature and pressure
timeseries for production wells. We evaluate this approach using an “open-source” reservoir we
have constructed that captures many of the characteristics of Brady Hot Springs, a commercially
operational geothermal field in Nevada, USA. Selected results from a reservoir model of Brady Hot
Springs itself are presented to show successful application to an existing system. In both cases,
energy predictions prove to be highly accurate: all observed prediction errors do not exceed 3.68%
for temperatures and 4.75% for pressures. In a cumulative energy estimation, we observe prediction
errors that are less than 4.04%. A typical reservoir simulation for Brady Hot Springs completes in
approximately 4 h, whereas our machine learning models yield accurate 20-year predictions for
temperatures, pressures, and produced energy in 0.9 s. This paper aims to demonstrate how the
models and techniques from our study can be applied to achieve rapid exploration of controlled
parameters and optimization of other geothermal reservoirs.

Keywords: geothermal reservoir modeling; machine learning; energy predictions; geothermal
reservoir management

1. Introduction

Geothermal energy technology is continuing to evolve to provide heat and electricity
for both industrial and residential applications [1–3]. The need to provide low-carbon
electricity and heat has increased interest in geothermal energy as a significant contributor
to the low-carbon energy mix [4]. Geothermal energy is projected to contribute around
2–3% of global electricity generation by 2050 [5] and produce approximately 5% of global
heat load [6]. However, significant environmental, economic, and social challenges re-
main [7,8].

Application of machine learning (ML) and artificial intelligence (AI) methods has the
potential to improve the economic competitiveness of geothermal energy while reducing
the environmental impact. ML has already been successfully applied to the identification
of lithologies [9], extraction of hidden yet important features in hydrological data [10],
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generation of geothermal potential maps based on geological and geophysical data [11],
identification of key production-associated geologic factors [12,13], and creation of digital
twins of geothermal power plants [14].

ML can also be used to optimize the management of geothermal reservoirs, allowing
for maximum power production while minimizing the removal of water from the system.
However, geothermal reservoirs are low-data systems; field data is difficult, if not impos-
sible, to obtain in large enough quantities to provide a training set for ML. However, an
alternate approach, based on reservoir simulation, is available. Reservoir engineers have
decades of experience in using a combination of geologic measurements and reservoir
outputs to create physics-based numerical simulations of reservoirs. These reservoir simu-
lations can then be used to predict the performance of a geothermal reservoir over time
under various operating conditions. As large ensembles of simulations can be performed
over a range of operating conditions, these physics-based reservoir simulations can be
used to create data sets that enable ML in ways field data alone would not be able to.
One potential application is to create reduced-order models that allow the rapid prediction
and optimization of system performance. This is the approach that we are taking in the
current work. Its key steps are shown in Figure 1.
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Figure 1. The process that combines reservoir simulations and machine learning.

Our analysis is focused on Brady Hot Springs (BHS), a geothermal field in northern
Nevada, USA, near the town of Fernley. Initial geothermal exploration in the late 1950s
and early 1960s led to the construction of a food processing facility in the late 1970s that
used geothermal hot water for onion dehydration. A geothermal flash power plant was
built in the 1990s, and an additional binary cycle power plant was built in the 2000s. The
current combined nameplate capacity is 26 MWe (Megawatts electric) [15]. The geothermal
power plants are owned and operated by Ormat Technologies Inc. (Reno, NV, USA).

The hydrothermal system at BHS is controlled by a north-northeast-striking, west-
dipping basin-and-range-type fault system. Geologic mapping [16] and paleoseismic
studies [17] indicate that the fault system has been active in the last ~15,500 years. Fluid
advection is controlled locally by a ~1-km-wide left step in the fault system, where fracture
permeability in the fault system is maximized [18–21]. There is a three-dimensional geologic
map [22] of BHS.

We study BHS through a large number of subsurface simulations, run using the reser-
voir simulators STARS by the Computer Modelling Group Ltd. (CMG, Alberta, Canada)
and TETRAD. These simulations provide the data used for ML to inform Ormat, the
reservoir operator. To avoid the publication of competition-sensitive data in the scientific
literature, we created a second reservoir model by modifying the subsurface characteristics
of BHS. These modifications include changing well locations and modifying temperature
and permeability characteristics. The modified system, with the generated synthetic, yet
realistic, data, will be referred to as the open-source reservoir (OSR). For the OSR, we present
all relevant data and analysis artifacts. In contrast, for BHS, we only publish and discuss
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scaled, sufficiently anonymized results and results that characterize the quality of the
applied ML algorithms rather than the reservoir itself.

In our previous work [23,24], we relied solely on ML for timeseries prediction [25] and
used neural network (NN) architectures such as multilayer perceptron (MLP), long short-
term memory (LSTM), and convolutional neural networks (CNN). While these approaches
showed satisfying results, we continued searching for ways to increase the efficiency of the
model training and, specifically, to avoid using single-step prediction schemes recursively
(which potentially leads to an accumulation of errors). As a result, we have developed
a technique that includes different processing of the simulation data followed by direct
mapping of the selected well flows to the sets of coefficients that define the curves for the
timeseries being modeled. We call this approach curve prediction and discuss it further in
the Methodology section of this paper.

The key contributions of the current study are the following:

• We show the validity of the proposed ML-based modeling by applying it to two geothermal
reservoirs (BHS and OSR), one real and one artificially constructed (synthetic but upholding
realistic constraints and properties).

• We document all computational activities—from the preprocessing of training data
to the analysis of prediction accuracy and the estimation of reservoir-wide energy
characteristics—and release the developed code artifacts.

• We demonstrate how ML models can be used in the search for optimal well flow rates,
resulting in increased energy production, and quantify the possible gains.

• For both BHS and OSR, we perform sensitivity analysis, which allows us to reason
about the reliability of our predictions and describe our findings.

The remainder of the paper is organized as follows. Section 2 introduces the data that
are generated and used in this study. In Section 3, we describe the design and implementa-
tion of our computational pipeline for modeling geothermal reservoirs. Sections 4 and 5
focus on the results of our analysis for OSR and BHS, respectively. In Section 6, we share
several high-level perspectives about our work. We conclude in Section 7.

2. Data Set Creation

The term “model” has different meanings to the reservoir engineering and ML com-
munities. In reservoir engineering, the term “model” is frequently used to describe an
estimate of the subsurface conditions in the reservoir. In ML, the term “model” is frequently
used to describe the process of estimating the outputs of a system from the known inputs.
To avoid confusion, the term “geologic modeling” or “reservoir modeling” will be used to
describe estimates of subsurface conditions based on reservoir engineering, while the term
“model” will be used to refer to ML-based predictions.

2.1. Role of Simulation in Data Set Creation

The role of subsurface models in generating the data sets for this study is shown in
Figure 2. The simulation takes three sets of inputs: (1) a geologic model of the reservoir,
such as the structure of fractures and the permeability and porosity at each location; (2) the
location and depth of the injection and production wells; and (3) the flow rate and fluid
temperature of each injection. The simulation, which can be performed using commercial
reservoir engineering packages such as TETRAD [26] or CMG STARS [27], then solves
mass, momentum, and conservation equations for the system to provide the output flow
rates, temperatures, and pressures for each of the production wells. These simulations are
grouped together in the “Traditional Reservoir Engineering” portion of Figure 1, and they
provide the data for the ML steps from Figure 1, which take place after completion of the
numerical simulations illustrated in Figure 2.
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Figure 2. Inputs and outputs for high-fidelity reservoir models.

2.2. Subsurface Characterization and History Matching

As part of this project, we upgraded Ormat’s existing BHS static geothermal reservoir
model and used it to generate ML training data. The system has four injection wells
and six production wells. We modified reservoir fracture flow paths, permeabilities, and
porosities and ran 86 simulations using the TETRAD model to improve history matching
from 1979 through 2020. The best-performing model obtained a mean absolute error (MAE)
of 6 ◦C for production temperatures across all production wells. The model performed
well in matching the tracer results from the tracer test conducted in 2019, where multiple
conservative tracers were injected in four injection wells and their response was monitored
in several production wells. The updated reservoir model also closely matches the early
2021 temperature survey (on average within +/− 3 ◦C) in a 4000-ft-deep observation well
that was conducted as part of this study. We refer to this set of simulations as BHS data.
A second reservoir model, in which the well locations, temperature, and permeability
characteristics were arbitrarily changed, is referred to as the OSR. The OSR numerical
model in CMG, color-coded by initial temperature, is shown in Figure 3. The domain
dimensions are 19 km × 10 km × 3.5 km. A “hot spot” is visible near the center of the
domain, where labels indicate locations of wells and boundary conditions (fumaroles at the
surface and sources at the bottom).
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2.3. Data Set Generation

To generate the data needed for this study, we ran 80 simulations for BHS and com-
pleted 101 simulations for OSR, all covering the 20-year period from 2020 to 2040. We chose
to run 80 and 101 simulations with the idea of having two slightly different data points for
the size of the training data for ML rather than studying a single size. At the same time,
these numbers are large enough to represent a wide variety of scenarios, but not too large to
become computationally intractable, considering the time required to run each simulation.
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The flow constraints were imposed upon individual wells, and the flow rates varied within
the specific ranges, as shown in Table 1. The injection temperature was about 70 ◦C, and
the injection pressure varied with the flow rate.

Table 1. Ranges of the well flows used in OSR simulations.

Well Type
Simulated Flow Rate (kg/day)

Min Max

I1 Injection 3,409,880 10,229,650
I2 Injection 5,056,776 15,170,330
I3 Injection 10,982,070 32,946,200
I4 Injection 5,389,298 16,167,890
P1 Production 7,522,530 22,567,590
P2 Production 3,641,546 10,924,640
P3 Production 3,926,900 11,780,710
P4 Production 3,906,016 11,718,050
P5 Production 7,680,623 23,041,870
P6 Production 3,555,400 10,666,210

A representative time history for the OSR model is shown in Figure 4. The shown
temperature profiles visualize one example from the simulated cases we have released as
part of the OSR dataset, as detailed under the Data Availability Statement near the end of
the paper.
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Figure 4. Production temperature profiles for the six OSR production wells, P1 through P6, simulated
for 2020–2040 (simulated years are shown along the x-axes). Simulations were conducted using
CMG STARS.

In our work we assume no change in external conditions. Any change in the above-
ground temperature and precipitation patterns is considered to have a minor impact on
subsurface physics and geothermal energy production comparing to the injection well flow
allocations being studied. Potential impacts of climate change, with variations in surface
temperatures and precipitation, are not explicitly considered in this work.

3. Design and Implementation of Computational Pipeline

In this section, we detail our ML-based approach—from model training to inference—
and discuss the nuances of all required data processing steps. We also describe the tech-
nologies that we leveraged when we turned the proposed ideas into code.
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We trained our ML models to capture relationships in the reservoir data sets—more
specifically, in the timeseries produced by the simulations with the aforementioned subsur-
face models. Thus, after the necessary training, these models are capable of reproducing
those relationships and producing estimates of the quantities of interest (e.g., pressure and
temperature values and then, after additional postprocessing, energy estimates), even for
the scenarios that were not part of the training data sets. To be clear, these new scenarios
should be similar to the ones in the training data, in the sense that the same key physical
phenomena are in effect for the modeled system; otherwise, the predictions may become
inaccurate. For instance, if new scenarios allow previously inactive wells to become active,
the models cannot adequately predict the outcomes without a sufficient amount of rep-
resentative training data. At the same time, for a fixed number of active wells, it should
be possible to vary the allocation and get accurate model predictions—this is exactly the
hypothesis that we are validating through this study.

It is worth highlighting the ways in which our current ML work differs from our
previous efforts [23,24]. Previously, we started modeling BHS by leveraging ML techniques.
Currently, we use an approach based on a fully interconnected NN with two hidden layers
(of varying sizes), which are trained to predict coefficients of the curves that approximate
the timeseries of interest. This approximation conveniently serves the function of data
reduction, and the goal of the NN becomes more computationally tractable. Thus, multi-
headed NNs (i.e., networks with multiple neurons in the output layers) can predict all
required coefficients in a single pass. In contrast, our previous work was focused on the
evaluation of MLP, LSTM, and CNN network architectures in the context of timeseries
prediction, with numerous single-step predictions. In Appendix B, we further compare and
contrast these approaches and share information about the parameters of the corresponding
NNs. We further note that the timeseries prediction from our previous work was similar to
the ML methods applied to oil production modeling [28].

In the current formulation, the ML models’ goal is to find an accurate and reliable
mapping between 10 flow levels (for four injection wells and six production wells—these
numbers are the same for BHS and OSR) and D + 1 coefficients of the curves for the
polynomial approximation of degree D. If we were to consider each of these coefficients
separately, we could model them individually using regression techniques (ML-based
or even simpler fitting techniques). However, for modeling entire combinations of these
coefficients, we choose to leverage multi-headed NN.

Learning and Inference

We perform model training on the simulation data and create multiple ML models, one
for each quantity we want to predict. This includes models for temperature and pressure
timeseries for each of the production wells. In Figure 5, we depict this workflow, listing all
preprocessing and model handling steps.
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Next, we discuss each of these steps in further detail.

• Renaming: Since TETRAD and CMG STARS produce data in the form of tables that
have different column names, there is a need for input standardization. We map names
like “Flow PXX (kkg/h)” onto names like “pm1” (i.e., mass flow for production #1).
This mapping can be undone at the end of the pipeline to present the results in the
original terms.
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• Time conversion: We map individual dates in the studied timeseries, which represent
the time intervals between 2020 and 2040, onto points in the [0, 1] range. Similar to
the previous step, original dates can be obtained at the end by inverting this linear
transformation. We use this time conversion step to make sure that the following ML
process remains general enough, supporting time periods of arbitrary lengths.

• Scaling: For each input variable, we scale the values to the [0, 1] range, using global
minimum and maximum values for all values of the corresponding type: temperature,
pressure, or mass flow. In other words, all temperature timeseries are scaled using the
same minimum and maximum values found in the arrays of historic and simulated
data; the same is true for the pressure and mass flow scaling. This type-specific scaling
allows us to preserve data relationships that would otherwise be lost if each timeseries
was scaled irrespective of the rest of the data.

• Input consolidation: Although each flow rate can change over time in an arbitrarily
complex way, we consider a simpler case: a step function according to which the
historic flow rate changes to the new, studied value at the beginning of the simulated
period. Obviously, a sequence of flow adjustments can be represented by a series of
such steps. Using this consolidation, we create the input data set for ML training,
which takes the shape of N values for N wells for which the flow can be controlled.
These N values represent the individual flows for the active injection and production
wells and together constitute the new flow allocation. We refer to the individual unique
allocations as the studied scenarios. For C scenarios in the training data, we end up
with a C * N matrix, which becomes the input for ML training (typically referred to as
matrix X in ML terms).

• Polynomial approximation for output: Similar to input consolidation, we are looking
for a way to represent a lengthy timeseries of interest with only a handful of numbers
that represent an approximation for a given timeseries with pressure or temperature
values for each well. Counting on the fact that we can decide how many such numbers
are going to be involved in this approximation in each specific case, we propose
obtaining these numbers from the values in the output layers of the NNs we are
going to train. A polynomial approximation meets the needs of this step for the
following reasons: (1) obtaining coefficients for a given timeseries’ approximation is
a computationally inexpensive task (typically performed using the method of least
squares); (2) reconstructing the timeseries using a set of polynomial coefficients is
also straightforward and fast; and (3) based on the timeseries for temperatures and
pressures obtained in the simulations we have inspected in this work, we conclude
that their smooth shapes can be approximated using polynomials very accurately.
Appendix A includes the figures that illustrate these shapes and characterize the
errors of the curve fitting. In summary, using a polynomial of degree D will result
in D + 1 coefficients, and, if used consistently across C scenarios, it will produce the
C * (D + 1) matrix that will be used in training (referred to as matrix Y in ML terms).
For each of the considered scenarios, a scaled approximated output value (temperature
or pressure), represented by ŷs and corresponding to the (scaled) moment of time
ts ∈ [0, 1], would be calculated as:

ŷs = a0 + a1ts + a2t2
s + . . . + aDtD

s ,

where a0, . . . , aD are coefficients of the approximating polynomial.

• Model training: This refers to the optimization process that minimizes the specified
loss function. We use the MAE loss and rely on the code provided by TensorFlow [29],
a commonly used open-source platform for ML, in driving this optimization. Model
training takes place in both the cross-validation process, as explained below, and also
in training of the “production” models, i.e., the ones that are ready for final evaluation
and application in decision making.
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• Model evaluation and selection of models with smallest prediction errors: Each of
the trained models is evaluated on the data that was not used in the training using
the mean absolute percentage error (MAPE). This analysis of the models’ predictive
ability allows us to choose the best parameters of the models (e.g., the size of the
NNs being trained) and their training (e.g., the number of iterations in the training
algorithm), which is the main goal of the cross-validation process. When the values of
those parameters are identified, we can proceed to train the production models.

In the inference phase, we use the trained production models, as shown in Figure 6.
We select a particular flow allocation to be studied, scale the flow values to make them con-
sistent with the training data, and then use them as input for the pressure and temperature
models. The models produce predictions of the curve coefficients, which we then convert
into timeseries. At the end, those predicted timeseries are comparable to the timeseries
in the simulation data, i.e., they represent the same 2020–2040 period and have unscaled
values. The inference is repeated for as many cases as we need to study and can be run in
parallel (e.g., on several compute nodes on a supercomputer) for time efficiency.
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After we obtain pressure and temperature predictions for individual wells, as de-
scribed above, we can estimate reservoir-wide characteristics, such as the amounts of
energy produced. Specifically, we calculate the total amount of produced energy (in units
of W, later converted to MW) by summing up contributions from the active production
wells. One production well’s contribution is estimated as the difference between produced
enthalpy, hp in J/kg, and injected enthalpy, hinj in J/kg (the latter is kept constant for all
wells) multiplied by the flow rate for the well, mp in kg/s:

Total Produced Power (thermal) = ∑
production wells

mp
(
hp − hinj

)
.

In these calculations, we assume the dead-state condition to be at 20 ◦C and 1 bar. In
the presented equation, the enthalpy for each production well is a function of the produced
temperature and pressure, and we calculate them by using the thermo-physical property
tables for pure water, also known as the steam tables [30]. We integrate the calculated
power estimates over time to estimate the amount of cumulative thermal energy (in MWh)
produced between 2020 and 2040.

4. Studying the Open-Source Reservoir

We begin our OSR analysis with cross-validation for ML, as outlined in the previous
section. As demonstrated in Appendix C, we use the k-fold cross-validation technique [31]
to select the best model and training parameters for the studied data. Over 8000 “trial”
models were fit using a computing allocation on Eagle [32], NREL’s supercomputer, with
the goal of finding the model configurations that would allow the models to generalize, i.e.,
perform well on the unseen data. Although an evaluation of this kind may be computation-
ally intractable for models of larger sizes and larger data sets, we were able to perform a
grid-search-style optimization and assess 72 combinations of parameters that characterize
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the models and the training process for 12 quantities of interest using just a fraction of the
Eagle’s allocation dedicated to this project. Thus, this cross-validation was completed after
39 h of model fitting and evaluation on one of Eagle’s compute nodes.

After cross-validation, we trained the models on the entire training set, with only
the test subset (a randomly selected 10%) being held out for final model evaluation. We
followed the process depicted in Figure 6 to obtain pressure and temperature curves, which
we then compared with the simulation data in the test data set. In each case, we calculated
the MAPE, capturing the magnitude of relative difference. The distributions of these
error measures are shown in Figure 7. In the same figure, we show a visualization of one
predicted curve and how it closely follows the simulation data, which, for the purposes
of this evaluation, are treated as “ground truth.” To summarize, the errors in pressure
predictions are in the range between 0.13% and 3.68%, with an average of 0.57%; similarly,
for the errors in temperature predictions, the range is between 0.17% and 4.75%, and the
average is 1.34%.
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Figure 7. (left) Summary of the models trained for OSR and evaluated on the unseen data (11 test
cases that were set aside before model training) and (right) one illustrative example of the curve
predicted for a selected test case.

Using the selected trained models, we obtained energy estimates, as described in
Section 3. We then calculated the total cumulative energy produced by the end of year
2040 using both the simulation data and our predictions, and we compared the two results.
We show our results for the 11 test cases in Figure 8. In the same figure, we also visualize
one specific test case and how it develops over time, in the interval from 2020–2040. These
results, where the average percent error is as low as 0.32% and the worst-case error is 4.04%,
indicate that the models fit the data very accurately. It is worth noting that in this analysis
we averaged the real prediction errors—positive and negative (as opposed to absolute
values)—obtained for the test cases, and the average of 0.32% indicates that the bias in our
predications is small.

The error summaries shown in Figures 7 and 8 indicate that the trained NN produced
models accurately predict characteristics of OSR and generalize to the unseen data. It is also
evident that the amount of used training data (i.e., 101 simulated scenarios) is sufficient for
obtaining satisfying prediction accuracy.
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We further characterized the robustness of the trained models by performing sensitiv-
ity analysis. The idea here is that, for good models, relatively small changes in the input
should not lead to disproportionally high variability in the predicted metrics. Furthermore,
by varying inputs one at a time, we can detect where the prediction sensitivity is the highest
in relative terms, which would be informative to anyone who is interested in using this
type of model. To proceed with such analysis, we leveraged a formulation for the “classical
one-at-a-time” sensitivity index [33], defined as a partial derivative of the function R, which
takes the input S, and is evaluated at a particular point in the input space S0:

SIRS =
[R(S0 + ∆S)− R(S0 − ∆S)]

2∆S
,

where ∆S is the change applied to the input, and [ ] in the numerator denotes the absolute
value. We adapted this formulation to our energy estimation as follows:

SIE =
[E2040(F + ∆F)− E2040(F− ∆F)]

2∆F
,

where E2040 is the ML-based estimate of the cumulative amount of energy produced by
the end of the year 2040, F is one of the flow combinations from the training set, and
∆F is the change applied to one of the flows in the studied combination. The resulting
index characterizes the cumulative amount of thermal energy and has the unit of MWh
per kg/day, because MWh and kg/day are the units used for energy values and flow rates
in this work, respectively. In Figure 9, we show the distributions of the sensitivity index
values, SIE, we obtained in evaluating this index on all 101 cases in the OSR data set. For all
these cases, this index is between 0.12 and 0.87 MWh per kg/day, and the sensitivity is the
highest (based on average SIE) for production well 6, production well 5, and production
well 1 (P6, P5, and P1 in the figure, respectively). Among the injection wells, SIE are more
alike, although the average is slightly higher for injection well 2 (I2).
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As an illustrative example, we can consider SIE = 0.80 (an index value on the higher
end), which was observed for P6. This particular value refers to the instance in which
P6’s flow is varied by +/− 5%, and E2040 varies in response, going from 2.29× 107 to
2.34× 107 MWh, which is, in relative terms, only a 1.86% change. For a single-well change
in the input, this appears to be a reasonable and modest response in a metric such as the
aggregate E2040 estimate. We do not have reference numbers with which this result can be
compared, and we believe more work is needed to thoroughly study sensitivity measures
and, for instance, track how such measures change as the amount of training data increases.
Our initial assessment of the observed SIE values leads us to believe that there is currently
no problematic variability in the model outputs. This sensitivity analysis is also an initial
step toward bridging the gap of model interpretability, one of the common shortcomings
in ML work, and the effort can be further expanded through the use of techniques such
as individual conditional expectations and partial dependence plots [34]. Furthermore,
shapely additive explanations [35] can help with interpretability and reveal more insights
into relative feature importance.

5. Application to a Real-World Reservoir

Similar to our OSR analysis, we perform error analysis for the predictions obtained
using the models trained on the BHS data. Through cross-validation, we confirm that
the NN architecture and the chosen amount of training provide the best results among
the studied configurations. Results for the production models are shown in Figure 10.
Prediction errors can be summarized as follows. Predictions for pressure values show
errors between 0.03% and 0.52%, with an average of 0.25%, and the temperature prediction
errors are between 0.11% and 3.54%, with an average of 0.83%. For the cumulative energy
estimates, we observe errors between 0.59% and 2.20%, with an average of 0.95% (we
averaged positive and negative error estimates to characterize bias). We notice that these
models show similar level of accuracy to the models we trained for OSR (see the results
presented in the previous section). Minor differences are likely originating from the fact
that one out of the 10 wells studied at BHS had zero flow (the model was developed for
a ten-well reservoir, but the data from the operator suggested that one specific well was
no longer considered active); thus, the BHS models focused on learning the relationships
in the data for a nine-well system, as opposed to the full 10-well system represented by
the OSR data. For these two reservoirs, we used the same hyperparameters (i.e., degree
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of approximating polynomial, sizes of NN layers, and amount of model training), but
the actual training (selection of model weights) was performed for each reservoir and
each well independently from the rest. There might be additional insights coming from a
thorough statistical comparison of the two reservoirs’ models, yet for the purposes of this
study, we find it sufficient to demonstrate that all prediction errors we have observed for
two reservoirs are relatively small (under 4.75%). Moreover, we could have made BHS and
OSR match exactly in terms of the numbers of simulations and active wells, but instead we
chose in favor of studying two slightly different datasets and summarizing a wider range
of analysis results.
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We continue our model evaluation with a sensitivity analysis, in the same way we
performed it for OSR. We use our ML models for BHS and the code for the cumulative
thermal energy estimation, E2040, to calculate the sensitivity index, SIE. The distributions of
the observed index values for different wells (nine wells with nonzero flows) are shown in
Figure 11. The largest index value, SIE = 0.49 MWh per kg/day, which is smaller than the
index values we estimated for OSR, indicates that a small change in the model input (5%)
results in a relatively small output change, confirming the model’s high stability. Similar
to the OSR results, model sensitivity to the change in the injection wells’ flows is lower
than the sensitivity to the change in the production wells’ flows. Considering all our results
for BHS and OSR, we conclude that the selected ML approach is indeed reliable and has
potential for accurately predicting characteristics of other geothermal reservoirs given a
similar amount of training simulation data. On the computing side, the results shown in
Figure 11 were obtained using the trained NNs relatively quickly, but, in contrast, running
all 1440 additional simulations needed for such per-quantity sensitivity summary would
potentially require as much as 240 days of computing time, at 4 h per simulation.

Our final analysis step involves optimization. In this step, we selected the cases with
the highest predicted cumulative energy values, E2040. For this optimization specifically, we
generated a large number (G = 5000) of potential flow allocations to be evaluated using the
same script that we used to generate the input for the TETRAD simulations. This allowed
us to study the allocations quickly, through the predictions obtained using our trained
models, and choose the best-performing cases. In Figure 12, we show three distributions
of energy estimates: (1) E2040 for 80 training cases, on which the models were trained (in
red), (2) E2040 for G generated cases (in light blue), and (3) 5% of results from the latter (in
dark blue). While we cannot release the specific estimates for BHS, we can highlight the
following in relative terms:
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• The 250 flow allocations selected as part of the top 5% have an average E2040 that
approaches the maximum E2040 for the training set. At the same time, the maximum
E2040 for the top 5% is approximately 6.5% higher than the maximum E2040 for the
entire training set. This relative difference can potentially translate into a substantial
energy gain, considering that the absolute values for E2040 are measured in millions of
MWh. It is also worth pointing out that the maximum E2040 for the training set may
refer to the flow allocation, demonstrating an additional nontrivial gain with respect
to the current allocation at BHS. It is important to treat this summary as a statement
about the potential optimization enabled by the proposed computational approach,
rather than a commentary on the efficiency of the current reservoir operation.

• These 250 best-performing flow allocations provide enough data to further study the
flows for individual wells, and, specifically, to look for noticeable differences between
flow values in the training cases and in the best allocations. Such differences can
indicate the directions in which the respective flows need to change in order to achieve
energy gains. For BHS, we compared the current flows, the distributions of flows in
the training data, and the distributions of flows in these 250 cases to arrive at well-
specific recommendations. These recommendations can be used to inform operational
decisions or, at minimum, can serve as the basis for additional investigation through
simulations using TETRAD or CMG STARS.
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Over the course of this optimization, we collected prediction runtimes, capturing
how much computing time (in seconds) is needed to produce all predictions—pressures,
temperatures, and energy estimates—for a given case. Our results indicate that, on average,
the inference takes only 0.9 s (the runtimes were measured on a single Eagle’s compute node,
with dual Intel Xeon Gold Skylake 6154 (3.0 GHz, 18-core) processor and 96 GB of RAM).
This is several orders of magnitude faster than running simulations with TETRAD. 3D
reservoir modeling with TETRAD or another simulator which takes hours to run, because
it simulates changes in rock and fluid properties associated with thermal and hydraulic
processes across the reservoir, which is a much more computationally intensive process (if
done at sufficient temporal and spatial resolutions) compared to using the weights of the
trained NNs for translating given inputs into outputs, even for large NNs.

6. Discussion

In our work, we have proposed and evaluated a computational approach that com-
bines geologic reservoir modeling with ML. We show how existing methods in geothermal
reservoir engineering can be leveraged to produce data for training surrogate models
implemented using NNs. In this section, we share several high-level perspectives on the
current work and what it can enable in future work.

We can summarize our ML work through the lens of the ML-focused recommendations
shared in a recent editorial by Physical Review Fluids [36]. We found the editorial to be
useful and informative, and we applied its recommendations to our work as follows:

• Physical mechanisms and their interpretation: Our ML approach is based on training
a set of models to predict pressures and temperatures for individual wells. We used
those model predictions in a closed-form expression to obtain reservoir-wide energy
estimates, as discussed in Section 3. By obtaining multiple well-specific predictions
instead of training a single model for energy produced reservoir-wide, we created a
more interpretable solution where we could reason about the possible causes of high
or low energy estimates; we could investigate our predictions for the wells and find
the pressure or temperature timeseries that were influencing the outcomes more than
the rest of the predictions.

• Reproducibility: We plan to publish all relevant data for OSR and the code we have
developed to make it possible for others to reproduce our findings.

• Validation, verification, and uncertainty quantification: We believe that our error
analysis, sensitivity analysis, and the energy optimization process provide enough
empirical evidence about the models to consider their results trustworthy. The great
similarity between the results for BHS and OSR is another piece of supporting evidence.
Further validation of BHS models and predictions can take place next time Ormat
changes the flow allocation (and the models will need to be retrained using the newest
data), but that work is outside the scope of our current investigation.

We envision that our ML efforts will pave the way for reinforcement learning (RL) [37]
in future research. RL can introduce mechanisms for further coupling of ML models
and simulators. For instance, the top 5% of cases described in Section 5 can form the
“second round” of TETRAD or CMG STARS simulations, which would then create even
more data for model training. Then, the retrained models would help find new best-case
candidates again. This iterative optimization process can be repeated as many times as we
see a noticeable increase in the energy estimates. At each iteration, model validation can be
performed to further inform the decisions about continuing or stopping the RL process.
The training of predictive models described in this study is an important prerequisite for
applying RL and potentially discovering additional energy gains.

Finally, we note that open access to high-quality data is a major prerequisite to con-
ducting research using modern, data-centric techniques. Data availability can actually
stimulate the rapid advancement of an entire field. In geothermal reservoir engineering,
this is a concern of particular importance, as the availability of real-world data sets—both
simulation results and real reservoir data—is relatively limited. We are not aware of any
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other published subsurface characterization data sets, analogous to the ones we trained
the models on in our work, that we could have used. Our aim was to bridge this gap
when creating OSR and running an ensemble of simulations for the reservoir. Now that
the relevant OSR data is published, the research community can take advantage of it in a
variety of ways. For example, other researchers can take the data and evaluate a broader
set of ML predictive models, searching for further optimizations and using the results from
this paper as a reference point. In a different line of research, researchers can compare the
published data with the simulation data from other geothermal reservoirs, the reservoirs
to which they have access, and reason about the potential of ML-based optimization for
those fields.

7. Conclusions

In this study, we demonstrate how geologic reservoir modeling can be used in com-
bination with machine learning. In fact, the latter does not replace the former in this
application, but rather complements it. The combination of the two computational ap-
proaches allows us to train accurate prediction models on simulation data that capture
physical subsurface phenomena. We develop this novel method with the goal of enabling
optimization of the energy produced at a geothermal reservoir. We tested the method on
the data for Brady Hot Springs in Nevada, USA, as well as a synthetic 10-well geothermal
system with realistic characteristics. In each case, we followed the proposed process—from
using simulators like TETRAD and CMG STARS to model training and evaluation—and
documented the details of each computational step. Our results indicate that a high level of
prediction accuracy can be achieved for these systems even with medium-sized data sets
(80–101 simulations). The relative error of 4.75% was the largest error we observed among
all studied predictions of pressure, temperature, and energy. For Brady Hot Springs, we
showed how the trained models can be used in the optimization process, i.e., in the search
for optimal flow allocations and increased energy production. Among the most significant
practical benefits enabled by our work is computational efficiency: whereas a typical reser-
voir simulation for Brady Hot Springs completes in approximately 4 h, our trained ML
models yield accurate 20-year predictions for temperatures, pressures, and the amount of
produced thermal energy for the entire reservoir in only 0.9 s. This computational efficiency
allows the rapid exploration of many candidate flow allocations, and, based on our findings,
we expect this method to be applicable to studying other geothermal reservoirs.
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Abbreviations

AI artificial intelligence
BHS Brady Hot Springs, a geothermal field in northern Nevada, USA
CNN convolutional neural networks
Eagle NREL’s supercomputer
LSTM long short-term memory
MAE mean absolute error
MAPE mean absolute percentage error
ML machine learning
MLP multilayer perceptron
NN neural network

OSR
open-source reservoir, a contrived geothermal reservoir that resembles BHS
at a high level but has a number of sufficiently modified characteristics

RL reinforcement learning
RMSE root mean square error

Appendix A

In determining what type of approximation to use for the studied data, we based
our decision on the shapes of the functions being approximated, their smoothness, and
complexity. As shown in Figure A1, the temperature and pressure curves are quite smooth,
and they can be approximated using polynomial functions. To support this claim by
the numbers, we calculate the root mean square error (RMSE) values for the individual
instances of this approximation (37 scenarios × 6 production wells). It appears that the
errors coming from the temperature approximation tend to be smaller than the errors of
pressure approximation, but, more importantly, all observed approximation errors are
small, with RMSE < 0.015 for all cases.

https://github.com/NREL/geothermal_osr
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Appendix B

In Table A1, we summarize two ML approaches: the one used in our previous work,
based on point prediction, and the one used in this study, curve prediction. We report
several key pros and cons for each approach. We also briefly discuss the structure of the
corresponding NNs in terms of the numbers of neurons that form different layers.

Table A1. Comparison of ML approaches for prediction of reservoir characteristics.

Point Prediction
(Used in Previous Work [23,24])
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Pro: Many examples in the literature, with a variety of NN
architectures being used (Brownlee, 2018).

Pro: This approach is more expressive and concise, making it
straightforward to go from curve parameters to timeseries.

Pro: Allows learning and prediction of arbitrarily complex
temporal patterns.

Pro: Prediction errors for moments in the distant future are not
necessarily worse than prediction errors for the near future.

Con: Accumulation of error is likely to occur if this single-step
prediction scheme is used recursively (to obtain prediction for a
whole period of time).

Con: Requires specific structure of input data. We rely on the
flows being set to specific values at the beginning of the time
period being studied and remaining constant throughout
that period.

Parameters of the NN:
input layer: number of neurons is set to the number of
consecutive time steps used in prediction (in previous work, we
used L = 12 for 12 monthly steps) plus the number of additional
“channels”—other factors being considered (flows in our
particular problem).
hidden layer(s): arbitrary number of neurons in one or
more layers.
output layer: single neuron for single-step predictions.

Parameters of the NN:
input layer: number of neurons is set to the number of values
(flows) that define each studied scenario.
hidden layer(s): arbitrary number of neurons in one or
more layers.
output layer: number of neurons is set to the number of
coefficients that define the curves within the selected type of
approximating functions; for polynomials of degree D, D+1
neurons are used.

Appendix C

Using OSR data, we trained 8640 individual models for 12 timeseries (pressure and
temperature values for six production wells). Simultaneously, we studied the effects of
three parameters—the degree of the approximating polynomials, the number of neurons in
the NN’s hidden layers, and the amount of model training—on the accuracy of predictions.
We performed this analysis using a common approach called k-fold cross-validation (with
k = 10) [31], where the training data set was repeatedly shuffled and split into k subsets, out
of which k − 1 were used for model training and the remaining one was used for validation.
This process is designed to prevent overfitting in the course of hyperparameter selection.
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In each iteration of the validation process, we obtained MAPE estimates to compare the
simulation data and the model predictions.

In Figure A2, we show our cross-validation results, with the 20 best-performing model
configurations depicted for one pressure and one temperature timeseries. Through this
cross-validation, we learned the following:

• Curve approximation should use polynomials of degree four: They consistently pro-
duce models with lower errors than for degrees five and six on the given data.

• The best models are trained with the number of epochs set to 1000: An epoch refers to
one complete pass over the data set made by an ML algorithm, and our results indicate
that 1000 such passes result in better models than the lower tested values, 250 and 500,
with the control for overfitting enabled by k-fold cross-validation. Epochs higher than
1000 were not considered in our study because the results we obtained for 1000 epochs
with our datasets showed sufficiently high accuracy.

• With the aforementioned selections, the hidden layer sizes of the NNs should be
12 and 6: This combination consistently results in the best-performing models, as we
can see in Figure A2 (there, it is the second-best configuration), as well as resulting
in the best models created for all six production wells. These particular sizes of the
hidden layers result in the models with 245 weights being fitted to the data, sufficiently
capturing complex relationships between the model inputs and outputs.
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to one complete pass over the data set made by an ML algorithm, and our results 
indicate that 1000 such passes result in better models than the lower tested values, 
250 and 500, with the control for overfitting enabled by k-fold cross-validation. 
Epochs higher than 1000 were not considered in our study because the results we 
obtained for 1000 epochs with our datasets showed sufficiently high accuracy. 

• With the aforementioned selections, the hidden layer sizes of the NNs should be 12 
and 6: This combination consistently results in the best-performing models, as we can 
see in Figure A2 (there, it is the second-best configuration), as well as resulting in the 
best models created for all six production wells. These particular sizes of the hidden 
layers result in the models with 245 weights being fitted to the data, sufficiently cap-
turing complex relationships between the model inputs and outputs. 

  

Figure A2. Analysis of ML models trained with k-fold cross-validation (k = 10). The figures show 
error summaries for pressure (left) and temperature (right) predictions for one of the production 

Figure A2. Analysis of ML models trained with k-fold cross-validation (k = 10). The figures show
error summaries for pressure (left) and temperature (right) predictions for one of the production
wells. Each plot shows 20 model/training configurations (out of 72 evaluated) with the lowest
average MAPE estimates, depicted in ascending order.

Overall, it is worth noting that the magnitudes of the observed MAPE values, where
the averages and the medians are below 2% and the rare, worst-case values are around 7%,
indicate that the models with these identified parameters are highly accurate.
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