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Abstract: The purpose of this investigation was the development of a new colloidal route for the
fabrication of Mn3O4 electrodes for supercapacitors with enhanced charge storage performance.
Mn3O4-carbon nanotube electrodes were fabricated with record-high capacitances of 6.67 F cm−2

obtained from cyclic voltammetry tests at a scan rate of 2 mV s−1 and 7.55 F cm−2 obtained from the
galvanostatic charge–discharge tests at a current density of 3 mA cm−2 in 0.5 M Na2SO4 electrolyte
in a potential window of 0.9 V. The approach involves the use of murexide as a capping agent for the
synthesis of Mn3O4 and a co-dispersant for Mn3O4 and carbon nanotubes. Good electrochemical
performance of the electrode material was achieved at a high active mass loading of 40 mg cm−2 and
was linked to a reduced agglomeration of Mn3O4 nanoparticles and efficient co-dispersion of Mn3O4

with carbon nanotubes. The mechanisms of murexide adsorption on Mn3O4 and carbon nanotube
are discussed. With the proposed method, the time-consuming electrode activation procedure for
Mn3O4 electrodes can be avoided. The approach developed in this investigation paves the way for
the fabrication of advanced cathodes for asymmetric supercapacitors and multifunctional devices,
combining capacitive, magnetic, and other functional properties.

Keywords: manganese oxide; carbon nanotube; electrode; supercapacitor; capping agent;
synthesis; dispersant

1. Introduction

In recent years, advanced materials have emerged for energy storage in supercapaci-
tors, including metal oxides, conductive polymers, graphene, and other carbon materials,
MXenes, complex hydroxides, and composites [1–7]. Oxide materials such as MnO2, Fe3O4,
BiMn2O5, and V2O3 are increasingly being explored due to their large potential windows
and high capacitance [6]. Spinel-type oxide materials have generated significant interest
due to their promising performance and beneficial materials science aspects [8–11]. Atoms
of transition metal elements with different valence states were incorporated into the spinel
structure and exhibited redox behavior, imparting advanced pseudocapacitive properties to
the spinel oxides [8,12–14]. A large pool of spinel oxides provides a basis for the fabrication
of spinel solid solutions with advanced properties [15]. Solid solutions allow a significant
improvement in functional properties of materials by a controlled variation in their com-
position. Solid solutions are widely utilized in energy storage and other fields and often
outperform individual spinel oxides for various applications [16–19]. Spinel materials are of
particular interest because they exhibit advanced magnetic, catalytic, and other properties
and can be used for the fabrication of multifunctional materials [14,20–24]. Mn3O4 is a
spinel-type ferrimagnetic material that is widely used for the fabrication of advanced spinel
solid solutions with enhanced magnetization, catalytic, and energy storage properties in
batteries [25–27]. However, the potential of Mn3O4 for supercapacitor technology is only
beginning to be recognized [28,29]. Mn3O4 can potentially outperform MnO2, which is
currently one of the best materials for cathodes of asymmetric supercapacitors.

Energies 2022, 15, 1812. https://doi.org/10.3390/en15051812 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en15051812
https://doi.org/10.3390/en15051812
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0001-8735-6111
https://orcid.org/0000-0002-0435-1591
https://doi.org/10.3390/en15051812
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en15051812?type=check_update&version=1


Energies 2022, 15, 1812 2 of 12

The use of Mn3O4 offers many advantages for supercapacitor technology compared
to MnO2. The modification of composition and properties of MnO2 presents difficulties
because of the limited possibility of this oxide to form solid solutions. The low electrical
conductivity of MnO2 is detrimental for applications of this material in supercapacitors. In
contrast, Mn3O4 can form solid solutions with enhanced conductivity and other functional
properties. The fabrication of MnO2 nanoparticles of controlled size and modification of
their morphology generates problems attributed to the use of permanganate precursors for
the MnO2 synthesis. Such precursors react with dispersants, which are critically important
for control of particle size, shape, and prevention of agglomeration during synthesis. In
contrast, Mn3O4 can be synthesized from aqueous solutions of Mn2+ salts in the presence
of dispersants.

Previous investigations [6] have showed that the capacitance of Mn3O4 is significantly
lower than that of MnO2. However, a significant increase in the capacitance of Mn3O4
was observed during cycling [30–33]. Numerous XPS studies revealed oxidation of Mn2+

and Mn3+ ions on the Mn3O4 particle surface during cycling and linked this process to
the capacitance increase [31,33–35]. The application of Mn3O4 for supercapacitors requires
the use of time-consuming activation procedures [31,33,35]. The problems related to
applications of Mn3O4 in cathodes of supercapacitors can be addressed using dispersing
agents for the synthesis of nanoparticles.

This investigation was motivated by the strong potential of Mn3O4 spinel material
for the fabrication of supercapacitors and multifunctional devices. The goal of this in-
vestigation was the fabrication of Mn3O4 cathodes for supercapacitors with an enhanced
capacitance using murexide as a new capping and dispersion agent. An additional goal
was the elimination of the time-consuming activation procedure, which limits practical
applications of Mn3O4 for supercapacitors. For the first time, we demonstrated that murex-
ide can be used as a dispersant for inorganic nanoparticles and carbon nanotubes. The
approach developed in this investigation involved the use of advanced techniques for a
wet chemical synthesis and colloidal processing of Mn3O4-carbon nanotube electrodes with
high capacitance. We describe the advantages of the murexide dispersant, which allowed
for strong tridentate bonding to the particle surface and facilitated electrostatic dispersion.
Building on this insight, new chelating dispersants can be used for advanced colloidal
nanofabrication technologies. The use of murexide offered benefits for the fabrication of
Mn3O4-carbon nanotube electrodes because murexide allowed co-dispersion of Mn3O4
and carbon nanotubes, which served as conductive additives. The approach of this in-
vestigation resulted in an enhanced electrode performance at a high active mass loading,
which is critical for practical applications. In this approach, a record high capacitance of
Mn3O4 electrodes was achieved, and the problems related to capacitance variation during
initial cycling were avoided. This eliminated the need for the preparation of Mn3O4 based
electrodes in time-consuming activation procedures. The results of this investigation open
the door for the application of Mn3O4 and its solid solutions for energy storage in advanced
supercapacitors and multifunctional energy storage devices.

2. Materials and Methods
2.1. Raw Materials

Murexide, Mn(NO3)2·4H2O, Na2SO4, NaOH, ethanol, poly(vinyl butyral) (PVB, Milli-
poreSigma, Oakville, ON, Canada) and multiwalled carbon nanotubes (MWCNTs, Bayer,
Leverkusen, Germany) were used as starting materials.

2.2. Synthesis of Mn3O4 and Electrode Fabrication

Mn3O4 nanoparticles were prepared by a modified chemical precipitation method [30]
and mixed with MWCNTs. A solution of 0.33 g of Mn(NO3)2·4H2O in DI water was
prepared, and then the pH of the solution was increased to pH = 10 with aqueous NaOH for
the Mn3O4 synthesis. In method 1, the synthesized Mn3O4 was mixed with MWCNTs, and
murexide was added as a co-dispersant. In method 2, murexide was added to Mn(NO3)2
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solution in DI water before pH adjustment as a capping agent for synthesis, and MWCNTs
were added after the synthesis. In both methods, Mn3O4 and MWCNTs were co-dispersed
using murexide. The mass ratio of Mn3O4:CNT:murexide was 4:1:1. The obtained mixtures
of Mn3O4 with MWCNTs, containing murexide, were ultrasonicated to achieve improved
dispersion and mixing, washed, and dried. Obtained powders were used for the fabrication
of electrodes using slurries of Mn3O4 and MWCNTs in ethanol with a PVB binder. The
binder content was 3% of the total mass of Mn3O4 and MWCNTs. The slurries were used
for impregnation of commercial Ni foam (Vale, Canada) current collectors. The total mass
of impregnated material after drying was 40 mg cm−2.

2.3. Characterization Techniques

Electron microscopy studies were performed using a JEOL SEM (scanning electron
microscope, JEOL, JSM-7000F). X-ray diffraction (XRD) analysis (diffractometer Bruker
D8, UK) was performed using Cu-Kα radiation at the rate of 0.01 degrees per second.
Electrochemical studies were performed in an aqueous 0.5 M Na2SO4 electrolyte using
PARSTAT 2273 (Ametek) potentiostat for cyclic voltammetry (CV) and electrochemical
impedance spectroscopy (EIS), and BioLogic VMP 300 potentiostat for the galvanostatic
charge-discharge (GCD) investigations. Testing was performed using a 3-electrode electro-
chemical cell containing a working electrode (impregnated Ni foam), counter-electrode (Pt
mesh), and reference electrode (SCE, saturated calomel electrode). The capacitive properties
of electrode material were presented in gravimetric (Cm, F g−1) and areal (CS, F cm−2)
capacitance forms. Capacitances Cm and CS were calculated from the CV, EIS, and GCD
data as described in reference [6]. The capacitances calculated from the CV and GCD data
represented the integral capacitances measured in a voltage window of 0–0.9 V versus
SCE. The capacitances calculated from the EIS data represented differential capacitances
measured at an open circuit potential at a voltage amplitude of 5 mV. CV testing proce-
dures (TP) involved obtaining CV at scan rates of 2, 5, 10, 20, 50, and 100 mV s−1. EIS
measurements were performed after each TP. GCD measurements were performed after
the last TP.

3. Results and Discussion

Figure 1 shows X-ray diffraction patterns of Mn3O4 prepared by methods 1 and 2. The
diffraction patterns show peaks of Mn3O4 and MWCNTs.
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The approach developed in this investigation was based on colloidal processing, which
offers benefits for the fabrication of materials with advanced microstructures [36–39]. In
colloidal processing methods, advanced capping agents and dispersants are necessary
for the synthesis of nanomaterials and the fabrication of advanced composites. Capping
agents and dispersants must be adsorbed on the particles. A non-adsorbed ionic species
can stimulate particle agglomeration. Previous investigations [40] highlighted the benefits
of chelating dispersants, which are strongly adsorbed on inorganic particles by bidentate
bonding to the surface metal atoms. Figure 2A shows a chemical structure of murexide
used in this investigation as a capping and dispersing agent.
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tridentate chelation of surface Mn atoms.

Murexide exhibits chelating properties [41,42], which are related to its strong tridentate
bonding to different metal atoms. Dissociated murexide acquires a negative charge in
solutions (Figure 2). It was hypothesized that murexide was adsorbed on the Mn3O4
surface by creating a tridentate bonding to Mn atoms on the surface (Figure 2B). The
adsorption of murexide on MWCNTs involved interactions [43] of two barbiturate rings
of murexide with carbon rings of MWCNTs. The adsorbed murexide imparted a negative
charge to the Mn3O4 particles and MWCNTs for their electrostatic co-dispersion. It should
be noted that many commercial dispersants allow for the dispersion of only inorganic
particles or carbon materials. In contrast, murexide allows for the dispersion of both
Mn3O4 and MWCNTs, facilitating their efficient co-dispersion and mixing.

In this investigation, MWCNTs were used as conductive additives. Previous investiga-
tions of as-received MWCNT powders showed that MWCNTs formed large agglomerates
with a typical size of 0.5 mm [44]. Therefore, efficient dispersion of MWCNTs was crit-
ically important for the fabrication of nanocomposites. Figure 3 shows SEM images of
the electrodes prepared by Methods 1 and 2. The SEM images at low magnification
show the porous structure of electrodes (Figure 3A,B). The images at higher magnification
(Figure 3C,D) show that the size of primary Mn3O4 particles was below 100 nm. MWCNTs
were distributed between the Mn3O4 particles, which was beneficial for the enhancement
of electronic conductivity of the composite.

The electrodes prepared by Methods 1 and 2 were tested in 0.5 M Na2SO4 electrolyte.
Figure 4 shows CVs for the electrodes prepared by Method 1 for different TPs. The CVs
obtained at low sweep rates were nearly rectangular. The comparison of the CVs obtained at
the same sweep rates for different TPs showed that the area of CV increased with increasing
TP number.

This is in agreement with previous investigations, which showed a capacitance increase
during cycling [30–33]. Several previous XPS investigations showed an oxidation of Mn2+

and Mn3+ ions with an increased content of Mn4+ ions on the Mn3O4 particle surface during
cycling and linked this process to the capacitance increase [31,33–35]. Moreover, previous
investigations showed that the application of Mn3O4 for supercapacitors requires the use
of time-consuming activation procedures [31,33,35]. Such procedures are detrimental for
practical applications of Mn3O4 in supercapacitors.
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It should be noted that we investigated electrodes with high active mass loadings
of 40 mg cm−2. In this investigation, commercial Ni foam current collectors were used,
which were designed for batteries and supercapacitors, based on inorganic active materials
with a typical electrode mass of 30–50 mg cm−2. High active mass loading is important for
practical applications for reducing the contribution of current collectors and other passive
components to the total electrode mass. An active mass of about 10 mg cm−2 is required for
commercial activated carbon electrodes [6,45]. Inorganic materials, such as Mn3O4, have a
significantly higher density than the density of activated carbon. Therefore, larger mass
loadings can be achieved at the same electrode volume.

The higher gravimetric capacitance of Mn3O4 and the higher active mass can poten-
tially result in significantly higher capacitances of Mn3O4-based electrodes, compared to
activated carbon electrodes of the same volume. However, it is challenging to achieve good
electrode performance at a high active mass. It is known that gravimetric capacitance drops
with active mass increase [6]. Moreover, the use of electrodes with high active mass loading
aggravated the problem of Mn3O4 electrode activation, compared to the thin-film Mn3O4
electrodes. This is attributed to better electrolyte access to thin film electrodes, compared to
the bulk electrodes with high active mass.

Figure 5A shows Cm and CS, derived from the CV data for different TPs. The depen-
dence of capacitance on scan rate for TP 1 (Figure 5A(a)) shows a maximum at 20 mV s−1.
It is suggested that the electrode activation during cycling at lower scan rates resulted in
the capacitance increase.
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However, the capacitance decreased at scan rates of 50 and 100 mV s−1, resulting in a
maximum (Figure 5A(a)). The capacitance increased with increasing TP number from 1 to
5 (Figure 5). The highest integral capacitance of 4.87 F cm−2 (121.8 F g−1) was achieved
at 2 mV s−1 for TP 5. The components of the differential complex capacitance, obtained
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from the EIS data, showed significant variations for TP 1–5 (Figure 5B,C). The frequency
dependences of the capacitance components showed relaxation-type [46] dispersions. The
real part of the differential complex capacitance increased with increasing TP number in
agreement with the CV data. The GCD data obtained after TP 5 showed linear charge–
discharge behavior, indicating good capacitive performance (Figure 5D). The integral
capacitance of 6.77 F cm−2 (169.3 F g−1) was obtained at a current density of 3 mA cm−2.
The capacitance slightly decreased with increasing current density and showed good
capacitance retention.

Testing of the electrodes prepared by method 2 showed reduced capacitance variations
during cycling, and significantly higher capacitances were obtained compared to method 1.
Figure 6 compares CV data for TP 1 and TP 3. The areas of CVs increased from TP 1 to TP 3
only at low scan rates. At scan rates of 20 mV s−1 and higher, the CV areas were nearly
similar for TP1 and TP3. The CV areas for TP 4 and TP 5 were practically the same as for
TP 3 for all scan rates.
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Figure 7A shows integral capacitances, calculated from the CV data for the electrode
prepared by Method 2. The capacitance for TP 1 (Figure 7A(a)) showed a maximum for
a scan rate of 10 mV s−1. A similar maximum was observed for TP 1 for the electrode
prepared by method 1 (Figure 5A(a)). As pointed out above, such a maximum resulted
from the activation of the electrode by cycling at low scan rates. Therefore, some activation
occurred for the electrodes prepared by Method 2. However, it should be noted that
the capacitance obtained for the first cycle at 2 mV s−1 for TP 1 for electrode prepared by
Method 2 was 5.46 F cm−2 (136.4 F g−1), which is higher than the capacitance of 4.87 F cm−2

(121.8 F g−1) at 2 mV s−1 for TP 5 for the electrode prepared by Method 1. The highest
capacitance of 6.67 F cm−2 (166.7 F g−1) was achieved at 2 mV s−1 for TP 3 for the electrode
prepared by Method 2. Turning again to the data presented in Figure 7A, it is seen that
very small variations in the capacitance were observed for TP1 and TP3 for scan rates of
20–100 mV s−1. The capacitance measurements at different scan rates for TPs 3–5 did not
show significant variations in capacitances.

The results of capacitance measurements from the EIS data (Figure 7B,C) correlated
with the results obtained by CV. The real part of capacitance for TP 1 at 10 mHz for the
electrode prepared by Method 2 was 4.75 F cm−2 (118.8 F g−1), which is higher than the
capacitance of 3.77 F cm−2 (94.25 F g−1) for the electrode prepared by Method 1 at the same
frequency and TP 5. The analysis of EIS data for TP 1 and TP 3 revealed changes in both
real and imaginary capacitance, which indicates that some activation process occurs for
the electrodes prepared by Method 2. The highest real part of the capacitance obtained
at 10 mHz for TP 3 for the electrode prepared by Method 2 was found to be 5.70 F cm−2

(142.5 F g−1). EIS capacitance data did not show significant variation for TP 4 and TP 5
compared to TP 3.
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The results of CV and EIS data indicate that Method 2 resulted in a significant accelera-
tion of the activation process. This can potentially eliminate the need in the time-consuming
activation process for Mn3O4-based electrodes. Indeed, relatively small variations in capac-
itance were obtained for the electrodes prepared by Method 2. The first cycle of capacitance
measurements for the electrodes prepared by this method showed higher capacitance
than that for TP 5 for the electrode prepared by Method 1. Turning again to the com-
parison of MnO2 and Mn3O4 electrodes, it should be noted that some activation process
was also reported for the MnO2 electrodes, which also exhibited a small increase in the
capacitance during initial cycling [47]. Such a capacitance increase in the MnO2 electrodes
was attributed to the microstructure changes during initial cycling [47]. GCD testing of
the electrodes prepared by Method 2 showed linear charge–discharge curves (Figure 7D),
indicating good capacitive behavior. The capacitance of 7.55 F cm−2 (188.8 F cm−2) was
achieved at a current density of 3 mA cm−2. The electrodes prepared by Method 2 showed
energy density of 18.8 Wh kg−1 at power density of 0.11 kW kg−1.

In order to analyze the difference in the activation of electrodes prepared by methods
1 and 2, CV studies were performed for fresh electrodes at a scan rate of 50 mV s−1 for
2000 cycles, and the obtained capacitances were normalized by the capacitance obtained
for the 2000th cycle (Figure 8).

The normalized capacitance CN for the first cycle for the electrode prepared by method
1 was only 23% and it was slowly increased with cycle numbers. In contrast, the capacitance
for the first cycle for the electrode prepared by Method 2 was 70% and rapidly increased
with an increasing cycle number. The comparison with the data presented in Figure 7 also
indicates that a lower scan rate can result in a faster activation process for the electrodes
prepared by Method 2.
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The capacitances obtained from CV, EIS, and GCD data for electrodes prepared by
Method 2 are significantly higher than the capacitances obtained by the same testing
techniques for electrodes prepared by Method 1. The results of this investigation indicated
that the use of murexide as a capping agent allowed for an enhanced performance of the
Mn3O4-MWCNT electrodes. It should be noted that MWCNTs have a low electrical double-
layer-type specific capacitance [48] of about 20 F g−1. The use of MWCNTs as conductive
additives is critically important for the utilization of capacitive properties of Mn3O4, which
has low conductivity. Due to small MWCNT content in the Mn3O4-MWCNT electrode
material, the high capacitance of the composite electrodes resulted from pseudocapacitive
properties of Mn3O4.

A recent comprehensive review [6] summarized capacitances for Mn3O4 and MnO2
electrodes with high active mass reported in the literature. A comparison with the literature
data for Mn3O4 showed that the areal capacitance of Mn3O4-MWCNT electrodes achieved
in this investigation is significantly higher than in the literature data (Table 1). Moreover,
the capacitance of the Mn3O4-MWCNT electrodes was higher than the capacitances of
MnO2-MWCNT electrodes of a similar mass reported in the literature (Table 1).

Table 1. Literature data on capacitances of Mn3O4- and MnO2-based electrodes containing conductive
additives and tested in Na2SO4 electrolyte.

Material Active Mass (mg cm−2) Areal Capacitance (F cm−2) Reference

Mn3O4 28.4 2.8 [35]
Mn3O4 30.4 2.63 [49]
Mn3O4 33.0 4.2 [33]
Mn3O4 35.0 3.5 [31]
Mn3O4 36.0 3.1 [50]
Mn3O4 36.0 3.79 [51]
Mn3O4 40.1 4.3 [52]
Mn3O4 40.0 6.67 this work
MnO2 40.0 5.26 [53]
MnO2 40.0 5.3 [54]
MnO2 40.0 5.9 [55]
MnO2 40.0 6.2 [56]

Therefore, the results of this investigation indicate that Mn3O4 is a promising alterna-
tive to MnO2 as a cathode material for asymmetric supercapacitors. The strategy developed
in this investigation opens up an avenue for a further improvement of capacitive properties
of Mn3O4-based electrodes. Of particular importance for future investigations is the ability
of Mn3O4 to form solid solutions with other spinel compounds. The fabrication and testing
of such solid solutions can result in electrodes with higher capacitive properties, which can
be combined with improved magnetic and other functional properties.
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4. Conclusions

For the first time, murexide was used as a capping agent for the synthesis of Mn3O4
nanoparticles and as a co-dispersant for Mn3O4 and MWCNTs. The adsorption of murexide
on Mn3O4 and MWCNTs involved two different mechanisms and facilitated electrostatic
co-dispersion of Mn3O4 with MWCNTs and their enhanced mixing. The use of murexide
as a capping agent in Method 2 allowed for a reduced agglomeration. As a result, the
capacitance of the Mn3O4–MWCNT electrodes prepared by Method 2 was significantly
higher than the capacitance of the Mn3O4–MWCNT electrodes prepared by Method 1.
The simple approach developed in this investigation resulted in record-high capacitances
of 6.67 F cm−2 obtained from cyclic voltammetry data at a scan rate of 2 mV s−1 and
7.55 F cm−2 obtained from the galvanostatic charge–discharge data at a current density of
3 mA cm−2. The good electrochemical performance was achieved at a high active mass
loading of 40 mg cm−2. It was found that the time-consuming electrode activation proce-
dure for Mn3O4 electrodes can be avoided. The approach developed in this investigation
paved the way for the development of advanced cathodes for asymmetric supercapacitors
for operation in a neutral electrolyte. It is expected that future progress in the fabrication
of Mn3O4 electrodes will result in a superior performance compared to MnO2 electrodes
for practical applications. Further development of chelating dispersants offers a promising
strategy for the synthesis and the colloidal processing of advanced energy storage materials.
The ability to achieve high capacitance for a spinel material in a neutral electrolyte opens
the door for the fabrication of multifunctional devices, combining capacitive, magnetic,
and other functional properties.
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