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Abstract: Detection and diagnosis of the malfunction of the heating, ventilation, and air conditioning
(HVAC) systems result in more energy efficient systems with a higher level of indoor comfort. The
information from the system combined with the artificial intelligence methods contributes to powerful
fault detection and diagnosis. The paper presents a novel method for the detection and diagnosis
of multiple dependent faults in an air handling unit (AHU) of HVAC system of an institutional
building during heating season. The proposed method guided the search for faults, by using the
information and operation flow between sensors. Support vector regression (SVR) models, developed
from building automation system (BAS) trend data, predicted air temperature of two target sensors,
under normal operation conditions without known problems. The fault symptom was detected when
the residual of measured and predicted values exceeded the threshold. The recurrent neural network
(RNN) models predicted the normal operation values of regressor sensors, which were compared
with measurements, as the first step for the identification of fault symptoms. Rule-based models
were used for fault diagnosis of sensors or equipment. Results from a case study of an existing
building showed the quality of proposed method for the detection and diagnosis of the multiple
dependent faults.

Keywords: fault detection and diagnosis; heating; air handling unit; building automation system;
machine learning

1. Introduction

Approximately 40% of the total annual energy use in the United States is due to the
building sector [1]. The operation of the heating, ventilation, and air conditioning (HVAC)
systems is normally monitored, but the potential offered by building automation systems
(BAS) trend data for the fault detection and diagnosis (FDD) is still not fully exploited,
despite the extensive research over last decades. If HVAC systems are not maintained
regularly or if they are inappropriately controlled, and if the system faults and degradation
are not regularly detected, around 15 to 30% of the energy in the commercial buildings is
wasted [2].

During the literature review, the authors did not discover publications about the
automated detection and diagnosis of multiple dependent faults (MDFDD) in HVAC
systems, where one fault can have an impact on one or more other faults. This is still
a challenging problem, since the combination of several faults makes the separation of
individual faults [3] difficult. Three examples are listed herein:

1. One fault has a positive or negative impact on another fault;
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2. Two faults occur but their combined effect is not observed on the third sensor, which
indicate normal operation; and
3. Two faults occur, but only the effect of one fault on the third sensor is observed.

The objective of this paper was the detection and diagnosis of multiple dependent
faults of air temperature sensors of an AHU. The supervised machine learning models were
developed for the prediction of the target and regressor air temperature sensors to generate
the predicted (expected) values. If the residual between the measured and predicted values
exceeded the defined threshold, a fault symptom was detected. The rule-based technique
was combined with the machine learning models to diagnose the main source of faults
in the air temperature sensors of the AHU. The proposed method also detected the false
symptoms of faulty sensors by using the relationship between sensors.

2. Literature Review

This section introduces publications related to the fault detection and diagnosis of
different components of HVAC systems, which use measurements or synthetic data from
computer simulation. FDD models for sensors and equipment were categorized into three
groups [2,4]: (1) quantitative model-based, (2) qualitative model-based, and (3) process
history-based models.

2.1. Quantitative Models (Physics-Based Models)

Physics-based models, which are also named white box, analytical, or first principle
models, can predict the space thermal environment, HVAC operating conditions, and
energy use [4,5]. Researchers have used single and hybrid physics-based models for
FDD of HVAC system components [6—14] to capture steady and transient operation with
acceptable accuracy and flexibility. However, they use complex models, need detailed
information about the building and HVAC systems for the model development, validation,
and application, and have large computing costs. For such reasons, this class of models has
the least popularity for FDD applications.

2.2. Qualitative Models (Rule-Based Models)

These models use a series of rules derived from experts’ knowledge, and from energy
and mass balance equations [15-21]. The rule-based models are used alone or combined
with physics-based models [13,14,22] or process history-based models, such as decision
trees [23], Bayesian networks [24-26], and principal component analysis (PCA) [27], to
develop the hybrid models for FDD applications. Rules-based models can be developed
without proper understanding and information about physical processes in HVAC sys-
tems. Since the rules are extracted from a specific system, the addition of new rules or
generalization to other systems is challenging.

2.3. Process History-Based Models (Data-Driven Models)

Data-driven models such as black-box and grey-box models are developed by using
only historical data, and with limited knowledge about the physical processes. The devel-
opment of such models requires large and accurate data sets [28]. This class of models is
the most popular for FDD applications in HVAC systems. Researchers have developed
and applied machine learning (ML) models to detect and diagnose multi-faults of HVAC
systems. Machine learning is a subfield of artificial intelligence (AI) domain, which learns
patterns from data without being explicitly programmed [29]. For instance, they used
Python programming language [30] with open-source packages such as Scikit-learn [31],
Keras [32], and Tensorflow [33]. They also used the MATLAB program for FDD applications
for HVAC system and components such as air handling unit (AHU), variable air volume
system (VAV), chiller, fan coil unit, variable refrigerant flow (VRF), and ground source heat
pump (GSHP).
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2.4. Discussion

Out of a total 73 reviewed articles for the FDD, about 72% of publications covered the
detection and diagnosis of one single fault, while only 28% covered multiple faults. The
use of data-driven models for single fault or multiple faults is summarized below:

a.  Synthetic faulty data were used to develop support vector machine (SVM) models
for single and multiple FDD in air handling units (AHU), centrifugal chillers and
other HVAC equipment/systems [7,34—40]. Support vector regression (SVR) models
were applied for single FDD [41-45].

b. Artificial neural network (ANN) models [46,47], with only one hidden layer, have
been used for single and multiple FDD. Shallow feedforward ANN that has only
one hidden layer was used for MFDD in AHUs using experimental data [48]. ANN
model was also applied by [49,50] using simulated data set from EnergyPlus and
TRNSYS for multiple faults detection in HVAC systems.

c. Deep artificial neural network (DANN) that consists of two or more hidden layers
was applied in some studies using synthetic or experimental data for single and
multiple FDD in the HVAC systems [48,51-54]. The selection of the optimum number
of hidden layer neurons methods was proposed by [55-58].

d.  The recurrent neural network (RNN), another deep learning method, which includes
long-short-term memory (LSTM) architecture, was developed for multiple FDD using
synthetic and measured databases [59]. The LSTM is capable of adding, storing and
removing the information that is helpful for predictions [60].

e. The PCA method, which is commonly used for dimension reduction and feature
extraction [61,62], was applied using experimental data by [63,64] for single and
multiple FDD in chillers and space heating and domestic hot water systems. Hybrid
PCA models were applied for MFDD by [65-68].

f. The naive Bayes method was used for single and multiple FDD by [69,70].

g.  Clustering models were applied for multiple FDD of various HVAC systems by [71,72].

Compilation of MFDD models for HVAC systems from the literature review reveal
the following trends [10,22,34,36,37,49-51,59,71,73-81]:

a.  Hybrid models accounted for 22% of the total number of studies, ANN and SVM
accounted each for 22%, K-NN 17%, Bayesian network 11%, rule-based 5%, decision
tree 5%, random forest 5%, clustering 5%, SVDD 5%, Deep ANN 5%, CNN 5%, and
linear regression and linear discriminant analysis accounted each for about 5% of
total publications.

b.  Measurements’ data were used in 67% of the publications, while synthetic data were
used in 33%.

C. About 44% of the publications focused on the FDD models for AHUs, 33% on chillers;
other HVAC systems/components (i.e., whole HVAC system, packaged rooftop unit,
and ground source heat pump) accounted each for 5% of studies.

d.  While most publications presented FDD methods for one faulty sensor, a smaller
number of publications covered the multiple dependent FDD (sequential or concur-
rent) in HVAC systems.

In conclusion of the literature review, the data-driven techniques have the most
attention for FDD in HVAC system, because they can be used if there is limited information
about the system operation model. The black-box model is the most common model of the
process history-based technique due to its simplicity, performance, and accuracy. However,
the second most common technique was the rule-based model which is a qualitative-based
model. The quantitative-based model is the least common popular method for FDD due to
its complexity in development.

The summary of the strengths and weaknesses of the FDD models are represented in
Table 1.
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Table 1. Strengths and weaknesses of FDD methods.

Model

Strengths

Weaknesses

Process history-based

The models are well developed with
just input and output of the system
without knowing the physical system
information (Black-Box).

Simplicity.

Good performance.

Applicable for non-linear systems.

A large and reliable data set is required
to develop an accurate model.

Qualitative model-based

Simplicity for development and
application.

No need to know the mathematical
models of the system operation.

Rules can be developed and applied for
a specific system which the mode
cannot be applied for other systems.

Quantitative model-based

Accuracy on the target value
prediction.

Capture steady and transient system
operation.

Flexibility.

Generalisation with enough

Complexity of models.
Computationally intensive.

If there is not enough information of
the system operation, the estimation of
the target variable may not be accurate.

information, etc.

For development of the black-box models, selection of the correlated variables is
so important to consider the effectiveness of the mode, the accuracy, and stability. For
the HVAC system components, the system operation variables (air temperature, supply/
return water temperature, flow rate, etc.), environmental variable (temperature, etc.), time
indicators (wee-days, weekend), and operation conditions (operation schedule, on/off)
were potential correlated variables.

The model hyperparameter selection was another important aspect for the machine
learning model developments. If a few parameters were used as the input data set, short
training dataset and less hidden layer neurons were selected, the model may not be devel-
oped perfectly; in other words, it will be underfitted, i.e., the model has not been trained
very well, and cannot predict the system performance. However, if many parameters
and features were used as the input, and many hidden layer neurons in ANN model
were selected, the model will be overfitted. The model was trained perfectly and predicts
accurately in training set. However, prediction in the new (testing) dataset was not accurate.

The advantages and limitations of models were reported, and some are summarized
here. This review section can be used as a guideline for development and application of
models for detection and diagnosis of the multiple dependent faults in the components of
the HVAC systems.

The novelty of this study for multiple dependent fault detection and diagnosis of air
temperature sensors in the AHU is summarized below:

- A novel sequential (compound) machine learning model for the prediction of the
target variable (T;;,; and T,,.) in the AHU for the scope of MDFDD was proposed.

- Anovel technique for the threshold definition for the scope of MDFDD was proposed,
which combines the sensor uncertainty and ML model uncertainty.

- Ahybrid technique, which combines machine learning models and rule-based tech-
niques, was proposed for the MDFDD of the air temperature sensors in an AHU.

- Different machine learning, deep learning, and hybrid models for the MDFDD scope
were developed with the application of the K-fold cross validation of models.

This paper tests two hypotheses: (i) a combination of machine learning (ML) models
using BAS trend data and rule-based models were successful in the multiple dependent faults
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detection and diagnosis (MDFDD) in the sensors of an AHU, and (ii) the information about
relationship between sensors was essential for correctly detecting and diagnosing the faults.

3. Case Study

The case study was an air handling unit of an institutional building, the Genomic
building, with a total floor area of 5400 m?, including three floors (Figure 1). The building
was located in Montreal, Canada, with an orientation of 60° NW and a window-to-wall ratio
of 33%. This building had 48 offices, three conference rooms and corridors which allocated
for about 53% of the total floor area. The laboratories with the fume hoods accounted
for 30% of the area, and the remaining areas were accounted for the kitchen (lounge) and
restroom on each floor. The design capacity of the HVAC system was 42,472 L/s and
119.2 kW of electric power input to fans. More details are presented in [82,83].

(b)

Figure 1. View of Genomic building: (a) outside view, and (b) inside view of ground floor level.

Measurements used in this paper were recorded by 10 physical sensors (Table 2) at
15-min interval, over the heating season from 26 December 2016 to 29 January 2017. For
comparison with measurements, four sensors were modelled: Ty, and T, by using SVR
models, and Ty, and Ty, by using RNN models.
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Table 2. List of AHU variables.
No. Variable Description Fixed (Bias) (By) Random Error (Ry) Total Uncertainty Unit
1 Toa Outdoor air dry-bulb temperature °C
2 Tra Return air temperature °C
3 Ta Mixed air temperature 0.45 0.19 0.49 °C
4 Tane Air temperature after heating coil °C
5 Toa Supply air temperature °C
6 Tsuw Supply hot water temperature 0.31 2.20 222 °C
7 Vi Mixed air volumetric flow rate 222.0 506.11 552.65 L/s
8 Via Return air volumetric flow rate 222.0 229.84 319.55 L/s
9 Voa Outdoor air volumetric flow rate 222.0 355.98 419.53 L/s
10 Valveyc Heating coil valve position - - 2 Y%
11 AT jan Air temperature rise over supply fan - - - °C
In the air handling unit (Figure 2), the outdoor air at temperature T,; and volumetric
flow rate V, is mixed with recirculated air (removed from the building) at temperature
Ty, and volumetric flow rate V,, air flow rate. The mixed air has the temperature T, and
volumetric flow rate Vi, = Vi, + V,,, which equals the volumetric flow rate supplied to
all building spaces. The heating coil heated the mixed air from Ty, to Ty, which was
controlled by a thermostat connected with a hearing coil valve that regulated the heat water
flow at temperature Tsypy.
\ .
«— |/ T, «— D Return air
AN
Exhaust Air|{ i Via ‘
/\N/\/
J
Outdoor Air |3 T Heating coil _
ma
N — —> Tupe i
7,, —> { Vi UU Supply air
Voa | ] T
i Valveyc
i AT, s,fan
Dampers | Tsaw

Figure 2. Schematic of air handling unit (AHU).

The sensors uncertainty, calculated from fixed (bias) and random errors, was used
to generate the threshold to detect and diagnose the multiple faults. The fixed (bias) and
random errors for the sensor’s uncertainty were obtained from previous study of the same
AHU [82,83].

4. Method

This paper proposes a method for the detection and diagnosis of multiple dependent
faults of sensors of an AHU, by using a combination of machine learning (ML) mod-
els, which proved in the past good performance for linear and non-linear systems [4,84],
and rule-based models. The ML models are developed from BAS trend data and imple-
mented using Python (version 3.8.1) [30] with open-source libraries such as Scikit-learn [31],
Keras [32], and Tensorflow [33].
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Data collection
from BAS
(Section 3)

A 4

Data
preprocessing
(Equation (1))

Training and
testing set
selection
(Section 4.6)

One possible approach would consist of launching an exhaustive search, by using ML
models, for detecting faults of all sensors in the AHU at time t. However, this is not an
efficient solution.

The novelty of method proposed in this paper consists in the guidance for faults
search, by considering the information and operation flow between sensors, and between
sensors and devices. For this purpose, only two target sensors installed in the AHU are
considered as the starting point (Figure 2), the mixed air temperature (Ty,;) sensor, and the
air temperature sensor after heating coil (T).

The following steps are implemented for the detection and diagnosis of the dependent
multiple faults in the air temperature sensors of the AHU (Figure 3):

(1) Data collection from BAS.

(2) Data pre-processing for quality control, missing data, and data normalization. Mea-
surements X that does not respect Equation (1) are removed.

(8) Selection of training and testing data sets.

(4) ML model development for the prediction of first target sensor (Ty,).

(5) ML model development for the prediction of second target sensor (T;,c).

(6) Calculation of residuals between measured and predicted values of Ty, and Ty,
respectively.

(7) Detection of fault symptom.

(8) Application of rule-based technique for the fault diagnosis step.

No
|
abs(Tma = Tmap) > €
Or
abs(Tahc - Tahc,p) > €

Fault symptom is
detected.

A

Residual calculation between Fault diagnosis step is

measured and predicted values o implemented using rule-
Tma and Tanc based technique
(Section 5.3) (Section 4.3)
A
A

ML models development for RNN models development
»  prediction of Ty, and Tane for prediction of regressors

(Section 4.1:Equations (9) and (10)) (Section 4.2)

Figure 3. MDFDD diagram.

A compound ML model is proposed (Figure 4) that uses two distinct but related
models (ML no.1 and ML no.2), one for the prediction of Ty, sensor value, and another
for the prediction of T, sensor value, each one measuring the impact of several inputs.
Sensors that measure those independent inputs are called regressor sensors.

Wdataset — 2 X Odataset < X < Wggtaset +2 X Odataset (1)

where, 11,4601 1 the average of the data set, 0,445, is the standard deviation of the dataset,
and X is the data point.
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Input time step: Target time step:

(1)

(®)

Tma

—

t t
Vina Tanc
ML model ML model

t
no.l Tenw no.2

t
ValveHc

Figure 4. Schematic SVR model for prediction of target variables T},; and T, at time t for fault
symptom detection.

In this paper, the support vector regression (SVR) is developed to predict the mixed
air temperature Ty, that corresponds to normal operation. If the residual (Res) of actual
measurements of Ty,; and predicted values (Tyqp) exceeds the defined threshold ¢, with
positive or negative measuring bias, i.e., Resy, = abs(Tig — Tiap) > ¢, the fault symptom
for Ty, sensor is detected. Then the fault diagnosis method is activated.

The fault symptom could be generated by abnormal measurements of faulty target
sensor, or by abnormal operation of other sensors/devices due to the improper control
or degradation of performance. Therefore, one can ask the question: is the T}, sensor
faulty, and/or the regressor sensors (Tos, Tra, Vina, Via, Voa) are faulty (Figure 4)? If the
regressor sensors are faulty, and T}, sensor if not faulty, then a false symptom of T}, sensor
is detected.

To respond to this question, the recurrent neural network (RNN) is used for the fault
symptom identification of regressor sensors. The value of each regressor sensor X at time t
is predicted by using the past measured values at t-1, t-2, . .. , t-n (Figure 5). If the residual
between actual measurements and predicted values, corresponding to normal operation of
regressor sensor X, exceeds the defined threshold ¢, the fault symptom of regressor sensor
Xis detected.
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Input time step: Target time step:
(t-1, t-2..., t-n) (1)
t-1
X

t-2 t
X X

RNN model

Figure 5. Schematic RNN model for prediction of regressor sensor X at time t for fault symptom
detection.

As an example, fault symptoms might be detected on two sensors, Ty, and To,. The
diagnosis must clarify if both sensors are faulty, or only one sensor. If the fault symptom
of regressor sensor T_oa is detected, the corrected sensor output T}, g under the influence
of faulty Ty, is calculated by using a grey-box model, which is based on energy balance
equation of mixing box (Equation (2)):

Tma,R =aTu+bTy (2)

where Ty, r is the expected value of Ty, as affected by the faulty Tos; a = Voa/ Vi, and
b =1-a = Vy;/Vyu; coefficients a and b are identified by using the least square method
(LSM) with training data set. For simplification, it is assumed that other regressor sensors
are accurate.

If the residual of measurements of Ty, and corrected predicted values T, r
(Equation (2)) does not exceed the threshold ¢, then T, is not a faulty sensor, but it
signals the deviation due to the faulty T,,. Hence, a false symptom of Ty, is detected.
Therefore, only T, sensor is faulty. Similar approach is used for other regressor sensors
such as Ty;. A few examples of rule-based diagnosis models are presented in Section 4.3.

The support vector regression (SVR) is also used to predict Ty, that corresponds to
normal operation, without known problems. If the residual (Res) of actual measurements
of Ty and predicted values Ty, exceeds the threshold ¢, i.e., Resgne = (Tane — Tancyp) > €,
the fault symptom of T, sensor is detected.

If the regressor sensor Ty, is faulty, the corrected sensor output T,z under the
influence of faulty Ty, is calculated by using a grey-box model, which is based on energy
balance equation of heating coil (Equation (3)):

C TS W
TuhC,R = d VH +e Ty, (©)]
ma

where T, r is the expected value when T, is affected by the faulty T),; and coefficients
¢, d and e are identified by using the least square method with training data set. If the
residual of measured T, and predicted T, g (Equation (3)) does not exceed the threshold,
we can conclude that T, is not faulty, but it signals the deviation due to the faulty T),,. A
few examples of rule-based diagnosis models are presented in Section 4.3.
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The optimum hyperparameters of the RNN models were selected by using The Ran-
domizedSearchCV method [31]: the number of hidden layers = 4, number of hidden
neurons in each hidden layer = 50, the dropout regularization ratio = 0.2, and the sigmoid
activation function. Ten time-lags of measurement are selected by random search as inputs
of regressors.

4.1. Fault Symptom Detection Model Using Support Vector Regression (SVR)

Support vector regression (SVR) is a supervised machined learning model which
comes from the support vector machine (SVM) for regression-based purposes [85-88]. The
SVM model predicts the target value with the function of (f) by mapping using a nonlinear
function (@), the data set of x into a higher dimension feature space.

f(x) = (w, 2(x)) +b 4)

where, w is the matrix of regression coefficients, b is the intercept, x is the matrix of
regressors.

The optimization model was proposed by Vapnik [89] to formulate function f which
includes regression coefficient (w) and intercept (b) to predict the target vectors (i) with a
precision of 6.

. 1 l \ e
mingpee 5 |[w? +C 30 (G487 w, @(x) +b—yi <o+8i yi — (w, @(x)) —b <048 &, & 2 0,i = 1,...,1. (5)

where, y; is the target vector observation, ¢; is a slack variable, and ¢ and C are the
parameters that need to be selected through random search over a given range of values.
The regression function f(x) and regression coefficients (w) are presented in
Equations (6) and (7).
f(x) = (& +ai)k(xi,x) +b (6)
l
w =Y (a;+a))x )
i=1
where, «; and «; are the Lagrange multipliers and k is the kernel function.
The kernel function is used for the distribution representation of input values of the
training data set [90]. Radial basis function is used as the kernel function as represented in
Equation (8).

K(xixj) = exp(—vlx —x[?) ®)

where, 7 is the width parameter which reflects the variation range of all regressors in the
training data set.

The values of required parameters (6, C, ) are identified using the training data set,
and thus the SVR model is developed. The predicted target values are obtained by using
the testing data set.

The compound SVR models for the prediction of the Ty, and T, are summarized by
Equations (9) and (10).

Tmat = f( Toat/ Tratl Voat/ Vrat; Vmat ) (9)
Tahct = f( Tmaterat/ TSHWt; VﬂlveHCt ) (10)

4.2. Recurrent Neural Network (RNN) for Prediction of Regressor Sensors

In this paper, RNN models predict the values of correlated regressor sensors at time t
by using the previous values at times t-1, t-2, ... , t-n. These values are further used for
the generation of expected target value (e.g., Tr;) as affected by faulty regressors (e.g., Tos).
This information was used for the fault symptom detection (see Section 4—Method). The
RNN model is a deep learning model with long-short-term memory (LSTM) architecture
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hy-g

that uses the previous sequential information to learn and predict the present values.
LSTM architecture has the chain-like structure of the neural networks and is able to learn
the long-term dependencies. The LSTM is capable of adding, storing and removing the
information [61]. The internal schematic structure of the RNN with the LSTM algorithm is

illustrated in Figure 6.
@

-1

l @"(@—‘@

® O ()

Figure 6. Recurrent neural network with LSTM algorithm.

Where X, is the input vector, h ¢ is the hidden layer or output vector, tanh is the tanh
activation function and 5 is the sigmoid activation function, and C ¢ is the state of cell.

The RNN models of regressors sensors are summarized by Equations (11)—(14). The
regressor sensors values are predicted by the previous time step values. At this step, for
the prediction of regressors, the individual sensors are used without consideration of the
impact of other sensors.

ToalL = f(Tmztil/ Toatizl' . -/Toatin) (11)

Trat = f(Trat_lr Tmt_zz ceey Trat_n> (12)

Tsuw' = f(TSHWt_lr TSHWt_Z/-u/TSHWt_n) (13)
Valveyc' = f(ValveHct_l, ValveHCt_2,...,ValveHct_”) (14)

4.3. Fault Diagnosis of Sensors Using Rule-Based Models

After the fault symptoms were detected for target and regressor sensors, some rule-
based models were used to diagnose the potential causes of faults. A few examples of such
rules are presented below. When some sensors or devices were identified as possibly faulty,
physical investigation by the maintenance staff was needed. In the meantime, the values of
Tmap, Trap, Toap, and Tuhc,p/ which are predicted by SVR or RNN models (used as virtual
sensors), could be used for the continuation of correct operation of AHU.

The values of regressor sensors (e.g., Toa, Trs) depended only on the previous values,
and are not affected by other sensors. The reading of T, was affected by the regressor
sensors, and this effect was introduced by the grey-box model.
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A. Group A of rule-based models

When the fault symptom of sensor T}, was detected (i.e., Resyq = abs(Tma — Tiap) > €),
the following rules apply (for the simplification of explanation, all other regressor sensors
are assumed to be correct):

a. If Resoq = abs(Toq — Toap) > €, and Resyq = abs(Tma — Timap) > €, then both Ty, and Ty,
sensors have fault symptoms.

b. If Resyg = abs(Tyy — Trap) > €, and Resyg = abs(Tig — Tinap) > €, then both Ty, and Ty
sensors have fault symptoms.

C. If Resys> €, and/or Resy; > €, and Resyg = abs(Tia — Tiuar) < €, then Ty, sensor is not
faulty; and T,, and/or Ty, sensors are faulty.

d. If Reso; < €, and/or Resy, < €, and Resyg = abs(Tima — Tiuap) > €, then only Ty, sensor
is faulty.

e. If Reso; > €, and Resy; > €, and Resyg = abs(Ting — Tiug,p) > €, then all three sensors, Ty,

Ty, and Ty, are faulty.
Other rules can be used for the diagnosis of outdoor and return air flow dampers
position.
B.  Group B of rule-based models

When the fault symptom of sensor T is detected with positive measuring bias
Resane = (Tan — Tanep) > €, the corrected sensor output Tpye g under the influence of faulty
Tina is calculated, and the following rules apply:

a. If Res = (Type — Tyaper) < €, then Ty, sensor is not faulty.
b. If Res = (Type — Taper) > €, then Ty, sensor is faulty.
c. If the heating coil valve position (Valveyc) is recorded open with (Valvepc — Valveyc p)

< ¢, abs(Tyg — Tmayp) < €, and (Tsyw — TSHW,p) > ¢, then the T, sensor is possibly
faulty, and/or the hot water temperature is too high.

d. If (Valveyc) is recorded open with (Valveyc — Valveyc,y) > €, abs(Tmg — Tmap) < €,
and (Tspw — Tsgwyp) < €, then Ty, sensor is possibly faulty, and/or the heating coil
valve might be stuck opened.

e. If (Valvepic) is recorded open with abs(Valveyc — Valveycy) < €, abs(Tig — Tmayp) < €,
and (Tspw — Tsgwyp) < €, the Ty, sensor is possibly faulty with positive bias.
f. If (Valvepc) is recorded as closed, and abs(Ty; — Tiap) < €, then Valveyc and/or

heating coil leaks.
g. If (Valveyc) is recorded open, and (Tys — Tiayp) > €, then Ty, sensor and/or Ty,
sensor might be faulty.

4.4. Performance Evaluation

The performance of prediction models of target variables was evaluated with statistical
indices (Equations (15)—(19)): Coefficient of determination (R?), root-mean-squared-error
(RMSE), mean absolute percentage error (MAPE), mean bias error (MBE), and maximum
absolute error (MEnax) [91,92].

R2 1—23—1(%_91’)2] % 100 (15)
Yo Wi—w)

(16)

(17)

(18)

(19)
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where, 7J; is the predicted value, y; is the measured value, and ¥ is the average measured
value over the selected time interval.

4.5. Fault Detection and Diagnosis Performance

The performance of MDFDD models was evaluated by using the accuracy, precision,
and sensitivity measures (Equations (20)—(22)) [93-95]. Accuracy measured the number of
correct predictions of faulty and normal readings, respectively, over the total number of
predictions (Equation (20)). Precision measured the number of correct predictions of faults
out of all predicted faulty readings (Equation (21)). Sensitivity measured the number of
faults predictions out of all actual faults (Equation (22)).

_ TP +TN o
Accuracy = TP - TN £ FP £ FN 100% (20)
. P o
Precision = mlOO Yo (21)
e TP o
SenSItIV1ty = m 100 /0 (22)

where, TP is number of true positives, e.g., the number of correctly predicted faults; FP
is number of false positives, i.e., the incorrectly predicted faults; FN is number of false
negatives, e.g., the incorrectly labelled data as no-fault; and TN is number of true negatives,
e.g., the correctly labelled readings as no-fault. The confusion matrix (Table 3) describes the
classification of predicted faults compared with true (known) faults.

Table 3. Confusion matrix for fault detection.

True (Known) Faults

Negative (0) Positive (1)
Negati N P
Predicted faults egative (0)
Positive (1) EN -

4.6. Optimization of Training Data Sets for Model Development

The size of training set and selection of models hyperparameters were optimized. The
hyperparameters for the SVR model are 5, C, v (Section 4.1). The hyperparameters for
the development of optimized RNN models are the input time lags, size of training set,
number of hidden layers, number of hidden neurons, and the dropout regularization ratio.

The developed ML models were optimized using RandomizedSearchCV tool [31]. This
is a tool in the Scikit-learn package of Python, which randomly selects the hyperparameters
out of the values and options assigned by the user, to obtain the optimum ML models for
Tma and Ty, over k-fold cross validation.

The following steps are applied for the optimization of training data set size:

(a) Let’s assume, for the purpose of explanation, the length of training the data set was
three days, including 288 data points, from 13-15 January (Figure 7) and was tested
with data from 16 January (96 data points). A new training data set was selected, with
the same length of three days, by applying the sliding window technique, from 14-16
January, and tested with data of 17 January. In all, the sliding window moved over
six consecutive days. Hence, the 6-fold cross validation used six different training
data sets. The average RMSE value of predictions of Ty, over the corresponding
testing data set was 0.41 °C. By using a similar approach, the average RMSE value of
predictions of T, was 0.21 °C.

(b) The sliding window technique was implemented in this paper to evaluate the length
of training data set over the course of consecutive days.

(¢) Results from different training data sets with lengths of 288, 480, 672, 864, 1,056, and
1,248 data points measured at 15-min intervals were compared. The optimum length
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of training a data set for the development of ML models of T}, and T, was composed
of 288 data points.

(d) The RandomizedSearchCV tool, including 10 cross-validation and 30 times for the
number of iterations, was applied to obtain the optimum values for the hyperparame-
ters of the SVR model for the T, and Tj,.. The optimum values for T}, are C = 15.32
and vy = 0.015; and for Ty, are C = 12.87 and y = 0.057; the kernel was set to RBF for

all SVR models.
288 Training data 96 Testing
(13 — 15 January) data
(16 January)
288 Training data 96 ;l;estmg
(14 — 16 January) ata
(17 January)
288 Training data 96 ;l;estmg
(15 — 17 January) ata
(18 January)
288 Training data 96 gestmg
16 — 18 January) ata
( (19 January)
288 Training data 96 'g:stmg
(17 - 19 January) ta
(20 January)
288 Training data 96 'g:stmg
(18 — 20 January) ta
(21 January)

Figure 7. Training and testing data sets with sliding window technique from 13-21 January for the
prediction of Ty, and Ty,
5. Results and Discussion

This chapter presents the results of proposed MDFDD method with two different data
sets: (i) a set with normal operation data, and (ii) a set with abnormal operation data.

5.1. Detection of Faults of Ty, Sensor under Normal Operation Conditions

Table 4 reports the average statistical indices from the prediction of T, by using the
SVR model over six consecutive testing days (16-21 January). The threshold of 0.90 °C for
fault detection is set by considering the sensor uncertainty and RMSE of model prediction.

Table 4. Prediction performance of SVR model of T, over training data set of three days and average
testing results over the next six days.

Prediction Performance of Model Over Training Data Set (288

Average of 6-Fold Cross-Validation of Prediction

Data Points) Performance Over Testing Data Set of One-Day

Target IT}P“t (96 Data Points)
Variables
RMSE MAPE MBE MEmax RMSE MAPE MBE MEmax
Q) (%) Q) Q) (W] (%) Q) Q)
TDIZ 7 Tﬂl 7
Vina, Vra, 0.31 043 0.04 151 0.41 2.63 0.34 0.97
VO{I

The comparison of measured and predicted values of Ty, over testing data set is
illustrated in Figure 8. A few fault symptoms were detected on 20 January, when the
residual of measured and predicted values of T, exceeded the threshold of 0.90 °C.
However, the anomaly of measurements was detected only for about 75 min, and then
the measurements returned to normal values. Most likely, this symptom was created by
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staff entering the AHU for maintenance purpose. Therefore, no faults of T, were detected

ur ldeI norx lal O PeI a thI 1 COT ldl thI 1S.
f
L/\(/LA'

Wy

15

-
=

A
b”

[
w

-
(¥

_mﬂﬂwfqm“

Mixed air temperatur (T,,,) (C)

111 —— Measured
Predicted
« Fault flag
10
16 January 17 January 18 January 19 January 20 January 21 January
Measured every 15-min
Figure 8. Measurements versus predictions of Ty, over testing data set under normal operation
conditions.
5.2. Detection of Faults of T,y Sensor under Normal Operation Conditions
Table 5 reports the average statistical indices from the prediction of T, over six
consecutive testing days (16-21 January). The comparison of measured and predicted
values of T, over testing data set is illustrated in Figure 9. Since the residual of measured
and predicted values of T, did not exceed the threshold of 0.60 °C, no faults of T,;,. were
detected.
Table 5. Prediction performance of SVR models of T, over training data set of seven days and
testing over the next day.
Prediction Performance of Model Over Training Data Set (288 Ave;age of 6-Fold Cross.-Vahdatlon offPredlctlon
Data Points) Performance Over Testing Data Set of One-Day
Target Input (96 Data Points)
Variables
R? RMSE MAPE MBE MEmax RMSE MAPE MBE ME max
(%) (W] (%) Q) Q) (W] (%) (W@ Q)
T‘mﬂ/ VTHHI
Tane Tsuw, 98.83 0.16 0.14 0.02 0.57 0.21 1.08 0.17 0.60

Valveyc
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Figure 9. Measurements and predictions of T, over testing data set under normal operation
conditions.

Statistical indices of predictions of RNN models over normal operation conditions,
and the threshold for each sensor are presented in Table 6.

Table 6. Prediction performance of Recurrent Neural Network for selected regressors sensors.

Regressor Sensor Average of 6-Fold Cross-Validation of Prediction Performance Over Testing Threshold for Fault
at Time ‘¢’ Data Set of One Day (96 Data Points) Detection
. . o & = Sensor
Variable Unit RMSE MAPE (%) MBE MEmnax Uncertainty + RMSE
Toq °C 0.89 100.03 1.98 3.42 1.38
Ty °C 0.08 0.91 0.20 0.38 0.57
Tsaw °C 0.70 475 1.9 2.74 1.00
Valverc % 1.41 10.72 4.61 3.79 341
5.3. Detection and Diagnosis of Faults from Abnormal Operation Data
As in most cases of measurements from BAS, the available data set does not contain
enough abnormal operation data that are due to sensor faults. In absence of faulty data,
artificial faults of sensors were inserted in the testing data set of Ty; and T,. In addition,
a grey-box model (Equation (2)) was applied to predict the target sensor Ty, output as
induced by the artificial faults of T,; and T, (Table 7).
Table 7. Grey-box model for prediction Ty, as influenced by regressor sensors Ty, and Tr,.
No. Model Training Data Set (288 Data Points (3-Days)) Test Data Set (96 Data Points (1-Day))
Parameter Value Unit R? (%) RMSE (°C) R? (%) RMSE (°C)
0.204 -
1 Equation (2) 92.24 0.53 95.98 0.55
b 0.796 -

In a similar way, the relationship between the target sensor T, and regressor sensors
(Equation (3)) was applied.
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Return air temperatur (7,,) (C)

Outdoor air temperatur (T,,) (C)

26

25

24

23

22

21

One example of application of proposed method of MDFDD using artificial faults is
presented in this section. Artificial faults were generated by adding to actual measurements
of To; and T, a bias error of 0.5 °C on 19 January at 12:01 a.m., followed by a ramp of
0.02356 C/time step until 21 January at 12:00 a.m. (Figures 10 and 11).

6
4 —— Measured
5 Predicted
e Fault flag
i V
-2
=1 \
-6
-8
-10
-12
-14
-16
-18
=20
16 January 17 January 18 January 19 January 20 January 21 January
Measured every 15-min
Figure 10. Measurements and predictions of Ty, with artificial faulty data.
—— Measured
Predicted
¢ Faultflag
\r’
16 January 17 January 18 January 19 January 20 January 21 January

Measured every 15-min

Figure 11. Measurements and predictions of Ty, with artificial faulty data.

5.3.1. Detection of Fault Symptoms

The T,y value expected to be measured under normal operation (Figure 12) was
predicted by the SVR model. Since the residual of measured values (i.e., due to artificial
faults) of Ty, and predicted values Ty, exceeded the threshold € = 0.90 °C, a fault symptom
of Ty, sensor was detected (Figure 13). Is the sensor Ty, faulty, or is the Ty, sensor correct
under the influence of regressor sensors T,; and T,?
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20

—— Measurements including faults using Grey-box model
Predicted using SVR model
18 ¢ Fault flag

16

14

Mixed air temperatur (7,,,) (C)

12

10 T ' . : :
16 January 17 January 18 January 19 January 20 January 21 January
Measured every 15-min
Figure 12. Measurements with artificial faults of Ty, and predictions of normal operation of Tyq.
6

—— Measured T, (artificial faults) - T, ,
—— Measured T, (artificial faults) - T,
3] ---- Threshold

Residual (C)
w

16 January 17 January 18 January 19 January 20 January 21 lanuary

Measured every 15-min

Figure 13. Residual between measurements of T;,; and predictions of Tj,.

5.3.2. Diagnosis of Faults

(1) When the fault symptom of T, sensor was detected, the next step consisted of the
analysis of regressor sensors T, and Tr,,. RNN models predicted the values of T, and
Trap under normal operation conditions. When the residuals exceeded the threshold
(i-e., Respy = abs(Toq — Toap) > €, and Resy, = abs(Tyy — Trqp) > €), the fault symptoms
of Ty, and T, were detected (Figures 14 and 15).
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o

1., (Measured) — T, (Predicted by RNN) (C)

16 January 17 January 18 January 19 January 20 January 21 January

Measured every 15-min

Figure 14. Residual between measurements and predictions of Ty, using RNN model.

--=-- Threshold

T.. (Measured) — T, (Predicted by RNN) (C)

16 January 17 January 18 January 19 January 20 January 21 January

Measured every 15-min

Figure 15. Residual between measurements and predictions of T;; using RNN model.

Out of 160 artificial faults of T,,, 138 faults were detected correctly (Table 8). Out of 189
artificial faults of T},, 187 faults were detected correctly (Table 9). The accuracy, precision,
and sensitivity of the RNN models had values greater than 86% for T,,;, and around 99%
for Ty, (Table 10).

Table 8. Confusion matrix for fault detection of T,.

Actual Faults
Normal (0) Faulty (1)
Normal (0) 311 22
Faulty (1) 9 138

Predicted faults
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Table 9. Confusion matrix for fault detection of T;;.
Actual Faults
Normal (0) Faulty (1)
Normal (0) 289 2
Predicted faults
Faulty (1) 2 187

Table 10. Performance of MDFDD models: accuracy, precision and sensitivity.

Prediction Performance of Model over Testing Data Set (6-Days, 576 Data Points)

Target
Accuracy (%) Precision (%) Sensitivity (%)
Toa 93.54 86.25 93.88
Trq 99.16 98.95 98.95

Therefore, T,; and T, sensors were detected as faulty, which corresponded to artificial
faults inserted in the data set.

(2) The expected output of T, g under the influence of faulty T,, and T, sensors was
calculated by using a grey-box model (Equation (2), with coefficients a and b of Table 7.

(8) Since the residual of measured values (i.e., due to artificial faults) of T}, and predicted
values Ty, g did not exceeds the threshold ¢, the Ty, sensor was not faulty (Figure 13),
and, thus, a false symptom was detected.

(4) According to rule A.c. (Section 4.3), if Ty, and T, sensors were faulty, but the residual

Resyy = abs(Tya — Tiar) < €, then Ty, sensor was not faulty; only Ty, and/or Ty,
sensors were faulty.

In conclusion of this example, without this approach, all three sensors Ty, Tos, and
Tys, would be wrongly considered as faulty.

If, in another case, the residual of measurements and predictions of Ty, Toa, and Ty,
respectively, exceeded the threshold, we could conclude that all three sensors (T, Tra, Tima)
had fault symptoms.

5.4. Comparison with Another Method

For comparison, this section presents the detection of faults by RNN models applied to
all three sensors T4, Tra, Tia, but without any information about the relationship between
sensors (Table 11).

Table 11. Prediction performance of Recurrent Neural Network for selected regressors sensors.

Regressor Sensor

Average of 6-Fold Cross-Validation of Prediction Performance over Testing Data Set of One Day (96

Threshold for

at Time ‘t’ Data Points) Fault Detection
. . o ¢ = Sensor Uncer-
Variable Unit RMSE MAPE (%) MBE MEax tainty + RMSE
Toa 0.89 100.03 1.98 3.42 1.38
Tra °C 0.08 0.91 0.20 0.38 0.57
Tia 0.55 14.04 2.82 1.71 1.04

In addition of residuals obtained from the use of RNN models for T,, and T, sensors
(Figures 14 and 15), Figure 16 shows the residual of T}, obtained from RNN model applied
to artificial faults. One can conclude that, by using RNN models without any information
between sensors, the results showed that all three sensors were faulty, which is not true.
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Residual (C)
w

~ Measured T, (artificial faults) = T,
5/ 7 Measured T, (artificial faults) - 7, »
---- Threshold

a,p

16 January

17 January 18 January 19 January 20 January 21 January

Measured every 15-min

Figure 16. Residual between measurements of Ty, and predictions of Ty, using RNN model.

In conclusion, the proposed MDFDD method detected the faulty sensors, while the

broad application of ML models to all sensors, without any information between the
dependent sensors, did not detect correctly the faulty sensors.

6. Conclusions, Contributions, and Limitations
6.1. Conclusions

In this paper, the application of hybrid models was proposed, which combines the

machine learning models and rule-based techniques for the detection and diagnosis of
multiple depended faults of air temperature sensors of an AHU of an institutional building.
Hybrid models were developed and evaluated using experimental data.

The results were summarized as follows:

The combination of machine learning (ML) models using BAS trend data, and rule-
based models was successful for the multiple dependent faults detection and diagnosis
(MDFDD).

The information about relationship between sensors was essential for the correct
detection and diagnosis of dependent faults. For this purpose, a novel method that
guides for faults search by using the information and operation flow between sensors,
and between sensors and devices was presented. This approach was not found in any
other publication.

ML models were used for the prediction of two target variables, the mixed air temper-
ature (Ty,;) and air temperature after heating coil (T,,.). The RNN models were used
for the prediction of regressor sensors values (Tos, Tra, Tsgw, Valveyc). Rules-based
models were used for the diagnosis of faults. These results revealed good performance
of these models for the fault detection and diagnosis purposes.

The proposed method was tested with measurements from BAS trend data under
normal operation, and with artificial faults inserted in the measurements data file. The
results revealed good performance of the proposed method for the multiple dependent
faults of air temperature sensors of an AHU.

Three days of training data with 288 data points recorded every 15-min was enough
for the development of the SVR models for the prediction of target sensors (T, and
Tane)- RMSE over training and testing data sets were 0.31 °C and 0.41 °C, respectively,
for the prediction of T}, and 0.16 °C and 0.21 °C, respectively, for the prediction of
Tape-
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- The accuracy of models for the fault prediction of air temperature sensors of T,; and
Ty, was 93.54 and 99.16%, respectively.

6.2. Contributions
The contributions are listed as follows:

- A novel sequential (compound) machine learning model for the prediction of the
target variables (T, and Ty,) for the scope of MDFDD was proposed.

- Ahybrid technique that combines machine learning models and rule-based techniques
was proposed.

- A new definition of threshold value was applied, which combined the sensor uncer-
tainty and the ML model uncertainty.

- Machine learning models were developed using the K-fold cross validation.

- Models hyperparameters were optimized using RandomizedSearchCV tool.

6.3. Limitations

- The proposed method should be tested over several heating season data sets and
compared with physical faults detected by the maintenance team and recorded in
workbooks.

- Ideally, all sensors used in such a study should be periodically re-calibrated to ensure
high quality of measurements. However, we understand that such a re-calibration is
not always possible, when considering that the operation team had sometimes more
urgent and essential calls for fixing HVAC systems.

- Oher approaches should be used for the generation of artificial faults. The use of real
experimental data from faults was important.

- The work presented in this paper focused on the detection and diagnosis of multiple
dependent faults of air temperature sensors. The work will be expanded by including
faults of actuators and components of HVAC systems.

- The machine learning models (SVR and RNN) have been developed using Python
with application of the open source scikit-learn, Keras, and TensorFlow packages. A
laptop with the following configuration was used: Windows 10, Intel(R) Core (TM)
i5-1035G7 CPU @ 1.20GHz, 1498 Mhz, 4 Cores, 8 Logical Processors, and 8 GB RAM.
The system was sufficient in development and optimization of the proposed ML
models, taking no more than 60 s for SVR and 10 min for RNN models’ development.
However, for the development of RNN models with more data and other optimization
methods, longer computing time was expected. Hence, a more powerful computer
was needed.

7. Future Works

The proposed method will be extended: (1) to other sensors of the AHU (e.g., vol-
umetric air flow rate, water flow rate) and to other HVAC systems configuration and
controls; (2) by using other ML models such as artificial neural network (ANN), decision
tree regression, random forest regression model, and principal component analysis (PCA);
(3) as an application software of building automation system (BAS) of HVAC systems, to
trigger alarms for potential abnormal operation; and (4) as a portable online software for
smartphones to control remotely the operation of the HVAC system in the commercial
buildings.
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Abbreviations and Nomenclature

AHU Air handling unit
ANN Artificial neural network
BAS Building automation system
CNN Convolutional neural network
DANN Deep artificial neural network
FDD Fault detection and diagnosis
FN False negative
FP False positive
HVAC Heating, ventilation and air conditioning
K-NN K-Nearest Neighbor
MAPE Mean absolute percentage error
MBE Mean bias error
MEax Maximum absolute error
ML Machine learning
PCA Principal component analysis
R? Coefficient of determination
RMSE Root mean squared error
RNN Recurrent neural network
MDFDD Multiple dependent faults detection and diagnosis
SVDD Support vector data description
SVM Support vector machine
SVR Support vector regression
TN True negative
P True positive
VAV Variable air volume
Tsyw Supply hot water temperature
Tone Air temperature after heating coil
Tyne,R Corrected sensor output of air temperature after heating coil
Tia Mixed air temperature
Toma,R Corrected sensor output of mixed air temperature
Toa Outdoor air dry-bulb temperature
Ty Return air temperature
Tsa Supply air temperature
Valverc Heating coil valve position
Vina Mixed air volumetric flow rate
Voa Outdoor air volumetric flow rate
Via Return air volumetric flow rate
Ui Predicted value
Vi Measured value
v Average measured value
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