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Abstract: Accurate prediction of building energy need plays a fundamental role in building design,
despite the high computational cost to search for optimal energy saving solutions. An important
advancement in the reduction of computational time could come from the application of machine
learning models to circumvent energy simulations. With the goal of drastically limiting the number
of simulations, in this paper we investigate the regression performance of different machine learning
models, i.e., Support Vector Machine, Random Forest, and Extreme Gradient Boosting, trained on a
small data-set of energy simulations performed on a case study building. Among the XX algorithms,
the tree-based Extreme Gradient Boosting showed the best performance. Overall, we find that
machine learning methods offer efficient and interpretable solutions, that could help academics and
professionals in shaping better design strategies, informed by feature importance.

Keywords: machine learning; building energy simulation; optimisation algorithms; building energy
saving solutions

1. Introduction

Indoor heating and cooling of buildings are among the most energy consuming
activities in Europe [1] and a few important laws, acts and regulations aim at reducing
their environmental impacts [2]. A variety of approaches try to address this issue, such
as the creation of new energy saving materials, the imposition of progressively stricter
requirements, and the realisation of more efficient systems and equipment [3].

Among the most relevant ones, we find building energy simulations, characterizing
different scales [4] and in different locations [5,6]. Computer programs like EnergyPlus [7]
simulate different building configurations, returning precise and accurate results that take
into account all variables affecting building energy consumption for the indoor climate
control (e.g., envelope materials, orientation, systems, weather data). The simulations are
often performed for decision making in the design phase, and given the high number of
variables to consider, a huge number of simulations is usually necessary before identifying
the most suitable and efficient solutions. Even though a single simulation is relatively fast
(taking from a few seconds up to a couple of hours depending on the modelled building
and the adopted computer), each simulation requires an operator who inserts, analyses,
assesses, makes decisions, leading to a time consuming process that needs constant human
supervision to avoid unintended effects [8-10].

As improvement, some authors automatised the exploration of all the possible config-
urations initially set. This method requires a limited preliminary work and it is efficient
to both explore the field of possible solutions and to analyse the relationships among the
different variables [11]. However, since the common aim is to identify the best performing
solutions (such as the lowest energy consuming), a valid alternative method is represented
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by the introduction of optimisation algorithms. For example, procedures based on genetic
algorithms [12] are proven to be solid and efficient results, limiting manual labour. This
approach proved to be effective in a wide range of cases, such as for envelope optimisa-
tion [13], material choice [14], net-zero energy solutions [15], and even in multi-objective
researches [16]. Genetic algorithms require time consuming exploratory work since several
parameters must be evaluated and selected (e.g., number of individuals, number of gener-
ations, mutation and crossover coefficients). Both strategies—i.e., automatised code and
algorithm—strongly reduce the need of the operator work per simulation [17]. However, in
case of particular building configurations (e.g., presence or absence of particular material),
these methods fail to ease the operator work.

An important source of help can come from the application of Machine Learning (ML)
models for regression [18]. ML methods take advantage of automatic adjustments based on
observations to approximate a target function [19]. The effectiveness of these methods relies
upon the number and quality of available data, but they proved to be extremely effective in
a wide series of cases, ranging from the agro-industrial sector [20], energy sector—even for
inefficiencies [21], uncertainties [22] and prediction [23], computer vision [24], to pipeline
engineering [25] or speech recognition and fraud detection [26,27], where it is unfeasible
(or even impossible) to develop conventional algorithms.

In this work, the input features are the case study building characteristics summarised
in Table 1, described in Section 2.1, while the target function is the yearly energy demand,
provided by EnergyPlus simulations.

Because both the input features and the target function are known, the framework of
the study is called supervised learning, as opposed to unsupervised learning or reinforce-
ment learning, where the target function is unknown.

This manuscript aims at investigating the effectiveness of the application of ML models
to predict the energy consumption of specific building solutions, avoiding to directly run
simulations with an energy software. As additional investigation, we show how ML feature
importance can rank the impact of the different building variables on the energy need.

This approach can be considered an integration to the above said methods taking
advantage of the huge number of simulations necessarily run by the algorithms.

As case study, we used the numerical model of a winery building, calibrated in a
previous work [28].

Different features concerning the building envelope and the building orientation,
have been considered as variables (see Table 1). The thermostat—established in the range
12 °C-18 °C—the location and the weather data, are the same for all the models and the
simulations. The specific goal of the paper is to verify if linear and non-linear ML models
can provide accurate evaluations of the building energy consumption, thus avoiding the
time-consuming numerical simulations.
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Table 1. List of the features considered in the modeling. The first column reports the name of the
variable, the second column shows the variable abbreviations (used hereinafter), the third column
specifies if the variable is inserted by the user (U) or calculated by the software (S), the fourth column
provides the variable unit.

Variable Abbreviation User/Software Unit
wall resistance wR U mK/W
wall conductivity wc U W/mK
wall density wd U kg/m3
wall specific heat wsh U J/ (kgK)
wall transmittance Uw S W/(m?K)
wall superficial mass wsm S kg/m?
wall attenuation wa S -
wall thermal lag wil S hours
roof resistance rR U mK/W
roof conductivity wce U W/mK
roof density rd U kg/m?3
roof specific heat rsh U ]/ (kgK)
roof transmittance Ur S W/(m?K)
roof superficial mass rsm S kg/m?
roof attenuation ra S -
roof thermal lag rtl S hours
orientation 0 U degree
air infiltration ai U ACH'!
glaze transmittance Ug U W/(m?K)

1 Air Changes per Hour.

2. Materials and Methods
2.1. Case Study Description

The case study building considered in the present work is an agro-industrial building
located in Toscanella di Dozza, in the countryside close to Bologna (Italy).

The case study facility is shown in Figure 1. Currently, it has two different uses: wine
making process and wine bottle storage before the sale to the customers. The winery
has plant dimensions of 20 m x 30 m, precisely longitudinal dimension equal to 27.75 m,
transverse dimension equal to 18.50 m and has a double-arched cross section with variable
height from 5.50 m to 7.00 m at the ridge line. Six reinforced concrete internal pillars (with
5.55 m of spacing) are positioned along the main axis and separating the main volume into
two symmetrical portions divided by a line of wine tanks. The selected case study is a
representative precast building of the Emilia-Romagna Region. In fact, facilities like the one
described above are recurrent in the Emilia-Romagna territories in terms of dimensions,
proportions, indoor volume and materials. The buildings is realised with traditional and
poor materials characterised by low thermal performances. The perimeter envelope is
realised by concrete bricks having 32 cm of thickness and plastered with cement-based
mortar. The flooring reinforced concrete slab of the volume of the production activities is
30 cm thick. The roof of the winery is constituted by a non-insulated reinforced concrete
slab connecting the various precast arches. The building is naturally ventilated and no
air-conditioning or ventilation systems are present. Finally, the fixtures of the windows
have very poor thermal performance since they are single glazed.
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Figure 1. The case study building: (a) the location of the case study at regional and national scale.
(b) the layout of the building. (c,d) the South and North front of the building with the main measures.

2.2. Energy Modelling and Simulations

This work took advantage of building energy simulations performed by EnergyPlus
9.2 [7]. The base-model (see Figure 2) was created and experimentally validated in Barbaresi
et al. [29]. To define the building envelope thermal performance, the software requires to
insert wall and roof characteristics (constructions), window thermal transmittance (Ug) and
air infiltration. The orientation can be inserted as an input data as well.

The constructions are defined by inputting the materials that physically make the
element, and their characteristics (i.e., thickness, thermal resistance, density and specific
heat). Other thermal characteristics (like thermal transmittance, superficial mass, thermal
lag, attenuation) are calculated by the software and then used for the simulations.

Figure 2. A view of the base model created with the Sketch-Up plugin.
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To simplify the procedure and, at the same time, to explore a significant number of
different envelope solutions, wall and roof constructions are built as one-material con-
structions (one for wall and one for roof) with thickness equal to 20 cm and with different
thermal resistance, density and specific heat. Then, three properties for wall, three proper-
ties for roof, glaze transmittance, air infiltration and orientation were randomly extracted
from continuous uniform distributions within boundary conditions defined by values of
products on the market . The thermostat range was set at 12-18 °C.

A significant number of models (5150) were created using a MatLab [30] code. The same
code extracts the feature values and then elaborates the results of the simulations. At the
end it returns the 19 values extracted for the features and used in the simulation and the
ideal total energy needed to keep the temperature into the thermostat range.

2.3. Sensitivity Analysis

A sensitivity analysis was preliminary performed to provide indications on the most
suitable features (i.e., regressors) to investigate. After the 5150 simulations were run,
the distributions of the 19 input features were analysed and 10th, 25th, 50th, 75th and 90th
percentiles were calculated and used for the sensitivity analysis.

A model using the values referred to the 10th percentile was created and a first
sensitivity analysis was performed varying the feature one by one. The same procedure
was repeated to perform a second sensitivity analysis on a model created using the 75th
percentile.

Analysing the features separately, the graphs reported as a representative example in
Figure 3 show, as expected, a clear non-linear relation between feature values and thermal
need values for most of the variable features adopted in the study. On the other hand,
comparing the two sensitivity analyses, the two sets of graphs highlight that the regression
curve coefficients for the single feature strongly depend on the other features’ values (i.e.,
not negligible interactions exist between different features).

The results of the sensitivity analyses confirm the necessity to investigate multi-non-
linear regressors besides the multi-linear one, that in some applications, e.g., when the
problem is almost linear or when the analyses consider only a limited portion of whole
domain, could return acceptable results. Anyway, multi-non-linear regressors are expected
to be more precise.
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Figure 3. Cont.
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Figure 3. Main results of the sensitivity analysis. (a) Trends of the energy need for different values of
the roof density. (b) Trends of the energy need for different values of the wall density.

2.4. Feature Selection

An important step in ML problems is the feature selection. Indeed, in many applica-
tions, it is common to deal with data set with a large number of features: depending on
the task, this number can often be reduced in favour of a smaller space to learn, since the
number of necessary training data grows exponentially with the feature space dimensional-
ity [26]. This can be proven beneficial in a number of ways:

¢ the computational cost is reduced;

* the number of necessary training data is reduced;

¢  the redundant information are removed;

* fewer features often means simpler models and more explainable results.

The first part of the feature selection procedure involves removing constant features:
even though they are essential to the software simulation with EnergyPlus, the ML model
cannot learn anything from them. The second part of feature selection has been carried out
by means of the analysis of the values in the Spearman correlation matrix (see Section 3.1),
by removing features with correlation coefficient higher than 0.5 and lower than —0.5,
preferring the variables inserted by the users (labelled with U in the third column of the
Table 1) with respect to those calculated by EnergyPlus (labelled with S in the third column
of the Table 1). Finally, the 11 features chosen as input for the models are those summarised
in Table 2.
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Table 2. Features selected for the regression models where: first column reports the variable consid-
ered in the work, the second column reports the variable abbreviations used hereinafter, the third
column specifies if the variable is inserted by the user (U) or calculated by the software (S), the fourth
column provides the variable unit.

Variable Abbreviation User/Software Unit
wall resistance wR U mK/W
wall density wd U kg/m3
wall specific heat wsh U ]/ (kgK)
wall thermal lag witl S hours
roof resistance rR U mK/W
roof density rd U kg/m3
roof specific heat rsh U ]/ (kgK)
roof thermal lag rtl S hours
orientation o U degree
air infiltration ai U ACH!
glaze transmittance Ug U W/(m2K)

! Air Changes per Hour.

2.5. Model Selection

The following step of the study was to select the best regression model for the task.
Four models were trained and tested via nested cross-validation to avoid over-fitting and
optimise the hyper-parameters [31]. The outer cross-validation was performed on 3-fold
while the inner cross-validation on 5-fold. In the inner cross-validation section a grid-search
for best values of hyper-parameters was performed. The best model was evaluated and
compared in terms of four metrics: computational time, Mean Absolute Error (MAE), Mean
Squared Error (MSE) and R? (see Section 3.2). Given a target vector y and a model output
vector 7, the latter three metrics has been computed as:

1 Y (vi — )2

Yt (i —9)?

The tested models were: Linear Regression (LR), Random Forest (RF), Support Vector Ma-
chine (SVM) and EXtreme Gradient Boosting (XGB), briefly described in the next paragraphs.
During the analysis a Multi-Layer Perceptron (or Neural Network) was tested, but the large
hyper-parameters space required too much time to be explored.

(vi—9:)* Ri(y9)=1- 6y

ks

Il
—_

2.5.1. Linear Regression

Linear Regression (LR) is the most simple and explainable class of methods for fitting
data. The general definition of a linear model is a linear combination of input features:

N
y(x,w) =Y wix; + wo )

i=1

where the coefficients w = wy, ..., wy has been determined by minimising the sum of
squared error between the observed targets and the values predicted by linear approxima-
tion (Ordinary Least Squared method), without any regularisation. Given y; the j-th target of
the data-set, §J; the j-th predicted value and by defining the error function as:

M
Hm:g%—WZ €)
f=

where M is the number of samples in the training set, then the values of w; withk =0,..., N
can be determined by solving the following equation:
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9] (w)

awk

=0 4)
It has been implemented using the LinearRegression object of the python library scikit-learn.

2.5.2. Random Forest

Random Forest (RF) is a supervised machine learning algorithm based on the concept
of bagging. Bagging methods combine the predictions of multiple base model in order to
improve the generalisation capabilities and the robustness over a single estimator [32].
A RF is composed of many Decision Trees (DT) each trained on the same set of data. In this
way, the final prediction is not decided by a single estimator, but on the voting of multiple
DTs. On average, a combined estimator is better than the single estimator because the
variance of its decision is reduced. Again, RF has been implemented using the Random
Forest Regressor object of scikit-learn.

2.5.3. Extreme Gradient Boosting

EXtreme Gradient Boosting (XGB) is a boosting supervised ML algorithm that has been
successfully employed in many data mining competition with tabular data set. Boosting
methods, similarly to Bagging methods, are composed of many base models, but instead of
acting by votes, each base model learn the residuals of the previous one, and correct them.
For XGB, the base model is again a DT. The full implementation of XGB is open-source and
can be found in the original paper [33].

2.5.4. Support Vector Machine

Support Vector Machines (SVM) are kernel based algorithms for supervised regression
or classification. Kernel based method are generally fast to train but slow at making predic-
tions for test data point [26]. SVM are very flexible since different kernel can be specified as
decision function and they work well even on very high dimensional spaces. Originally,
SVMs were devised as classification algorithms able to find the decision boundary between
two groups which maximises the perpendicular distance between this hyperplane and the
closest of the data points. SVM can be generalized to regression problems and in this case
is called Support Vector Regression (SVR). Training a linear SVR means solving;:

1
min§||w||2 ®)

subject to the constraints:
vi—gil <e ©

where € is a free parameter used as a threshold and 7 is a linear function as for Equation (2).

2.6. Model Validation

Given the results, XGB has been re-trained from scratch with a grid-search k = 5-fold
cross-validation on 75% of the data set (3862 experiments) and the best hyper-parameters
has been tested on 15% (1288 experiments), randomly selected. The results are presented in
Section 3.2. The coefficient of determination R? has been computed as in Equation (1). The
residuals were computed as:

Ei(yi, 9i) = yi — 9 @)
fori =1,..., N with N being the number of data in the test set, y being the target vector
and 7 the model output vector.

2.7. Feature Importance

Feature importance estimation is a fundamental step in model interpretability and
validation. The impact of each feature on model output has been estimated using the
python library SHAP (SHapley Additive exPlanations) [34]. SHAP is a game theoretic
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approach to interpret model output based on Shapley Values [35]. Shapley values are a
system to distribute a reward in an n-persons game. Let’s call v(S) the characteristic function
that maps subset of players into real numbers v : 2" — R. If S is a coalition of players,
v(S) is the total worth (or payoff) the coalition can obtain by collaboration. A Shapley value
is the fair reward based of the contribution of each player to the coalition. For player i its
reward can be computed as:

pilv) =~ T 18|in— S| - 1)!((S U {i}) - v(9)) ®)

" SCN\{i}

where N is a set of n players and the sum extends for each subset S of N which doesn’t
contains player i. SHAP provide a model agnostic framework to compute features impact
based on their contributions on the model output. SHAP values has been computed using
the TreeExplainer for XGB [36] for each observation in the data set.

3. Results and Discussion

In the present Section the main results are reported and discussed. The first conducted
analysis aims at identifying the features (i.e., the variables) that must be taken into account
in the work (see Section 3.1). The ML models were used to return the building energy
consumption for different building configurations. The quality of the ML models was
assessed in terms of both precision and computing time (see Section 3.2). For this part
5150 simulations were used. The best performing model was validate in the Section 3.3.
Finally, to show one of the possible use of the results of this paper, the selected model has
been used to calculate the features” importance in the Section 3.4.

3.1. Feature Selection

Figure 4 shows the features of the data set and summarises how they are correlated
between them.

we 1.00
Uw [
wa | 046 o046 -0.75
e o o0a2 oz
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rd o000ss 00056 00039 0046 014 014 6 -0.25
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Figure 4. Spearman correlation matrix. It shows how a variable is correlated with each other. Since
it is symmetrical, only the lower triangle is shown. The feature dropped from the data set were:
attenuation, superficial mass, transmittance and conductivity for both roof and wall elements.

Some features, i.e., attenuation, superficial mass, transmittance and conductivity resulted to
be strongly correlated with other features, and for this reason they were excluded, for both
roof and wall, from the following analyses. In this process, since the energy need is the target,
it was maintained.
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3.2. Model Selection

Figure 5 shows the results of a nested cross-validation on four regression models,
namely Support Vector Regressor, Random Forest, Linear Regression and EXtreme Gradient
Boosting. The comparison between different models is proposed in terms of MAE, MSE,
coefficient of determination R? and computational time, computed on the test set:

1.63 5 4.78 1.0 0.99 0.99

1.50 : 0.30

1.25 4 e Y0.25
Q
€

< 1.00 ~,§_ 3 . £0.20
0. S

=0.75 e s 2.20 2015
2 . o
T

0.50 20.10
0.33 1 a

0.25 022 ' 0.05 oa
0.26 5
“"* LR SVR RF XGB LR SVR RF XGB LR SVR RF XGB " SVR RF XGB LR
(a) (b) (c) (d)

Figure 5. (a) Average MAE; (b) average MSE; (c) average R? and (d) average prediction time for the
models, computed on each fold of the outer cross-validation.

From the graphs it can be seen that XGB outperforms all the other models in every
metrics. Only for the Prediction Time metrics, XGB is the second fastest, behind the linear
model. This was expected since the linear model prediction is obtained as weighted sum,
a very fast operation from a computational point of view. Considering the whole results,
the XGB algorithm was selected as the most suited for the task and it has been further
validated and explored.

3.3. Model Validation

Figure 6 shows the plot of true vs. predicted energy values and the residual distribution
as a function of the true energy values. The predicted vs. true energy plot shows that XGB
predicts values well adhering to the y = x line. This is confirmed by the high value of R?
equal to 0.994. On the other hand, plot of residual values vs. true energy values highlights
that errors increase with energy values, which may be attributed to a lower data density (in
both training and test set).

R? =0.994 .

40

w w
(=) w
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N
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20
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%] .

©

=

S

n 0

2 ce .
-1.5 : :
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(@ (b)
Figure 6. Results of the XGB model in the test set. (a) Predicted vs. True energy values and
(b) Residuals vs. True energy values.
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To further explore and validate the robustness of the model, we computed the SHAP
(SHapley Additive exPlanation) values [34] allowing to score feature influence.

3.4. Feature Importance

To estimate feature importance is a fundamental task in model validation. Figure 7
shows the influence of each feature on the model outputs.

High
roof resistance o =
air infiltration == -’...-.-—.
wall resistance b:
glaze transmittance * °
roof thermal lag f—- ,—E
wall thermal lag +— g
orientation ’ ©
roof density ’— =
wall density "-
roof specific heat ’
wall specific heat 1'.
Low

-4 2 0 2 4 6 8 0 12
SHAP value (impact on model output) (MWh)
Figure 7. SHAP values of each feature computed from all the observations in the data set. The differ-
ent colours indicates the feature value, i.e., from low to high value.

The variables are ranked on the basis of their average absolute SHAP values obtained
for each observation of the data set. This graph shows that in computing the energy need
the model judges roof resistance, wall resistance and air infiltration as most influential features,
since it attributes them the highest SHAP values. Moreover, it clearly shows trends between
the feature values and their corresponding impact: lower values of roof resistance and
wall resistance have a positive impact (it increases energy need) while high values have a
negative impact (it lowers energy need). On the other hand, the air infiltration feature has
an opposite behaviour on the energy balance of the building.

Moreover, it is worth to note that wall and roof resistance have a maximum negative
impact on the energy behaviour of the building characterised by SHAP values about equal
to —2 (see in the figure the high concentration of points around that value). In order to better
grasp the energy behaviour of the building, the next paragraphs investigate the relationship
between impact on model outputs and feature values for the three most influential features.

In Figure 8 are shown the SHAP value trends for the roof resistance feature for the
different values of wall resistance, which is the feature having more interactions with the
roof resistance, in order to highlight the interactions between the two features.

As first, the plot of SHAP values shows that roof resistance has a negative impact on the
predicted energy balance only for roof resistance values > 7 mK/W, while roof resistance has a
positive impact for higher values. Moreover, the relationship is clearly non-linear. The gain
of impact on predicted energy balance get progressively lower with the increase of the
roof resistance value and the minimum value of the impact is about —2 MWh. In addition,
there are strong interactions between wall and roof resistance. e.g., for the same value of
roof resistance the different SHAP values provided by the model can be attributed to the
variations of wall resistance. Similar considerations can be provided for the wall resistance,
as shown in Figure 9.
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Figure 9. Trend of wall resistance SHAP values vs. wall resistance values. The different colours
represent different values of roof resistance. From left to right: (a) Whole range of roof resistance
values. (b) Detail of portion of the plot with the highest interactions between the two features.

Again, the impact on the outputs of the model becomes negative for wall resistance
values > 7 mK/W, whereas the interaction with roof resistance is considerable for wall
resistance values > 10 mk/W. Also in this case, the maximum negative impact seems to
approach the asymptotic SHAP value of —2 MWh for the highest wall resistance values.

On the other hand, as shown in Figure 10, the relationship between air infiltration and
its SHAP values is almost linear, and the scatter plot highlights a weak interaction with
the roof resistance feature, even though the latter is the feature most interacting with air
infiltration.
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The process of model selection (see Section 3.2) tested four regression models returning
some important findings. First of all, even though the accuracy of linear model can be
acceptable for rough predictions, the non-linear models perform better than linear model,
as expected by the interpretation of the results of a preliminary sensitivity analysis (see
Section 2.3). Moreover, analysing the simulation time, all the tested models take fractions
of second to complete thousands of simulations. Comparing this result with the time taken
by the EnergyPlus simulations (20 s for one simulation computed by the computer), it is
possible to say that ML model predictions can be considered instantaneous for the user and
therefore they eliminate the waiting time between simulations.

The model validation shows the high accuracy and precision achieved by the re-
gression predictions. It is noteworthy that a reduction of precision can be seen for high-
energy-need models (see Figure 6). This is probably due by the limited number of feature
combinations that return high energy needs. Besides, considering the aim of most of the
studies is to identify low-energy-need solutions, this reduction of the precision can be
considered of minor importance for practical purposes.

Another remarkable finding concerns on the possibility to rank the investigated
features according to their importance in the building energy need. SHAP can easily shows
how any feature affects the final result, allowing the personnel involved in the building
design to focus (or to invest) more on the most important features. Considering the rank can
easily change even in the same building when some external factors change, e.g., weather
data and/or thermostat settings, see [11], this result definitely helps to better drive the
building design.

An insight of the same analysis shows how the importance of each feature is affected
also by other features’ values, demonstrating one more time that building features can not
be analysed as isolated characteristics but should be inserted in a model that consider the
whole building.

Under this light, a prediction model based on machine learning procedure, can be
a useful tool to have fast and precise energy need predictions, eliminating the operator
waiting time and avoiding to use an energy simulation software. This method can be
strongly needed when specific feature configurations must be tested. Besides, it can
provide results in addition to the energy need, such as the rank of the features according to
their importance. Obviously, to achieve a good precision, the proposed method needs high
number of simulations that are run anyway by the optimisation algorithms.
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4. Conclusions

Today, accurate and fast prediction of the building energy need is a crucial matter
in the path towards low-energy or near-zero-energy buildings. This paper proved that
an important advancement could come from the application of machine learning models
for the regression of the results of energy simulations. In fact, starting from the outcomes
of several energy simulations on a case study building, three machine learning models,
i.e., Support Vector Machine, Random Forest, and Extreme Gradient Boosting, were ex-
plored and applied for the assessment of the energy need of the building under several
configurations. The main findings of the paper are:

1.  The computational time for a prediction is basically instantaneous and substantially
lower than the ones requested for a software energy simulation;

2. The validation of the models shows the high accuracy and precision achieved by all
the three models with the XGB providing the best results in terms of MAE, MSE and
computational time;

3. SHAP can easily provide a ranking of the most important features (characteristics) of
the building envelope so helping the building design and optimisation;

4. The importance of a feature is strongly affected by the values of the other features
and then a building features must be studied with a global model that considers the
whole building characteristics;

5. The strong non-linearity of the problem provide limitations to the adoption of linear
models, that can be acceptable only for a preliminary rough prediction.

6. The method can be applied to both new and existing buildings. In particular for the
latter, the study of feature importance can provide useful information directing retrofit
interventions towards the most effective ones.

This work demonstrated the efficacy of the proposed method that proved to be a
valid alternative to the simulations and an additional tool that can integrate optimisation
algorithms.

Further developments will investigate the application of machine learning models
to different case studies and with the addition of further building features and build-
ing characteristics in order to test the ability of the models to a larger set of buildings
and scenarios.
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