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Abstract: The construction sector is among the major players responsible for global energy consump-
tion and therefore related emissions, both because of the constantly increasing indoor air quality
standard which requires increasingly higher energy demands as well as the great share of historical
buildings which are now obsolete and are not up to date with current regulations. Phase change
materials (PCMs) applied on the building envelope represent a feasible possibility to improve the
performance of existing buildings, also the historical ones, increasing their thermal inertia without
violating any legal restriction or causing further alterations to the structure. More specifically, focus
of this research was on the addition of a granular paraffin PCM into a lime-based plaster. Experi-
mental tests at lab scale and numerical simulations with COMSOL Multiphysics were carried out to
characterize the plasters realized, namely one reference lime-based plaster and one with incorporated
10% by mass of granular PCM (named REFp and PCMp, respectively). The behavior of these plasters
applied on the exterior side of a wall was then simulated and compared in terms of temperatures and
heat fluxes. However, considering that the estimated thermal conductivity of the reference lime-based
plaster was lower than the values found in literature, the simulations were carried out considering
an additional plaster, namely a lime-based plaster (renamed LITp), whose properties were found in
literature and considered quite representative of a consistent share of existing historical buildings.
Great improvements were observed from the application of PCM into the plaster, with reductions of
the incoming energy between 9% and 18%.

Keywords: phase change materials (PCMs); lime-based plaster; building envelope; COMSOL Multiphysics

1. Introduction

The building and construction sector is the greatest energy-consuming sector [1] with
a great share of the primary energy supply deriving from fossil fuels [2]. It represents more
than 30% of the world’s energy consumption and nearly 40% of the total energy-related CO2
emissions [3,4]. The constantly increasing demand for thermal comfort inside buildings
is leading to greater energy requirements for ventilation and air-conditioning [5] which,
without any improvement to the actual scenario, is estimated to increase by 80% till 2050
if compared to 2010 levels [6]. The causes of this are to be found first of all in the change
in people’s lifestyle, where living standards are higher and higher with a consequent rise
of the internal heat gains due to the electrical equipment, then in the impact of the urban
heat island effect especially in crowded cities, and lastly in the decrease of the cost of the
cooling equipment [7]. In addition to this, a great share of the built environment consists
of historical and obsolete buildings which are usually very expensive to maintain and are
still excluded from the obligation to adapt to newer standards, most of the time because
of architectural and technological incompatibilities [8]. In Europe, almost one building
out of three is considered historical [9], and in Italy, the highest energy consumer country
in the whole Mediterranean area [10], one out of five was built even before 1919 [11]. On
the basis of these considerations, the refurbishment of existing buildings seems crucial
to achieve the energy and climate objectives of the European Union for 2050 [12]. If on
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one side technological innovations are continuously allowing an improvement of systems
performance, on the other the interventions on the building envelope are limited due to an
industrialization that often prevents a standardized application of low-cost and low-impact
strategies. Among the methods that nowadays are used to improve the building envelopes’
performances, the thermal energy storage (TES) [13] by means of the latent heat of phase
change materials (PCMs) can act as a passive cooling strategy through which the building
envelope’s thermal inertia is increased and whose aim is the improvement of the thermal
comfort for occupants by reducing indoor temperature fluctuations [14,15]. The integration
of PCM, in fact, can make the building envelope dynamic and able to adapt to different
conditions. This feature in a building envelope is of increasing importance both to moderate
the energy demand for air conditioning as well as to improve its resistance towards climate
change [16–18]. Moreover, PCM can be a feasible solution in many scenarios in which
more radical interventions are forbidden due to legislative restrictions, both in the case of
single buildings characterized by aesthetical, historical, or cultural qualities, as well as in
the case of buildings inserted in larger protected areas, such as historical city centers. The
incorporation of PCM in construction materials is among their most interesting applications
and one of the major benefits is the improvement of the thermal properties with minimal
change to the building design. For what concerns the building façade, the addition of PCM
to the plaster is one of the possible solutions, which allows a relatively simple application
on the outermost layer of a wall. This could be performed both on the interior and on the
exterior sides, to reduce the consumption for heating or for cooling. This type of application
has gained increasing attention and several researchers have focused on it during the last
decade [5,10,17–30].

In Figure 1, the potential effect of PCM applied to plaster is depicted. In this case,
the PCM was intended for a summer application and therefore to reduce the energy
requirement for cooling.
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With PCM, the peak indoor temperature at daytime is lower and occurs at a delayed
time if compared to the reference case without PCM thanks to the latent heat absorbed by
the PCM during its melting phase change. During the night the PCM releases the latent
heat during its solidification phase change and this brings about a slightly higher indoor
temperature during the coolest hours of the day. In general, with the application of PCM, a
more stable indoor temperature with minor fluctuations between daytime and nighttime
can be achieved with a consequent reduction of the energy required for cooling which, in
Figure 1, is represented by the colored area.

This study is focused on the evaluation of the application of a lime-based plaster mixed
with a granular PCM on the exterior side of a wall. A lime-based plaster was chosen, which
was preferred to a cement-based one, because it was among the most common materials in
ancient structures [31,32] and is more suitable for the restoration as there is a lower risk of
damaging the wall on which it is applied [21]. In addition to this, lime plasters have good
thermal properties, even though they are not those of an insulator [33]. For what concerns
the PCM, granules of paraffin were selected. This is because paraffin is the most used
PCM in the case of applications on the building envelope, with an incidence of 87.5% [34],
thanks to its chemical stability, non-corrosiveness, low cost, recyclability, low supercooling
phenomenon, and no phase segregation [22,35].

2. Materials and Methods

The first part of this study was conducted experimentally, where two plaster samples
were tested under controlled conditions. The tests aimed at estimating the thermal con-
ductivity and calibrating a numerical model implemented with COMSOL Multiphysics
V5.5 [36] through which the plaster’s specific heat and the PCM latent heat were estimated.
Once the thermal properties of the plasters were obtained, an additional model was im-
plemented to simulate the effects on temperatures and heat fluxes of the different plasters
applied on the exterior side of a wall.

2.1. Experimental Set Up

An experimental set up was realized to carry out the tests in a climatic chamber
and is depicted in Figure 2. It is made of a 0.20 × 0.15 × 0.020 m3 plaster sample and a
0.20 × 0.15 × 0.028 m3 masonry tile positioned on a 0.003 m aluminum foil under which
four Peltier cells are fixed. These are coupled with finned air exchangers and small fans in
order to dissipate the heat on the warmer side. Moreover, a frame of XPS was added on
the vertical surfaces to limit heat transfer on the edges and wooden elements are used to
stiffen the set up. All the tests were taken in a climatic chamber [37] where temperature and
heat flux sensors were used for the monitoring activity. T-type thermocouples (accuracy:
0.5 K), and heat flow plates (accuracy: 5% at 23 ◦C) were connected to a datalogger [38]
through which data were acquired each 30 s. On both the surfaces of the masonry tile,
shallow indentations were realized in order to allocate the heat flux sensors, so that their
thickness would not affect the measures. Moreover, some thermal paste was applied in
correspondence with each layer to limit the contact resistance as much as possible.

The uncertainty of the sensors used was calculated as the standard deviation of the
arithmetic mean, through the following Equation (1) [39], and the values are reported in
Table 1:

u(x) =

√√√√ 1
n(n − 1)

n

∑
j=1

(
xj − x

)2 (1)

where n is the number of data and xj − x is the deviation.
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Figure 2. Experimental set up and sensors’ position.

Table 1. Uncertainties of the sensors used.

u(
¯
x)

Tair [◦C] ±0.02
Tup [◦C] ±0.007
Tmid [◦C] ±0.02

Tdown [◦C] ±0.02
HFmid [W/m2] ±0.06

HFdown [W/m2] ±0.04

Two plaster samples were realized; one was just a lime-based plaster used as reference
(here indicated as REFp) while the other one was the reference in which 10% by mass of
granular PCM was added (here indicated as PCMp). The plaster used was a bioplaster
based on hydraulic lime NHL 3.5 which was supplied by Fassa S.r.l. [40]. The PCM used
was a granular paraffin PCM with an indicated melting temperature of 28 ◦C, supplied
by PCM Products Ltd. [41], which was introduced as a result of the European project
TESSe2b [42] and its application is yet to be completely investigated. The masonry tile
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used was the result of a historical building’s restoration and its thermal properties were the
object of the research, as well.

The densities of the materials used in the experimental tests were estimated and the
values are reported in Table 2. The addition of the PCM into the plaster brought about a
reduction of the density of 16%.

Table 2. Estimated densities of the material.

ρ [kg/m3]

Reference plaster (REFp) 1517
PCM plaster (PCMp) 1278

Masonry tile 1607

2.2. Thermal Properties Estimation

The set up realized and depicted in Figure 2 was subjected to some tests in the climatic
chamber under different conditions in order to estimate the materials’ thermal conductivity
and then the experimental data were used to obtain the specific heat and the PCM latent
heat through the numerical model implemented in COMSOL Multiphysics.

2.2.1. Thermal Conductivity

At first tests were conducted in steady-state conditions to evaluate the thermal con-
ductivity λ [W/(m·K)] of both the samples and the masonry tile. The plaster samples were
arranged, one at a time, in the set up previously described in the climatic chamber where a
fixed temperature and a constant fan speed were set. For a more consistent value of the
thermal conductivities estimated, the tests were carried out in multiple steps, in which
different voltages were set to the Peltier cells through a multi-range DC power supply [43].
Therefore, different temperatures were obtained on the aluminum plate (Tdown) and so the
estimated value of the thermal conductivity for each plaster sample was the average of
the values obtained in each step. In the case of PCMp the test was conducted with two
different temperatures in the climatic chamber in order to consider both the PCM phases.
In Table 2, the values in terms of temperature and heat flux during the steady-state tests are
summarized.

The thermal conductivities of the materials were estimated through Equation (2) and
the values are reported in Table 3:

λ =
d ∗ q
∆T

(2)

where d is the thickness of the sample [m], q is the average heat flux [W/m2], and ∆T is
the difference between the temperatures on the surfaces [K] [12,44]. More specifically, the
thermal conductivity of the plaster sample was estimated considering as ∆T the difference
between Tup and Tmid, while for that of the masonry tile the difference considered was
between Tmid and Tdown.

Table 3. Temperature and heat flux values obtained from the steady-state tests.

REFp PCMp

A B C A B C D E F

Tair [◦C] 25.0 25.0 45.0
Tup [◦C] 21.8 21.1 19.7 22.3 21.6 20.7 43.9 42.9 41.9
Tmid [◦C] 16.8 15.0 11.0 16.4 14.4 10.6 41.5 38.0 34.8

Tdown [◦C] 12.6 9.6 3.7 12.5 9.5 3.7 40.2 35.3 30.8
q [W/m2] 76.1 95.4 131.0 72.3 89.5 120.1 27.1 55.6 81.8

λplaster [W/(m·K)] 0.31 ± 0.006 0.24 ± 0.005
λmasonry tile [W/(m·K)] 0.50 ± 0.016

h [W/(m2·K)] 25.70 ± 0.003



Energies 2022, 15, 975 6 of 18

In addition to this, it was possible to also estimate the convective heat transfer coeffi-
cient on top of the plaster surface through Equation (3):

h =
q

∆T
(3)

where in this case ∆T is the difference between Tair and Tup. The value estimated is in the
range between 24 and 28 W/(m2·K). The uncertainties of the thermal conductivities and
of the convective heat transfer coefficient were calculated as in Equation (4) [39] and the
values are reported in Table 3:

u2
c (y) =

n

∑
i=1

(
∂ f
∂xi

)2
u2(xi) (4)

where f is the function defined as Y = f (X1, X2, . . . , Xn).
The thermal conductivity of the reference plaster is somewhat lower than what can

be found in literature. In Table 4 the thermal properties of some lime plasters found in
literature are reported. For what concerns the PCM plaster, the addition of PCM causes a
reduction of the thermal conductivity of 22.5%.

Table 4. Thermal properties of lime plasters found in literature.

ρ [kg/m3] λ [W/(m·K)] cp [J/(kg·K)]

[28] 1861 0.86 -
[30] 1680 0.94 887
[45] 1660 0.73 970
[46] 1820 0.80 863.9
[47] 1800 0.70 -
[48] 1800 0.90 840
[49] 1805 1.042 817

2.2.2. Specific Heat of the Masonry Tile

An additional experimental set up was realized to estimate the specific heat of the
masonry tile, and therefore reduce the number of properties to be estimated through the
numerical model to the properties of the plaster samples only. Part of the set up realized
is depicted in Figure 3a and consisted of a 0.15 m × 0.30 m × 0.028 m masonry tile with
an XPS frame to ensure a mono-dimensional heat flux. A heat flux meter and a T-type
thermocouple were placed on each surface of the tile using thermal paste to improve the
thermal contact and avoid any air gap, and a third T-type thermocouple was inserted into a
hole in the middle of the tile. The test was conducted in the climatic chamber which was
initially set at 20 ◦C, and once all the thermocouples on the tile read the same temperature,
the chamber was brought to 40 ◦C until all the thermocouples read the same temperature
again. It was then brought again to 20 ◦C and the test stopped as the thermocouples read
the same value. In Figure 3b, the values acquired during the test are depicted. The specific
heat [J/(kg·K)] was estimated to be about 800 J/(kg·K) through the following Equation (5):

cp,tile =
Q

m·∆T
=

∫ t1
t2 qdt

ρd(Tend − Tinit)
(5)

where q is the average heat flux read by the two heat flux meters (HFright, HFleft) [W/m2],
ρ is the density [kg/m3], d is the thickness [m], and Tinit and Tend are the initial and final
temperatures of the surface, respectively [K] [44].
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collected during the test inside the climatic chamber.

The thermal properties of the masonry tile appear to be in accordance with those
found in literature [47,50] and are summarized in Table 5:

Table 5. Estimated thermal properties of the masonry tile.

ρ [kg/m3] λ [W/(m·K)] cp [J/(kg·K)]

Masonry tile 1607 0.50 800

2.2.3. Specific Heat and PCM Latent Heat

The specific heat of the plasters and the latent heat of the PCM were estimated through
the calibration of a numerical model implemented in COMSOL Multiphysics of an unsteady
experimental test. Both REFp and PCMp samples were placed in the climatic chamber
which was initially set at 20 ◦C with constant speed. As the system reached a steady-state
condition, the temperature of the chamber was set to 40 ◦C for 3 h and then set again at
20 ◦C.

In Figure 4a, the temperatures collected for both the reference and the PCM plaster
sample are depicted. Even though the quantity of PCM added to the plaster was quite
low, the differences between the REFp and PCMp samples are clearly visible. In fact, in the
case of the PCMp, the temperature between the plaster sample and the masonry tile (Tmid)
changes more slowly that the REFp, especially in correspondence with the phase change.
The red line represents the difference between the values of Tmid of the two samples at each
acquisition step: the difference peak was of 2 K during the melting of the PCM and it was
of 1.4 K during the solidification one. In Figure 4b the heat flux values collected for both
plasters are depicted, and the differences in this case are even more visible. During the
heating, the heat flux between the PCM plaster sample and the masonry tile (HFmid) was
much lower than that of the reference one. During the melting phase, the peak reduction
reached nearly 45% and values were close to 0 W/m2 in correspondence with the peak
melting temperature. During the cooling phase, the peak reduction was of 15% and the
difference was of nearly 20 W/m2 in correspondence with the peak cooling temperature.
The data collected during the unsteady-state tests were used to calibrate a numerical model
of the experimental set up in COMSOL Multiphysics, through which the plaster’s specific
heat and the PCM latent heat were estimated. This model was implemented in a “Heat
Transfer in Solids” 3D domain with time-varying boundary conditions. Considering that
during the steady-state conditions the values of the two heat flux meters (HFmid and
HFdown) were the same, an adiabatic condition was applied on the vertical surfaces instead
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of modeling the XPS frame. The other conditions applied were the temperature of the
aluminum plate (Tdown) on the lower surface, the air temperature in the chamber (Tair),
and the convective heat transfer coefficient on the upper surface of the model, which was
calculated as in Equation (2). First, the model of the reference plaster was calibrated and
therefore its specific heat was estimated. Then, the other model was calibrated and the
PCM specific and latent heat were estimated, using the following Equation (6) [51,52]:

cp,PCMp(T) = (1 − r)·cp,REFp + r·(1 − Hi(T))·
(
cp,PCMs + hsl ·Di(T)

)
+ r·Hi(T)·

(
cp,PCMl + hsl ·Di(T)

)
(6)

where cp,REFp is the specific heat of the plaster [J/(kg·K)], cp,PCMs and cp,PCMl are the solid
and the liquid PCM specific heat, respectively [J/(kg·K)], r is the mass ratio of PCM in
plaster, Hi(T) is a dimensionless variable corresponding to the liquid fraction of the PCM in
a range between 0 and 1, hsl is the latent heat of fusion [kJ/kg], and Di(T) is a normalized
Dirac’s pulse [K−1].
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Figure 4. (a) Temperatures collected for both the reference and the PCM plaster samples. The
curves of Tair and Tdown were the same for both tests, therefore only one was depicted in the graph.
Moreover, the red line is the difference between the values of Tmid for the reference plaster and the
PCM one, respectively. (b) Heat fluxes collected for both the reference and the PCM plaster samples.
The red line is the difference between the values of HFmid for the reference plaster and the PCM one,
respectively.

As represented in Figure 5a, the experimental data were used to assume the PCM
properties in terms of phase change temperatures and relative ranges. The colored areas
depicted were identified considering the difference between the heat flux measured (HFmid)
with the PCM plaster with respect to that measured with the reference one. It can be noticed
that the granular PCM charges and discharges at different temperatures, and the melting
range is wider than the solidification one. More specifically, the melting was identified in
a range of 12 K between 22 ◦C and 34 ◦C and therefore the peak was set at 28 ◦C, while
the solidification range was identified between 21 ◦C and 27 ◦C so the peak was set in
correspondence with its average value, so 24 ◦C. This temperature identification allowed
the implementation in COMSOL Multiphysics of Hi(T) and Di(T) functions, as described
in Equation (3) and depicted in Figure 5b.
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Figure 5. (a) Melting and solidification temperature individuation and relative ranges through the
comparison of the heat fluxes (HFmid) of REFp and PCMp. Colored areas indicate the phase change of
the PCM (b) Hi(T) and Di(T) functions implemented in COMSOL Multiphysics. The arrows indicate
the direction of the curve.

The calibration of the test with the reference plaster is depicted in Figure 6a while
that of the PCM plaster is depicted in Figure 6b. The mesh was hexahedral and the mesh
independence was verified as represented in Figure 7. Then the root mean square error
(RMSE) was calculated as in Equation (7) and the values obtained are reported in Table 6:

RMSE =

√
∑N

i=1(yi − ŷi)
2

N
(7)

where yi is the actual measured value and ŷi is the predicted one. After the calibration of
the models, the specific heat of the reference plaster was estimated to be about 800 J/(kg·K),
while the specific heat and latent heat of the PCM were estimated to be 2220 J/(kg·K) and
75 kJ/kg, respectively. This means that, out of the phase change, the specific heat of the
PCM plaster is 17% higher than the reference one.
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Figure 6. Calibration of the unsteady–state tests. (a) Test with the reference plaster, (b) test with the
PCM plaster.
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Figure 7. Verification of the mesh independence of the experimental set up model.

Table 6. RMSE calculated for both calibrations.

REFp PCMp

Tup [◦C] 0.28 0.41
Tmid [◦C] 0.20 0.18

HFmid [W/m2] 2.26 2.18

2.2.4. Numerical Model of a Perimeter Wall

After having estimated the thermal properties of the two plasters, a new model was
realized and a small sample of a perimeter wall was implemented in order to predict the
behavior of these plasters under real conditions. The model was a portion of 0.4 × 0.4 m2

which consisted of a brick layer covered with 0.03 m of plaster on both sides. As the
main objective of this study was to evaluate the applicability of PCM in the case of energy
refurbishment of historical buildings, no insulation was added intentionally. In order to
extend the present research to a greater number of buildings, two models were realized
in COMSOL Multiphysics, one with a 0.25 m brick layer and the other with a 0.38 m
brick layer, corresponding to a two-brick- and three-brick-thick wall, respectively. The
model was implemented coupling the “Heat Transfer in Solids” and the “Surface-to-Surface
radiation” physics, so that it was possible to define the radiative heat transfer separately.
On the interior side of the wall, a fixed temperature of 26 ◦C with a convective heat
transfer coefficient of 10 W/(m2·K) was set, while on the exterior side the temperature
and solar radiation fixed were obtained from a database of a weather station located
at the TekneHub laboratory of the University of Ferrara and a convective heat transfer
coefficient of 25 W/(m2·K) was applied. Apart from the interior and the exterior sides,
all the other surfaces were considered adiabatic. The behavior of the wall samples was
simulated during some consecutive days in mid-August, 2019. These were characterized by
high peak temperatures during the day and consistent differences of temperature between
day and night, which allow the PCM to charge and discharge completely. The boundary
conditions, namely temperature and solar radiation, of the simulation days are depicted
in Figure 8, together with the sol-air temperature (Tsol-air) which was calculated as in
Equation (8) [15,53]:

Tsol−air = Tair + αIgRse (8)
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where α is the absorption coefficient of the surface, which was considered of 0.48 [54], Ig
is the global solar radiation [W/m2], and Rse is the external surface resistance [m2·K/W],
supposing a convective heat transfer coefficient of 25 W/(m2·K), in accordance with the
recommendations of ISO 6946 [55].
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Figure 8. Boundary conditions of the simulation days.

However, as previously mentioned, the thermal conductivity estimated for the ref-
erence plaster is somewhat lower than what can be found in literature or in technical
datasheets. It seemed therefore that simulating this reference plaster might not be represen-
tative of a great share of the existing buildings and so an additional plaster was taken into
consideration and compared to the two realized samples.

The properties of this plaster (here indicated as LITp) are depicted in Table 7 together
with a recap of the thermal properties of the other simulated plasters. The focus of the
simulations was the summer evaluation of the application of PCM on the external side
of a wall. For this reason, the simulations that will be compared will have the same brick
and interior plaster layers; this last one was the reference plaster (REFp), and the only
difference will be the plaster applied as exterior layer. In Figure 9a the nomenclature and
the position of the sensors used for the comparison are depicted. The simulations were
carried out for some consecutive days, but the results were considered only from the second
day on, to avoid the initial conditions applied from interfering with the results. The mesh
applied was hexahedral, made of 1500 elements; however, the mesh independence was
verified by carrying out the same simulation with higher numbers of elements, as depicted
in Figure 9b.

Table 7. Thermal properties of the plasters used in the simulations.

ρ [kg/m3] λ [W/(m·K)] cp [J/(kg·K)]

Reference plaster (REFp) 1517 0.31 800
PCM plaster (PCMp) 1278 0.24 930

Literature plaster (LITp) 1820 0.73 970
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Figure 9. (a) Nomenclature and position and the sensors defined in COMSOL Multiphysics;
(b) verification of the mesh independence of the wall model.

3. Results
3.1. Two-Brick-Thick Wall (25 cm)

The first simulations were carried out considering the wall with 0.25 m brick layer. In
Figure 10a are depicted the temperatures between the outer plaster and the brick layer (T2)
together with the incoming energy (HF5) for the three simulated configurations. Relevant
differences between the two lime plasters (REFp and LITp) are visible, which means that the
lime plaster used for the experimental tests has quite good thermal insulation properties.
However, the effect of the addition of PCM is clearly visible. In fact, if compared to REFp,
a reduction of nearly 2 K is visible during the hottest hours while during the night the
temperatures are slightly higher, between 0.5 K and 1 K. Greater differences are visible
in the comparison with LITp: during the hottest hours of the day the wall with PCMp
reaches temperatures almost 4 K lower than the wall with LITp while during the night
the temperatures are about 1 K higher. These differences are also consistent in terms of
incoming energy: on average, during the hottest hours, the incoming heat flux in the wall
with PCMp is almost 10 W/m2 lower than the wall with REFp and nearly 30 W/m2 lower
than the wall with LITp. Considering the total incoming energy between the outer plaster
and the brick layer in the simulated days, the amount in the case of the wall with PCMp was
about 924 Wh/m2, in the case of REFp 1068 Wh/m2, and in the case of LITp 1303 Wh/m2.
Moving to the inner side of the wall, in Figure 10b, the temperatures and the incoming
energy between the brick layer and the inner plaster are depicted. The differences between
the configurations were obviously consistently reduced but the same trend as the one
previously described can be noticed. In terms of temperature, during the hottest hours
the differences are barely visible: between PCMp and REFp it is of less than 0.2 K while
between PCMp and LITp it is of nearly 0.5 K. However, considering the incoming energy,
the amount in the case of the wall with PCMp was about 241 Wh/m2, 264 Wh/m2 in the
case of REFp, and 292 Wh/m2 in the case of LITp.

3.2. Three-Brick-Thick Wall (38 cm)

The same simulations were carried out considering a wall with a thicker brick layer,
which was set to 0.38 m, equivalent to a three-brick-thick wall. In fact, historical buildings
were frequently characterized by massive walls. In Figure 11a, the temperatures and
the incoming energies between the outer plaster and the brick layer (T2 and HF5) are
depicted. The results obtained are almost the same as the previous simulations, with
slightly lower total incoming energy values. The difference, however, is of about 1%, so the
same considerations as the previous case can be seen. For what concerns the inner side of
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the wall, in Figure 11b are depicted the temperatures and the incoming energy between
the brick layer and the inner plaster. In terms of temperature, the differences are barely
visible and reach differences up to 0.2 K only during the hottest hours of the days. However,
looking at the total incoming energy, the amount in the case of the wall with PCMp was
about 133 Wh/m2, 146 Wh/m2 in the case of REFp, and 162 Wh/m2 in the case of LITp.
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Figure 10. (a) Temperatures and incoming energy between the outer plaster and the 0.25 m brick
layer (sensors T2 and HF5); (b) temperatures and incoming energy between the 0.25 m brick layer
and the inner plaster (sensors T3 and HF6).
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Figure 11. (a) Temperatures and incoming energy between the outer plaster and the 0.38 m brick
layer (sensors T2 and HF5); (b) temperatures and incoming energy between the 0.38 m brick layer
and the inner plaster (sensors T3 and HF6).

4. Discussion

For what concerns the first simulated wall, namely the two-brick-thick wall, on the
basis of the total incoming energy between the brick layer and the inner plaster the PCMp
brought about a reduction of about 9% and 18% if compared to REFp and LITp, respectively.
In Figure 12a is depicted the percentage difference between the incoming energies in the
three configurations where LITp is 100%. It is visible that with LITp, namely, the lime-based
plaster whose properties were found in literature, the total incoming energy, therefore the
energy requirement for cooling, is the highest among the three configurations.
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In the case of REFp, the lime-based plaster that was realized and tested in the lab, the
incoming energy is almost 10% lower than the configuration with LITp, while in the case
of PCMp, the reduction is higher and almost 18% lower than LITp. Another aspect that is
worth noticing is depicted in Figure 12b. Here the temperatures on the innermost side of
the wall (T4) are represented together with the sol-air temperature (Tsol-air) and, in the case
of PCMp, a greater delay in reaching the peak temperature is visible. More specifically, in
the case of LITp the delay was of slightly more than 10 h, in the case of REFp the delay was
of 10.5 h while in the case of PCMp the delay was of 11 h.

For what concerns the second simulated wall, namely the three-brick-thick wall, even
though the differences of temperatures and heat fluxes in absolute terms between the
configurations are more limited than the previous case, the percentage reduction is still
visible. In fact, the reduction in the case of PCMp is still of about 9% if compared to REFp
and 18% if compared to LITp, respectively.

In Figure 13a the percentage difference between the incoming energies in the three
configurations with respect to LITp is summarized. As for the two-brick-thick wall, in the
case of REFp the incoming energy, which affects the energy requirement for cooling, is
almost 10% lower than LITp, while in the case of PCMp the reduction is of more than 18%.
In Figure 13b the sol-air temperature (Tsol-air) is depicted together with the temperature
reached on the inner side of the wall (T4) with focus on one day of simulation in order to
highlight the delay in reaching the peak inner temperature. In the case of the LITp the delay
is of 16 h and 20 min, in the case of the REFp it is of 16 h and 50 min, while in the case of the
LITp it is of 16 h and 20 min. This means that the addition of PCM brings about an increase
of the delay of 4% if compared to REFp and of 7% if compared to LITp.

It therefore emerged that, independently from the wall thickness, the incoming energy
in the case of LITp is the highest among the three plasters considered while in the case of
PCMp it is the lowest one and about 18% lower than LITp.
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5. Conclusions

The addition of granular paraffin PCM into lime-based plaster was considered in
this paper as a feasible solution for the improvement of energy performance of historical
buildings, which are often protected by legislative restrictions that prevent many of the most
popular interventions. The plaster chosen was a lime-based one because of its compatibility
with historical structures, while the PCM was paraffin as it is the most compliant for an
application on the building envelope. Samples of a reference lime-based plaster (REFp)
and its enhancement containing 10% by mass of granular PCM (PCMp) were realized
and tested under controlled conditions at lab scale. Some of the properties of the plasters
were experimentally estimated, namely the density and the thermal conductivity, while
the specific heat and the PCM latent heat were estimated through the calibration of a
numerical model of the experimental set up implemented in COMSOL Multiphysics. From
the properties estimated, the addition of PCM causes a reduction of 16% of the density and
of 22.5% of the thermal conductivity, while as regards the specific heat there is an increase
of the 16%. In COMSOL Multiphysics, a 3D model was then implemented of a portion of a
wall in which the behavior under real conditions was simulated. Besides the two plasters
realized and tested in the lab, an additional plaster was defined. This was because it was
considered that the thermal properties of the reference lime-based plaster (REFp) might not
be representative of many of the existing buildings; therefore, another lime-based plaster
whose properties were found in literature (LITp) was simulated. The simulations were
carried out for some consecutive summer days. The different plasters were applied on
the outer side of a wall, and two different wall thicknesses were tested: the first with a
0.25 m brick layer, corresponding to a two-brick-thick wall, and then with a 0.38 m brick
layer, corresponding to a three-brick-thick layer wall. In both cases, results showed the
same trend. The first consideration regarded the comparison between the two lime plasters:
the application of REFp instead of LITp brought about lower temperatures during the day
and consequently lower incoming heat fluxes. In both cases the reduction of the incoming
energy is of more than 9%. For what concerned the addition of PCM into the plaster, the
performance of PCMp brought about lower temperatures and lower incoming heat fluxes
than both the two lime plasters. More specifically, with both the wall thicknesses, the
reduction of the total incoming energy is of about 9% if compared to REFp and of about
18% if compared to LITp.

This research was carried out experimentally only for the preliminary part to char-
acterize the plaster sample realized; therefore, even though in the climatic chamber the
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differences between the plasters are clearly visible, it might be interesting to experimentally
investigate whether under real outdoor conditions the monitored behavior is confirmed.
For this reason, further steps of this research will involve an in-field experimental monitor-
ing activity and at the same time further considerations might be, for instance, on the effect
of the application of PCM changing the phase change temperatures or on the investigation
on the efficacy of a winter application instead of a summer one.
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49. Jerman, M.; Vejmelikovà, E.; Keppert, M.; Černý, R. Properties of plasters suitable for reconstruction of historical buildings. In

Structural Studies, Repairs and Maintenance of Heritage Architecture XIII, 1st ed.; Brebbia, C.A., Ed.; WIT Press: Southampton, UK,
2013; pp. 369–378.

50. Lucchi, E. Thermal transmittance of historical brick masonries: A comparison among standard data, analytical calculation
procedures, and in situ heat flow meter measurements. Energy Build. 2017, 134, 171–184. [CrossRef]

51. Bottarelli, M.; Bortoloni, M.; Su, Y.; Yousinf, C.; Aydın, A.A.; Georgiev, A. Numerical analysis of a novel ground heat exchanger
coupled with phase change materials. Appl. Therm. Eng. 2015, 88, 369–375. [CrossRef]

52. Bottarelli, M.; Bortoloni, M.; Su, Y. Heat transfer of underground thermal energy storage in shallow trenches filled with
encapsulated phase change materials. Appl. Therm. Eng. 2015, 90, 1044–1051. [CrossRef]

53. Kheradmand, M.; Azenha, M.; Castro-Gomes, J.; Aguiar, J. Energy saving potential of cement based mortar containing hybrid
phase change materials applied in building envelopes. In Proceedings of the Sustainable Construction Materials & Technologies
4, Las Vegas, NA, USA, 7–11 August 2016.

54. Yao, J.; Yan, C. Effects of solar absorption coefficient of external walls on building energy consumption. Int. J. Civ. Environ. Struct.
Constr. Archit. Eng. 2011, 4, 208–210.

55. UNI EN ISO 6946:2018 (Italian version of EN ISO 6946:2017). Building Components and Building Elements. Thermal Resistance
and Thermal Transmittance. Calculation Method. Available online: http://store.uni.com/catalogo/uni-en-iso-6946-2018?josso_
back_to=http://store.uni.com/josso-security-check.php&josso_cmd=login_optional&josso_partnerapp_host=store.uni.com (ac-
cessed on 12 January 2021).

http://doi.org/10.1016/j.rser.2019.109509
http://doi.org/10.1016/j.enbuild.2016.10.045
http://doi.org/10.1016/j.applthermaleng.2014.10.016
http://doi.org/10.1016/j.applthermaleng.2015.04.002
http://store.uni.com/catalogo/uni-en-iso-6946-2018?josso_back_to=http://store.uni.com/josso-security-check.php&josso_cmd=login_optional&josso_partnerapp_host=store.uni.com
http://store.uni.com/catalogo/uni-en-iso-6946-2018?josso_back_to=http://store.uni.com/josso-security-check.php&josso_cmd=login_optional&josso_partnerapp_host=store.uni.com

	Introduction 
	Materials and Methods 
	Experimental Set Up 
	Thermal Properties Estimation 
	Thermal Conductivity 
	Specific Heat of the Masonry Tile 
	Specific Heat and PCM Latent Heat 
	Numerical Model of a Perimeter Wall 


	Results 
	Two-Brick-Thick Wall (25 cm) 
	Three-Brick-Thick Wall (38 cm) 

	Discussion 
	Conclusions 
	References

