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Abstract: The electric machines are the elements most used at an industry level, and they represent
the major power consumption of the productive processes. Particularly speaking, among all electric
machines, the motors and their drives play a key role since they literally allow the motion interchange
in the industrial processes; it could be said that they are the medullar column for moving the
rest of the mechanical parts. Hence, their proper operation must be guaranteed in order to raise,
as much as possible, their efficiency, and, as consequence, bring out the economic benefits. This
review presents a general overview of the reported works that address the efficiency topic in motors
and drives and in the power quality of the electric grid. This study speaks about the relationship
existing between the motors and drives that induces electric disturbances into the grid, affecting its
power quality, and also how these power disturbances present in the electrical network adversely
affect, in turn, the motors and drives. In addition, the reported techniques that tackle the detection,
classification, and mitigations of power quality disturbances are discussed. Additionally, several
works are reviewed in order to present the panorama that show the evolution and advances in the
techniques and tendencies in both senses: motors and drives affecting the power source quality
and the power quality disturbances affecting the efficiency of motors and drives. A discussion of
trends in techniques and future work about power quality analysis from the motors and drives
efficiency viewpoint is provided. Finally, some prompts are made about alternative methods that
could help in overcome the gaps until now detected in the reported approaches referring to the
detection, classification and mitigation of power disturbances with views toward the improvement of
the efficiency of motors and drives.

Keywords: electrical drives; electrical machines; energy efficiency; energy-saving; induction motor;
power quality

1. Introduction

The energy conversion through electrical and electromechanical machines allows for
performing a wide variety of man activities that were considered complex to be carried out
by themselves. These devices are installed widespread around the world and, according to
several authors in the literature, they consume between 60% and 80% of the total energy
in the industrial sector [1,2]. Most of the machines used in the industrial processes are
the electric motors, which transform the electrical energy nature, whether continuous or
alternating, into a mechanical one, also known as kinetic energy generation, ensuring the
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movement on an output shaft. The electric motors are coupled to a mechanical ensemble
for generating motion, rotational or linear, in purposes such as: pushing, heating, pumping,
transporting, among others. In order to carry out the aforementioned actions, a necessary
element that has been integrated with the electrical machines, the drive, is required, which
is the system used for controlling the motion of the electric motors. The purpose of a drive
is to adjust the output parameters of the motor, such as the speed, through variations in
voltage or frequency [3]. Thus, the electric drive is the linkage between the mechanical and
the electrical engineering. A typical drive system is assembled with an electric motor and a
sophisticated controller unit that manipulates the rotation of the motor shaft. This control
can be carried out quickly with the help of hardware and software.

Despite of being the more recurrent equipment for controlling the industrial machines,
both the electric motor and its drive cause adverse effects to the electrical grid by inducing
power disturbances to it [4]. For instance, a motor startup could generate voltage distur-
bances such as sags, swells, and flickers in weak power systems. In addition to this, the
drives induce harmonic and inter-harmonic content during the motor feeding when the
frequency is variated [5,6]. In counterpart, in this regard it must be highlighted that a
poor power quality, in turn, affects the normal operation of the motors and drives, causing
equipment malfunctioning, failures, or even worse, irreparable damage [7]. Whenever
a machine transforms energy from one form to another, and this combined with power
quality disturbances in the electric grid yields an unavoidable loss in the equipment, it
is normally manifest as an increase in the temperature and an efficiency reduction [8,9].
Therefore, since the electrical machines use a significant part of the total electric power
generated worldwide and its performance impact directly in the productivity costs, any
improvement in its operation and control that increases its efficiency will have a meaningful
impact [10–13].

Due to the abovementioned points, the power quality monitoring represents an essen-
tial aspect to consider in today’s electrical environments or power grids. As a matter of
fact, the critical aspect to be considered is the relationship between electrical motors and
drives with the power quality. Indeed, several methodologies have been developed for
detecting faults and identifying, classifying, mitigating, and suppressing power quality
disturbances [14]. The important points related to the employ of such techniques address:
(i) the analysis of the effects produced by the power quality disturbances (PQDs) on electri-
cal devices o machinery, (ii) the parameters involved with the disturbance generation in the
electrical grid, and (iii) the proper action to be taken once the electrical phenomenon has
occurred. Therefore, it is important to conduct an exhaustive review of the reported works
in two main aspects; those studies that focus on techniques developed and applied to detect,
classify, and mitigate electrical events or power disturbances, and those investigations that
attend what has been carried out regarding how poor power quality affect the electric
motors and drives and reduces their efficiency.

Regarding to the existing electric machine technologies, a generalized classification
can be made according to [3,15]. This cataloguing concerns to the form of the power
supply and applies for both electrical and electromechanical machines such as motors,
drives, transformers, etc. Two main branches can be considered being direct current (DC)
and alternating current (AC) electric machines, and from these other subcategories are
derived. In one hand, the case of direct current machines consists on DC generators
and DC motors. On the other hand, for the case of alternating current machines there
exist synchronous and asynchronous electromechanical devices. In a similar way, as in
direct current, the synchronous machines are divided into AC generators and AC motors.
Meanwhile, asynchronous technologies involve only induction machines. Apart from this,
other categorization is made from the standpoint of performance losses, in this the electrical
machines may be divided into two groups: those with rotary parts (motors, generators),
and those with static parts (transformers, reactors). Under this point of view, the electrical
and mechanical losses are produced in rotating machines, whereas only electrical losses
are produced in stationary machines. Finally, another classification can be made by takin
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into account if the machine uses single-phase or three-phase alternating current (AC)
supply [16]. In addition to that, it is worth noticing that the motor drives can be classified
according to the prime mover they handle, such as electric motors, diesel or petrol engines,
gas or steam turbines, steam engines, and hydraulic motors [17].

From the aforementioned classifications, the asynchronous or induction motor to-
gether with its electrical drive are the most widely used in industry, the reason for which
they are going to be selected for analysis in this review. The main advantage of the in-
duction motor is that it eliminates all sliding contacts, resulting in an exceedingly simple
and rugged construction. Moreover, the rapid development of new induction machines
and the emerging of power drive technologies in the past few decades, ranging from a
few watts to many megawatts [17], enables them to be used in many fields involving
conversion processes [18], whether in the generation, transmission, or electrical energy
consumption [19]. Therefore, the electrical motors and drives are used in industrial, com-
mercial, and domestic applications such as transportation systems [20,21], rolling mills [22],
paper machines [23], textile mills [24], machine tools [25], pumps [26], robots [27], fans [28],
and vehicle propulsion [29], among others [30].

In relation to the applications of motors and drives some examples are described next.
Some of the most recent studies on electrical machines are focused on the new applications
for industries equipment supplying and that can be beneficial for the environmental
issues by using more efficiently motors and drives an combining them with emerging
technologies [16,31–33]. For instance, the development of electric vehicles by improving
their motors for driving, transportation, and mobility applications [34]. Regarding the
electrical drives, many studies have been conducted in areas such as high-speed rotating
mechanical machinery [35]. Concerning to the power generation topic, the efforts look for
developing electric machines to be the element that allows a clean and efficient generation of
energy [36]. Currently, two important aspects are currently being addressed: the best usage
in the conversion of energy by electrical machines and at the same time heed that the use of
these devices does not introduce anomalies to the electrical network. These considerations
are being sought from regulatory points of view. An example of the above mentioned is the
power factor regulation by using capacitive or inductive elements depending on the case.
This power factor is penalized by electrical regulatory agencies.

Some international organizations such as NEMA, ANSI, or IEEE define the standards
and fix the tolerances for the operational parameters for electrical machines [37]. These stan-
dards specify power, speed, voltage, and operating frequency ranges in order to guarantee
that the power source is as pure as possible, which is known as Power Quality (PQ) [38].
Nowadays, the tendency for electrical machines is to be more efficient, to require less main-
tenance, to have high power density, robustness, and applicability in different areas [39,40].
Some investigations present the central energy efficiency-related regulations, the most
applicable efficiency increasing technical solutions, and the possibility of replacing the
most widely used squirrel cage induction machines with more efficient variants. However,
the industrial power supply is typically contaminated due to all the loads connected to the
grid, and also their non-linear behavior because of its integrated elements that inject power
quality disturbances (PQD) such as noise, sags, swells, interruptions, flicker, harmonics
and inter-harmonic content affecting the PQ [41]. In the end, these PQ affectations are
also reflected back on the electrical machines by decreasing their efficiencies, provoking
malfunctioning and damage to their components [42]. Power electronics are an important
part of any power conversion system. Notwithstanding, these devices have a non-linear
behavior and generate PQ issues that must be addressed [43]. All in all, monitoring PQ
is not an easy task because measurements devices are expensive, and it is financially im-
practical to monitor every segment of a power network [44]. Additionally, another aspect
to consider is that power signals are seldom stationary and the nonstationary nature of
waveforms could corrupt the spectrum analysis results [45]. Among the main parameters
of an efficient power supply system are its reliability and its quality; moreover, it is aimed
to have the possible shortness time after a failure. The monitoring systems of the power
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grid have areas for improvement [46]. Energy saving is taken into account by institutions,
companies, and industry, promoting the best use of electrical machines [47].

In the case of domestic commercial applications in buildings and residential instal-
lations, several works have studied how they impact mainly in the energy consumption,
energy saving, and energy management. For example, there are studies dedicated to ana-
lyzing and estimate the consumption of energy in constructions, residentials and publics,
due to the common commercial equipment. The topic of real-time monitoring for energy
saving is tackled in [48]. In other work, a study of power consumption was carried out
with the aim to reach costs savings, by developing a community structure based on smart
homes in electric network systems [49]. By its part in [50], artificial intelligence is used
to estimate the energy consumption profile in commercial buildings in order to contract
adequate energy plans with public services companies considering the load projections.
Finally, in [51] a scheme for the accurate assessment of the electrical energy demand of
modern medical equipment operated in laboratories is presented, and it is found that only
a few plug load groups mainly contributed to the total energy consumption. Although the
domestic commercial equipment also impacts the energy efficiency, this work will focus
only on the industrial equipment, specifically electric motors and their drives.

This work presents an overview of the advances in the methodologies applied to the
power quality analysis for detecting, identifying and classifying power disturbances that
affects the operation of motors and drives, but also how the motors and drives generate
adverse effects to the grid. This relation between the power grid and the industrial machines
also impacts their own efficiencies and this field is an area of opportunity. A detailed
discussion of the methodologies that are the trends in these topics and those approaches
is also provided that, by its own characteristics, must be considered to be explored since
it represents potential solutions capable to provide accurate results with high reliability,
overcoming the drawbacks of the conventional reported techniques. The remainder of the
review is organized as follows. In Section 2, the efficiency concept and how it is calculated in
both aspects, for the electrical machines and for the electric power, is discussed, providing
a quick overview of power quality phenomena and its existing relation with the electrical
machines’ efficiency reduction. Section 3 sets out the techniques for identifying, detecting,
and classifying PQDs following state-of-the-art methodologies and provides a general
overview of how this type of study is being carried out and which techniques are currently
in trend. Section 4 affords the techniques applied in electrical machines to detect, mitigate,
or manage the condition when an electrical phenomenon is presented. Section 5 furnishes
a discussion of the techniques presented in the review and the alternative approaches that
could be explored in this same context. Finally, in Section 6, the conclusions drawn for this
review are presented.

2. Electrical Machines and Energy Efficiency

In general, the term of efficiency is very important when using electrical machines,
motors and drives, as well as in the analysis of power quality, since they have a close
relation between them. In brief, to this framework this review addresses two types of
efficiency: the performance of the electric machine, and that defined by the electrical power
supply. Generally speaking, the efficiency of an electrical machine is its capacity to convert
the electrical active power into mechanical power. Therefore, the above sentence can be
defined, technically speaking, as the ratio of the power output to the power input expressed
in percentage terms [52]. Thus, it is necessary to know the values of the mechanical and
the electrical active power for determining the efficiency of an electrical machine [53]. On
one hand, the relation of parameters for calculating the electrical active power in a three-
phase motor,

√
3, is through the voltage, V, the current intensity, I, and the power factor,

cos(φ). Where φ is the phase angle between V and I. On the other hand, the mechanical
power is obtained with the relation of torque, Ts, and the angular velocity, ωm. The Table 1
summarizes these parameters relations to calculate the efficiency, η, in an electrical machine,
this table was created based on the equations presented in [54].
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Table 1. Relationships to calculate electrical power, mechanical power, and efficiency for three-
phase motors.

Parameter Relationship

Electric Active Power Pelec =
√

3·V·I·cos(φ)
Mechanical Power Pmec = Tsωm

Efficiency η = Pmec
Pelec
· 100%

From table it is observed that efficiency states a relation between the electrical pa-
rameters and the design criteria of a machine, hence a bad or inadequately design, or
failures on its construction, could affect to the electrical power grid [55]. As previously
mentioned, the construction, the electrical components, the operation, and the auxiliary
elements, to keep the operation of an induction motor through its drive, induce to the
power grid electrical disturbances [38,41]. As examples, some typical causes of induced
anomalies in the power grid are the non-linear characteristics of loads, sudden switching of
loads to the grid, transformers connected in asymmetrical banks, the significant presence
of single-phase loads [56], motors current peaks demand, frequency variations by the
drives, the usage of static starters and power converters [57], changes of the impedance
caused by variations in the capacitive and inductive components feed with AC voltage,
equipment failures [58]. In this sense, the type of an electric machine, motor with its drive,
predominantly determines its efficiency characteristics and the affectations caused to the
grid [59]. Thereby, any improvement on these, or in their configuration topologies, helps to
keep a low energy consumption and to rise their efficiency [60]. All these aspects need to
be considered, since according to the Department of Energy (DOE) data from USA the in-
dustrial motors consume one billion kilowatt-hours of energy each year, approximately the
50% of the world’s energy usage [61]. In consequence, regulations in developed countries
are moving towards higher efficiency machine classes tending to reduce greenhouse gas
emissions and efficient energy usage [62]. For instance, the Table 2 presents the efficiency
levels of electric machines according to the standards under NEMA and IEC organizations.
The class IE stands for “International Efficiency”, and the IEC 60034-30 standard describes
it [63].

Table 2. Efficiency classes and levels for electrical machines.

Efficiency Levels
Classes

IEC (International) NEMA (USA)

Standard IE1 -
High IE2 Energy Efficient EPACT

Premium IE3 Premium
Super-Premium IE4 Super-Premium
Ultra-Premium IE5 Ultra-Premium

Along the years, the electrical machines are generally mass-produced, meeting specific
design and efficiency requirements. Additionally, one of the current objectives of many
countries, companies, and industries is to adopt an energy efficiency higher than IE4 class
to reflect that they are within the framework of the new global regulations concerning better
environmental practices. The latest motors models, as minimum, must be classified IE3
class as stated in these international regulations. Today, high-efficient electrical machines
are a new and mandatory trend in motors manufacturing in Europe and the United States
of America. The efforts in upgrading the motors have resulted in excellent solutions to
environmental problems [64].

On the other hand, it is important to highlight that a chain exists in the process for
generating, transporting, converting and distributing the electric energy to the final users.
Such a chain has several links and steps in which the energy efficiency is affected. For
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each link in the chain, the issue of the power quality must be considered, since problems,
losses, or affectations may occur. In the framework of this research, the last link is the
industrial machine; hence, the efficiency of the power grid impact in the efficiency of the
machine. In this sense, the efficiency of the electric power can be considered as the pure
sine waveform and its maximum exploitation for feeding electrical equipment [65]. To this
respect, a deficient power supply such as drops in voltage, or leakage current, affects the
proper operation of a machine, reducing its efficiency, producing malfunctioning, reducing
its lifespan expectancy, or even causing irreparable damage to the equipment [66,67].
Therefore, the power quality (PQ), in this context, can be defined as an adequate power
supply to electrical equipment and devices for their proper operation. According to the
international standards such as IEEE, IEC [68], the power supply voltage must be following
established references and limits in terms of amplitude and frequency. Any deviation
from these parameters is considered an electrical disturbance or power quality disturbance
(PQD) [69]. The international standards define some of these disturbances as amplitude
changes referred to as sags, swells, or interruptions. The standards also define frequency
change disturbances such as harmonic or inter-harmonic content, and other disturbances
associated with minor changes in voltage such as oscillatory transients, fluctuations, and
notching. In Table 3 are summarized the different kinds of disturbances, their category, and
principal causes and effects for each of them, according to [70]. The flicker term is the effect
produced by the voltage fluctuations as indicated in IEEE 1159 [71].

Table 3. PQDs and their causes and effects.

Type of Disturbance Categories Causes Effects

Transients [72]
Impulsive Lightning strikes, transformer

energization, capacitor switching Power system resonance

Oscillatory Line, capacitor or load switching System resonance

Short duration
voltage variation [41]

Sag Motor starting, single line to
ground faults

Protection malfunction,
loss of production

Swell Capacitor switching, large load
switching, faults

Protection malfunction, stress
on computers and
home appliances

Interruption Temporary faults Loss of production, malfunction
of fire alarms

Long duration
voltage variation [41]

Sustained interruption Faults Loss of production

Undervoltage Switching on loads, capacitor
de-energization Increased losses, heating

Overvoltage Switching offloads,
capacitor energization

Damage to
household appliances

Power imbalance [73] Single-phase load, single phasing Heating of motors

Waveform distortion [74]

D.C. offset Geomagnetic disturbance,
rectification Saturation in transformers

Harmonics ASDs, nonlinear loads Increased losses, poor
power factor

Interharmonics ASDs, nonlinear loads Acoustic noise in
power equipment

Notching Power Electronic converters Damage to
capacitive components

Noise Arc furnaces, arc lamps,
power converters

Capacitor overloading,
disturbances to appliances

Voltage fluctuations [75] Load changes Protection malfunction, light
intensity changes

Power frequency
variation [76]

Faults, disturbances in isolated
customer-owned systems, and

islanding operations

Damage to generator and
turbine shafts.
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It is common to find PQ problems in industrial electrical systems, such as voltage
deviation, unbalance, and harmonics. These issues may adversely affect the operation
of induction motors and the electrical drives connected to the grid [77]. In general, the
effects of an electrical source with a poor power source and contaminated with PQD on the
installed induction motors of industrial processes can be detailed such as: the voltage sag
is concerned with affectations in torque, power, speed, and stalling; the harmonic and inter-
harmonic content is associated with losses and torque reduction; the voltage unbalance
cause extra losses of iron and copper, thus leading to increments of the temperature in the
machines and vibrations; the short interruptions generate mechanical shock and possible
stall; the impulse surges are related to isolation damage; the overvoltage is related with
expected lifespan-shortening; and the undervoltage is concerned with overheating and low
speed [78]. Needless to say, the electrical machines depend entirely on being supplied with
adequate electrical power to function correctly. Consequently, the electrical network must
satisfy the minimum requirements considered for a suitable utilization of the energy. In
order to improve the energy performance indicators at industry, it is essential to know the
operating status of electrical machines such as motors and drives [79].

Analyses related to the energy-efficient operation of induction motors show that
PQDs also affect isolated systems such as marine systems or ships. It is necessary to have
the motors’ good energy-efficient operation [80]. PQDs can trigger protective devices
immediately to trip off motors. However, motors can ride through most of the voltage
sags because sag durations are commonly short [81]. Some standards do not consider the
effect of the simultaneous disturbances on the electrical machinery. Since several years
ago, there has been an increase in protecting the electrical equipment in the industry [82].
Sometimes a non-invasive sensor is considered to monitor the condition of electrical
machines [83]. Among the parameters to be monitored in electric motors is the power
factor. PQ monitoring is often avoided as a measure for enhancing energy efficiency [80].

3. Techniques for Power Quality Detection, Identification, and Mitigation

It is very important to highlight that the industrial processes require to have power
networks with a Power Quality (PQ) as good as possible, since the equipment connected to
the grid is very sensible and can easily be affected, as described above, in such a way that
the final repercussions are reflected as economic losses and environmental problems. In this
sense, the PQ analysis becomes a fundamental study in order to develop methodologies
capable of detecting, identifying and mitigating the PQDs present in the power grids. As
aforementioned, several works exist that have addressed the study of PQDs from different
viewpoints. For example, the studies for detecting power disturbances mainly focus on
the development of techniques capable of find out the presence of anomalies in electric
signals no matter the nature of the disturbance. In another example, recent works have
tackled the detection and identification of the anomalies in the electric signals by classifying
them as a particular disturbance from those presented in Table 3. Additionally, there are
few studies that really handle the mitigation or minimization of the effects of PQDs on
the equipment connected to the power grid. Typically, their solution to this industrial
problem is very general, by applying strategies of loads balancing or capacitors banks, but
these solutions only work for some disturbances. All the studies are important, and in the
following paragraphs they are discussed according to the issue that they address.

Regarding to the identification problem of electric disturbances, the detection tech-
niques that have been developed are very important in order to enhance the quality of
a power system [84]. In the first decades of analysis, traditional approaches have been
probabilistic-based over signals in the time domain, assuming that the disturbances do not
affect the analytical process [85]. Later, for the energy quality monitoring, the process was a
fault diagnosis where the electrical signal is processed through different techniques, usually
implicating some transformation. Among the most common are those techniques such
as Fourier transform and its variants such as fast Fourier transform (FFT), the short time
Fourier transform (STFT), the discrete Fourier transform (DFT) [86–88], the discrete wavelet
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transform (DWT) [89–92], the Hilbert–Huang transform [93–95], the S-transform [96],
among others. After decomposing, or transforming, the analyzed signal, an extraction of
indicators for making the disturbances detection is performed, the most typical is to use
statistical ones in the time domain, the frequency domain, and the time–frequency domain.
Recently, due to the difficulty for detecting various and more complex disturbances that
may appear in the electrical network, techniques with the ability to handle and process
large volumes of data and find relations among the types of disturbances have been con-
sidered. For instance, classical machine learning techniques like support vector machines
(SVM) [97–99], artificial neural networks (ANN) [85,100–102], deep learning (DL) [103,104],
and other machine-learning techniques. Notwithstanding, several studies identify a com-
bination of power disturbances described in the standards [105]. Such patterns could be
considered novelty results, and their study has been proposed as an important prospective
in the field of electric power disturbances detection.

In reference to the problem for classifying PQDs are presented the following works.
The nature of a PQD present in the electric network generates profiles (or patterns) with
high complexity on the loads, also connected to the grid, characterized during the operation
by non-periodicities and disparities in the combinations of the disturbances observed by
the meassuring system [106]. Therefore, power disturbances detection and classification
with such profiles are still topics of interest because reported approaches are not robust
enough for treating them, having drawbacks and limitations, since they only tackle the
disturbaces by separate, or simple combinations [91]. To overcome these drawbacks, the
artificial intelligence techniques, the heuristic techniques, and deep learning are being used
every time more frequently. The reason is very simple, these techniques are more suitable
for treating problems where the prior knowledge of the system is not required, a big amount
of data need to be processed, high accuracy is required, data with non-linear behavior,
between other advantages [107–109]. Several works in the state of the art that address the
tasks of detecting and clasifying power disturbances mention that methodologies based
on data-driven could be considered to provide excellent results for the PQ analysis [110].
As a whole, the data-driven procedure consists of three steps: feature extraction, feature
reduction, and classification (Figure 1).
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Some examples of the works reported for detecting and classifying electric power
disturbances are described in next. The work developed in [98] describes a scheme in
which the input signal is first decomposed through the variational mode decomposition
(VMD), then the recurrence quantification analysis (RQA) for defining the frequency and
duration of the disturbances is performed. This method achieves, by means of data-driven,
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an adequate parameterization of the present disturbances. Otherwise, in [90] a modified
method based on symmetrical components in the time domain for detecting and classifying
various PQDs is presented. That implies that a single-phase PQ disturbance and other
two ideal phases generated by means of a phase-locked loop (PLL) processed to determine
the symmetrical components. Consequently, by triggering points it is possible to detect
PQDs in the disturbance phase through the negative sequence component. The detected
PQDs have been straightforwardly categorized from the profiles of the waveforms by
means of the addition of the sequence components, positive and negative. Then, simulated
and real-time results are presented for a wide variety of PQDs to show the effectiveness for
detecting and classifying of the proposed method. Other studies such as [111] investigates
the efficiency of a methodology for classifying electric disturbances when the manner to
extrac the signal features is varied through different classical processing approaches on sev-
eral data subsets. Although the results obtained are good, a limitation in this strategy is the
high amount of resources required to compute the optimal features, since, precisely, several
techniques are implemented. On another topic, the work presented in [112] describes a
methodology for de PQDs classification; this study uses a higher order of cumulants as
feature parameters and the classification approach is based in a quadratic approximation.
Here, the signal processing tools are mandatory for obtaining feature vectors from the
voltage or current waveform data. Novel, or non-typical, approaches are also performed
such as in [113] whose method is out of the typical approaches found in the literature
about the processing through sparse signal decomposition on an overcomplete hybrid
dictionary, and then the classification stage is performed by a decision tree algorithm. In
another example, the work of [114] develops a new method for automatically detecting and
classifying electric disturbances by means of Kalman filter (KF). Here, the KF is applied as
series of equations for computing the state of a signal measured. The disadvantage is that
it is necessary to make a selection of the parameters and verify that the state space model
is not incorrect. For microgrids in the photovoltaic (PV) generation there are also a worry
about detection of power disturbances generated by the grid inconsistencies. Thus, the
work present in [115] presents a variational mode decomposition and empirical wavelet
transform used as solution for monitoring and identifying electric disturbances in a dis-
tributed generation microgrid. With the advent of Industry 4.0, the aspects involving the
condition monitoring of electrical machines have evolved. In consequence, new trends and
techniques for signal processing such as artificial intelligence, handling of large volumes of
data, and performance improvements are becoming more common, and they have been
adapted by more and more users [116]. Recent reviews demonstrate the current literature
and tendencies in development and research to aim for the proper detection, identification,
and classification of the PQDs [117]. These reviews specifically remark on the works related
to digital signal processing (DSP) and machine learning [116]. The recent approaches
show their capability to process large data amounts and several signal patterns on the PQ
monitoring area that are the current trends. The firsts works that related the use of neural
networks with PQDs detection and classification is that presented in [85], where a radial
basis function neural network is implemented for the classification of the 20 kinds of distur-
bances. This scheme is compared with others approaches involving the use of feed forward
multilayer network, probabilistic neural network and the generalized regressive neural
network. Other works such as in [118] spend their effort in improving the feature extraction,
feature calculation and feature selection stages in a common framework of identification
and classification of PQDs. This work presents an optimization framework for the optimal
selection of features from the different signal domains based on ant-colony optimization.
In other case, it is presented in [119] a new approximation for classifying PQDs, firstly,
a transformation of the signal from a representation of 1 dimension is carried out into a
representation of 2 dimensions for extracting useful indicators. Finally, several approaches
for classifyign the disturbances are executed to see wich perform better, between them the
machine learning (ML) like k-nearest neighbour (kNN), multilayer perceptrons, and the
SVM. In order to validate the aproximation, the PQDs employed are combined defining
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up to 2 or 3 disturbances at the same time. However, other approaches that address the
combination of PQDs conclude that the best way to treat this situation is by data fusion [13].
The reduction of the numerical indicators is very important in the approaches based on
data-driven in order to avoid redundancy of information [16]. That means, not useful
information must be discarded, or ignored, in order to improve the characterization task of
patterns in the analyzed data, for example, the methodologies described in [111,120,121]
consider for the reduction task the following techniques: the kNN, the principal component
analyzis (PCA), and the sequential forward selection (SFS). Nonetheless, when handling
with a large quantity of patterns, as usually recent methodologies for PQ monitoring do,
their efficiency is quite restricted [18]. For that reason, the DL approaches were taken into
account with more frequency in industry for handling with data sets of high dimensionality
and complex pattern behavior [122]. The use of DL provides robustness and efficiency in
the classification, recognition, and processing of, images, speech, and video, respectively,
but also, recently, in managing of energy [33]. Some good examples of approaches that
process data with a high level of complexity are the convolutional neural network (CNN),
the recurrent neural network (ReNN), and the autoencoder (AE) technique. Although some
of these approaches have been used to test their capabilities for monitoring signals in the
power grid, the classification task of PQDs still needs exploration [123]. Even though the
achieved performances are good enough, the absence of an standard and simple process to
adjust and tune such techniques still represents a drawback that does not allow considering
applications in real industrial environments [124]. Meanwhile, the investigation developed
in [125] explores the potential of deep learning schemes for classifying PQDs by calculating
statistical indicators from four main components through a variant of the PCA and making
the disturbances categorization by menas of a CNN. The approach classifies multiple power
disturbances in two main classes, reaching accurate results for simulated data. In [104], a
novel method based on deep learning is proposed for identifying and classifying PQDs in
three main stages: feature extraction from the power system, adaptive pattern recognition
by means of AE, and, finally, disturbances classification by NN. Continuing with data-
driven strategies, the SVM are becoming important approaches for characterizing multiple
patterns that would help to give support to the classification taks. The approach reported
in [126] uses a variation of wavelet transform called tunable-Q to efficiently extract features
from the signal tuning the Q-factor, and then the disturbances are classified by dual multi-
class support vector machines. On the other hand, in [127] a cross wavelet is used, aided
by Fischer linear discriminant analysis (LDA), and for the classification of disturbances
it uses a Linear SVM. The study referenced in [120] presents a method to classify PQD
based on wavelet energy change and the Support Vector Machine. Another scheme that
uses a modified version of SVM and variation of wavelet transform is the work presented
in [128], which uses empirical wavelet transform arguing is suitability for nonstationary
kind of signals such as those presented in electrical disturbances. The method extracts six
features that are input to the SVM method for the classification stage. In relation to the
space-transform techniques, in [129] several statistical indicators are taken into account to
be computed by means of the S-Transform, then the power dirturbances are characterized
by appliying an analysis of multi-resolution over such indicators.. The method presented
in [88] proposes PQDs recognition by applying the modified S-transform (MST) combined
with the parallel stacked sparse autoencoder (PSSAE). Here, the MST uses a Kaiser window
in order to concentrate the energy in the matrix of time-frequency and, together with the
Fourier transform spectrum, the extraction of features is automatically carried out in order
to input them to two sub-models in PSSAE. Moreover, there are performed the reduction of
dimensionality and the visual analysis of the features, thus, the classification of the PQDs
is finally made with the softmax. Discussing another technique, the approach of [130]
uses the S-transform to extract the significant features of the electrical signals, which are
the inputs to different machine learning models. This work considers the combination of
single disturbances. In the end proposes a hybrid scheme for the classification supported
by the single models evaluated at first. A variation of S-transform called double-resolution
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S-transform is used in [97] to extract denominated effective features from the signals. Then,
the disturbances classification of the signals is made by directed acyclic graph support
vector machines (DAG-SVMs). The variations of the typical methods used in this article
are supported in the robustness of the techniques and the fact to reduce the computational
burden to implement in real-time applications. Involving aspects as the complexity of
the signal processing in [86] an optimal multi-resolution fast S-transform is adopted to
compress the information obtained from the features extracted and then with a rotation
forest made the evaluation of 17 types of PQDs. As can be seen, a base transform is adopted.
Depending on the application of the hypothesis to test, it means evaluation in line, moni-
toring offline, application in embedding systems, different techniques o adaptations of the
techniques are considered. Moreover, Mahela in [129] proposed the detection and classifica-
tion through the S-transform and Fuzzy C-Means. This approach tests their results through
simulation signals by software. In other approaches, Sahani in [93] performs a novel signal
segmentation method and a new scheme to carry out the classification stage of PQDs
based specifically on the use of reduced sample Hilbert–Huang transform combined with
class-specific weighted random vector functional link network. These authors based this
approach on the implementation in a field programmable gate array (FPGA) environment
to then test and validate at online monitoring and see the advantages of their proposal.

Regarding to the mitigation of the effects generated by the PQDs, this field requires
more researching, since the reported works are few and they are focused on strategies
based on capacitors banks or loads balancing. The effective identification and classification
of PQDs is significant for controlling the pollution in the power grid previously to any
corrective action. In this matter, the power filtering is an effective way to reduce the
effects generated by the PQDs in the electric grids, for example, by using inductive active
filters [131]. In [95], the improvement of the microgrid technology is presented, whose
applications have increased and gained attention. Nevertheless, distributed generations
with intermittency, loads with nonlinearity, and various electrical and electronic devices
cause PQ problems in the microgrid, particularly in islanding configurations. A precise and
fast method for detecting power disturbances is essential because it is the premise for the
PQ control. The proposed approach presented in [58] develops a methodology capable of
estimating the expected magnitude for voltage sags in order to provide information of the
motor starters applied for ship electrical power. In reference to power imbalance, in [132],
a shedding for managing time-optimal loads is presented. In general, this is allowed by
using a post event overload mitigation tool that enhances the efficiency of the system by
prioritizing the mitigations and ensures the time-dependent network security. Additionally,
periodic disturbance mitigation techniques exist based on controllers [133], such works
consider as periodic disturbance the harmonic content and by measuring the disturbance
and by applying a resonant scheme in the feed forward control or model predictive control
the disturbance is mitigated. The power quality is also analyzed in the microgrid systems
and here the supra-harmonic (SH) content is also the interest topic. The mitigation strategies
for SH are based in the use of dynamic voltage restorers (DVR) for handling voltage sags and
swells, but with the limitation of keeping the harmonic content. However, some strategies
combine the static synchronous compensator (STATCOM) with static VAR compensator
(SVC) for reducing the harmonic effects [134]. Finally, Table 4 summarizes the reported
works in the literature and the issue addressed in the PQD analysis.
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Table 4. Comparison of PQDs studies in the literature.

Ref. PQD Issue
Addressed

Detection
Technique

Classification
Technique Mitigation Technique Number of

PQD Handled
Accuracy
Reported

[90] Detection SC-PLL - - 8 -
[114] Detection KF - - 14 98.8–100%

[88] Detection and
classification MST PSSAE - 12 99.46%

[98] Detection and
classification VMD-RQA SVM – 7 99.03%

[111] Detection and
classification

FT, STFT, HHT,
ST, DWT

ANN, SVM,
DT, KNN - 16 99.31–100%

[112] Detection and
classification HOC QC - 2 98–100%

[113] Detection and
classification EMD SVM - 4 98%

[115] Detection and
classification VMD-EWT RKRR - 12 99%

[85] Detection and
classification DWT RBFNN - 20 96.3%

[118] Detection and
classification 1DST DT – 14 99.93%

[119] Detection and
classification

2DRT-
MOGWO KNN - 18 99.26%

[122] Detection and
classification DL CNN - 16 98.13–99.96%

[123] Detection and
classification PSR CNN - 10 99.8%

[128] Detection and
classification EWT SVM – 15 95.56%

[86] Detection and
classification ST DT – 16 99.47%

[125] Detection and
classification PCA CNN – 11 99.92%

[104] Detection and
classification FFT, EMD, SAE SMNN - 17 98.06%

[119] Detection and
classification 2DRT KNN – 17 99.26%

[126] Detection and
classification TQWT MSVM - 14 96.42–98.78%

[135] Detection and
classification HOS NT - 19 97.8%

[131] Mitigation HPF - IAF 2 -
[95] Mitigation HHT ANN SVG 4 -

[132] Mitigation - - PEOM 2 -
[133] Mitigation KF - RSC, MPC 4 -
[134] Mitigation BPF-FFT - DVR, STATCOM+SVC 6 -

4. Techniques for Power Quality Related to Electrical Machines and Electrical Drives

As described in previous sections, the PQ is an important topic to be analyzed for
industrial equipment connected to the grid because they could be adversely affected
yielding important economic losses. Therefore, this section describes and analyses, through
the discussion of several works, how a poor power quality affects the main equipment used
at industry level, particularly speaking about motors and drives. It is worth mentioning
that typically the electric grid is polluted with anomalies such as those described above as
PQDs, which not only cause malfunctioning, failures, or damage to the motors and drives,
but also reduces its efficiency.

Next, a discussion has begun based on those works that handle the affectations
on motors and drives caused by PQDs related with changes in the amplitude of the
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power source such as voltage sags, swells, interruptions, and unbalance. For instance,
regarding discussing or studying the effects of sag disturbances in induction motors, the
work presented in [36] calculates the motor performance by analyzing the electromagnetic
properties under symmetrical voltage sag conditions. Then, by using an adjustable speed
drive (ASD), the energy consumption of the motor is reduced. These elements could be
configurated in so many forms and can be used for motors of medium voltage applications;
however, this solution does not present a good performance regarding Power Quality.
Additionally, regarding voltage sag propagation, the work presented in [66] develops
an analytical tool able to describe the influence of the sag disturbances over a group
of induction motors, but also describe the influence of the motors on the voltage sags
characteristics. That means, it is explained how a motor and its drive affects the power
grid, but also is explained how the contaminated signal from the grid impacts in the motor
operation. In [81] the sag disturbance is analyzed in induction motors by presenting a
method that determines the maximum allowed time for the motor connection, whereas a
sag occurs in the power line. Due to sag events, a reduction in the electromagnetic torque
is produced in the induction motors, tending to a deceleration effect. On the other hand,
the work described in [136] presents a control scheme for minimizing the impact of the
starting of an induction motor, on the network, by using a voltage feedback-based reactive
power support from the existing distributed generator units. It is well known that the
electronic equipment, the process control systems, among others, are susceptible to this
kind of disturbance. A specific case has been observed when induction motors decelerate
due to a short circuit occurrence in the power supply, naturally, the motor will accelerate
after source conditions restoring demanding a high current value from the supply causing
a postfault voltage sag [137]. On the other hand, the work presented in [138] develops a
methodology for mitigating voltage sags during starting of three-phase induction motors.
In that study, a neighboring voltage supporting distributed generation (VSDG) reduces
the starting peak current and quickly restores the power source to typical values. The
study presented in [93] analyses the transient characteristics of induction motors under
the influence of sag disturbances using a multi-slice field-circuit-motion integrating time-
stepping finite element method. Additionally, in [98], the propagation produced by the
induction motors in sags disturbances is analyzed. In [97], the first part of a study is
presented where the interaction of induction motors against voltage sags disturbances is
presented. Additionally, in [98] the effects produced due to short interruptions and voltage
sags are investigated. Here, an analysis of protection devices indicates how to maintain the
proper operation of the electrical machines.

By the other side, some examples of works are next described regarding to the voltage
unbalance issue. In this line, works such as in [139] present a strategy that is developed to
mitigate the voltage unbalance that occurs when energizing induction motors to support
the restoration of the grid after this event. To do this, a VSDG injects reactive power into the
grid once it is calculated through optimal feedback control of distributed generators. The
authors argue that distributed generators are capable of improving the power quality by
providing ancillary services as reactive power injection, voltage unbalance compensation,
and harmonic filtering. In other works, the wavelet transform is used, such as in [140], to
deal with nonstationary signals and where a model is proposed to handle overvoltages
caused by pulse-width modulation in voltage source inverters. These disturbances are
often presented due to the response from the motor to the inverter pulse voltages. On other
topic, a method to estimate the shaft power of an induction motor operating under voltage
unbalance and with harmonic content is presented in [56]. Additionally, an algorithm of
search in conjunction with an equivalent circuit are developed as the corresponding solution.
Another example is the study described in [141] that analyzes induction motors connected
to unbalanced three-phase voltages in the steady-state through an index called “the complex
voltage unbalance factor”. The study carried out in [100] presents a methodology based on
thermal effects to monitor an induction motor under unbalanced disturbance conditions.
By having thermal profiles, it can be determined when a motor is under the effects of



Energies 2022, 15, 1909 14 of 26

this electrical disturbance. Additionally, the research reported in [67] proposes a new
power quality index to determine two kinds of PQDs, voltage unbalance and harmonic
content, typically presented in the power supply. The introduction of this new index aims
to show the thermal effects of the disturbances into the induction motors simultaneously.
In [79], the authors asset the specific effect of the positive sequence of voltage on derating
three-phase induction motors under voltage unbalance. This power disturbance could
present in motors an overheating, decreasing in efficiency, and reduction in the output
torque. In order to mitigate these adverse effects, the motor must be kept in an optimal
operational state.

There are works that address the harmonic content issue, such as the work presented
in [61], where a new configuration is presented for induction motors. Here, the typical
operation of the electrical motor drives is held as the configuration named vector control
mode, because this configuration offers a similar performance as in the case of dc motors.
However, the use of these drives results in the harmonic injection to the current line
affecting the power quality. Different active or passive wave shaping techniques are used
to mitigate the harmonic content effects [30]. In this sense, the IEEE 141-1993, the IEC
60034-26, and the NEMA MGI-2003 establish derating factors for induction motors under
unbalanced conditions of voltage and harmonic content. Additionally, the work presented
in [142] investigates the harmful effects of the harmonic content as a power disturbance,
which means changes in frequency above and under the fundamental frequency waveform,
e.g., subharmonic and interharmonic content. It is known that these disturbances cause
power losses, rotational speed changes, electromagnetic torque variations and windings
temperature risings. Additionally, in that study it is reported that vibrations are also
generated in induction motors due to the harmonic content caused by the nonlinear loads.

Regarding the works focused on affectations by the PQDs in the motor efficiency, some
works have addressed this analysis such as in [9], where it is shown how the derating
factor established by the standards for motors with higher efficiency is insufficient for
being applied in medium efficiency motors. This work compares the derating factor from
different motor classes to maintain the losses at the rated values according to the standards.
Similarly, in [8] a comparison was carried out between the motor classes IE2, IE3 and IE4
under two different PQDs, unbalanced voltage and harmonic content, where the research
focus was mainly on showing the life expectancy of the motors. The study presents several
factors to be considered, in a very comprehensive manner, to properly select the motors for
a better operation and reliability, nevertheless, the study is mainly dedicated to three-phase
squirrel-cage induction motors (SCIMs). Several former works are reported in [143], where
the studied effects in electrical machines by PQDs are the harmonic content and the voltage
unbalance. This study presents the arrival of the adjustable speed drives (ASD), as a new
enthusiasm for this topic back to the beginning of the 2000s. Additionally, it is performed
the economic analysis and provide recommendations for mitigating the harmonic content
affectations. Also, in this research is proposed an adequate instrument for assessing and
monitoring the motors based on a coefficient related to the energy performance, since this
coefficient can indicate the equipment efficiency, or if there exist excessive losses. Last, but
not least, another power disturbance that adversely affect the proper operation of induction
motors and drives is the flicker. In relation to these phenomenon effects in the induction
motors, a research is described in [144] where it is asserted that the studies involving
induction motors in the transfer and attenuation of fluctuations need to be modeled in a
better way. It has been reported that loads of induction motors contribute to the attenuation
of this phenomenon. Table 5 summarizes the works that address the PQD issue in motors
and drives and the different approaches proposed.
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Table 5. Literature dealing with PQDs in electrical machines and drives.

Reference Electrical Machine PQD Method Year

[36] Induction motors Voltage sags System modelling 2008
[66] Induction motors Voltage sags Analytical tool for sag description 2008

[81] Induction motors Voltage sags Analysis of critical clearance time of
symmetrical voltage sags 2014

[136] Induction motors Voltage sags Voltage supporting distributed generation 2019
[137] Induction motors Voltage sags Voltage supporting distributed generation 1995
[138] Induction motors Voltage sags Coordinated control for distribution feeders 2018

[139] Induction motors Voltage sags Coordinated optimal feedback control for
distributed generators 2020

[140] Induction drives Voltage sags Wavelet modelling of motor drives 2004
[93] Induction motors Voltage sags Reduced-Sample Hilbert–Huang transform 2019

[97] Induction motors Voltage sags S-Transform with double resolution
and SVM 2016

[98] Induction motors Voltage sags Qualitative-quantitative hybrid approach 2020
[56] Induction motors Voltage unbalance Estimation of shaft power 2016

[141] Induction motors Voltage unbalance Analysis on the angles of complex voltage
unbalance, Index CVUF 2001

[100] Induction motors Voltage unbalance Discrete wavelet transform, mathematical
morphology and speed variation drive 2018

[67] Induction motors Harmonic content New power quality index 2010

[61] Induction motors Harmonic content Adjustable speed drive with a multiphase
staggering modular transformer 2019

[30] Induction motors Harmonic content Pulse Multiplication in AC–DC Converters 2006

[79] Induction motors Harmonic content Analysis of positive sequence voltage on
derating 3-phase induction motors 2013

[142] Induction motors Harmonics, subharmonics
and interharmonics Vibration Analysis 2019

[8] Induction motors Voltage unbalance and
harmonic content

Comparison between classes efficiency with
driver metrics 2015

5. Analysis of Techniques Trends

This section addresses two main topics: the first one identifies and summarizes the
present problematics and the tendencies towards solutions that have been applied regarding
electric rotating machines and drives and their relationship with power quality; the second
one includes possible approaches as solutions to the niches of opportunity detected in
the related analysis to the detection, classification, and mitigation of the effects of the
power disturbances.

5.1. Overview on the Proposed Solutions regarding Power Quality Issues on Motors and Its Drives

The quality of an electric network, at the industrial facilities, is reduced by the influ-
ence of disturbances that normally appear by different factors, internal and external. For
example, the induced disturbances to the power signals are due to the loads represented
by electrical equipment switched to the network, their electric and electronic components,
and their non-linear behavior. As a counterpart, the industrial equipment is affected, in
turn, by a poor power quality provoking malfunctioning, reducing its lifespan expectancy,
causing irreparable damage, and reducing it efficiency. From the analyzed works, an
evolution is observed in the manner that every problem is tackled; for instance, the first
study-developed methodologies focused on the detection of power disturbances without
considering the anomaly nature. Such approaches mainly used space transformations (FFT,
DWT) in the time domain, or the frequency domain, or the time–frequency domain in order
to posteriorly make a manual analysis.

Later, further works evolving not only for detection of power disturbances tasks,
but also for identifying and classifying them. To this respect, several techniques were
used to extract what is known as features from the measured signals, which are values
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computed from statistical, electrical, mechanical parameters, etc. An interesting topic
is the manner in which the classification task was carried out, e.g., by integrating the
artificial intelligence (AI) techniques such as the artificial neural networks. Later other AI
approaches were employed to identify and classify PQDs, such as the fuzzy logic, many
variants of the NN, SVM, DT, among others. Some important drawbacks are presented in
the PQ diagnosis, in recent years, such as the big amount of data generated by the high
sampling frequency of the data acquisition systems, the high complexity in the hardware
of new devises, the appearance of several PQDs combined. To overcome these limitations
the heuristic techniques and the machine learning were integrated, which are capable
of handling high amount of data, treating with non-linearities, providing results with
high accuracy, working without previous knowledge of the problem, etc. Recently, for
raising the accuracy and the reliability of the results, the techniques for features extraction
aim for the generation of high-dimensional indicators matrices, with the aim to have as
many data as possible to obtain valuable information of several combined disturbances.
Posteriorly, the redundant information is eliminated (only the useful information is kept)
by applying techniques such as LDA or PCA. The advantages of the reduction techniques
are the simplified representations of the data which become useful outputs for conventional
classification techniques. The mitigation of PQDs is a problem that has been addresses by
few works, since they focus their efforts on strategies based on capacitors banks or loads
balancing, for that reason, it is observed that mitigation of PQDs is an area of opportunity.

Finally, from the works that address the PQDs analysis to the particular application in
motors and drives, it can be mentioned that recent approaches consider only the effects
of voltage sags, generated by motor starters. Additionally, the use of electric drives also
induces to the power system harmonic content (harmonics, interharmonic, and subha-
monics). The voltage unbalance is other typical problem affecting the induction motors
operation and its drives, since they are switched to the grid generating asymmetric loads in
the lines. The methodologies that tackle these problems, as observed in Table 5, are based
on controlled systems by distribution generators, systems modelling, development of tools
for describing the disturbances characteristics, and adjustable speed drives, among others.

5.2. Techniques That Could Be Possible Potential Solutions to the Existing Problems

As described in previous subsection, the effects of the PQDs and its combinations on
the efficiency of motors and its drives are not full studied yet. Additionally, there is a niche
of opportunity related to the study about the effects of electric motors and its drives over
the electrical grid. The electric drives and the motors, especially the first ones, could affect
the power quality and to produce undesirable effects that may not be considered, yet by
these standards, some recent methodologies call this analysis a novelty detection. The PQ
analysis could be still with views toward solutions about the identification, classification
and mitigation issues but considering the use of alternative methodologies capable to
overcome the drawbacks that reported methodologies cannot, not only considering some
isolated disturbances such as voltage sags, voltage unbalance or harmonic content, but by
considering other varieties of PQDs, their combinations and their mitigations. Therefore,
a well-structured approach that combines the best of such alternative approaches, with a
general procedure capable of treating a large amount of data and to provide high accurate
and reliable results could be helpful in this area. With any technique used, an important
aspect to be considered is that the information obtained by the approach must be used in
the development of strategies for the mitigation of power disturbances.

Regarding the alternative methodologies that still are not considered, in the next lines
the novelty detection approaches are discussed as possible potential solutions to the field
of PQ and motors and its drives. The detection of problems, such as electric disturbances
in the grid and faults conditions into the induction motors, can be tackled through novelty
detection (ND) [82]. The purpose of ND is to observe a system behavior and to decide
whether an observation belongs to the same distribution of the existing observations, or
if it must be considered different. In the framework of the PQ, the observations during
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the normal operation of the power grid, or of the motor and its drive, could be considered
the reference (typical distribution), and any deviation from this behavior is susceptible to
be considered as atypical. Between the different schemes to apply ND, (i) probabilistic
techniques, (ii) distance-based techniques, (iii) reconstruction techniques, and (iv) domain-
based techniques exist.

The probabilistic techniques include the Gaussian Mixture Models [145], the Extreme
Value Theory [146], the State-Space Models [147], the Kernel Density Estimators [148], and
the Negative Selection [149]. These techniques estimate the value of density from the normal
class, and assume that areas of low density in the training set indicate a low probability
to contain normal objects. A drawback of these methods is the limited performance when
the training set is too small. Thus, when the dimensionality of data space growths, all data
points extend to a bigger volume. Therefore, the signals measured in the electric grid and
the physical magnitudes captured from the motor and its drive such as current, voltage,
vibrations, temperature, etc., could be employed to perform the probabilistic analysis.
This way, the applicability of these techniques could be explored in the identification and
classification of power disturbances in the grid, as well as the faults conditions in motors
and its drives. The analysis from the probabilistic viewpoint would be helpful to define
classes with densities variations according to the anomalies detected (power disturbance or
fault condition). Additionally, the probabilistic approach could provide a new indicator
index associated with the efficiency reduction caused by the power disturbances in the grid,
or the fault conditions into a motor.

On the other hand, the distance-based techniques include the k-Nearest Neighbor [150]
and the Clustering k-Means [151]. These methods assume tightly grouping, as clusters,
for normal data, but different data are located far respect to their nearest neighbors. Ad-
ditionally, adequate distance metrics are defined to establish the similitude between two
points, even within spaces with high dimensionality. There are some drawbacks when
using these techniques, for example, they just identify global points, and their flexibility
is not enough for detecting local novelty when the data sets present arbitrary shapes and
diverse densities. Additionally, the computing of distance between data points represents
high cost of the computational resources, mainly in data sets of high dimensionality; as a
consequence, these techniques lack scalability. Finally, the approaches based in grouping
of data suffer because they must select an appropriate cluster width and they are sensible
to the dimensionality variation. Similar to the probabilistic methods, several physical
magnitudes from the motors, or from the power network, can be used to extract features
that define such clusters. Therefore, these approaches are also sensible to be used for
detecting and classifying electric disturbances, since each disturbance contains different
characteristic that allow them to be grouped by a distance among them, the same scheme
could be defined to the faut conditions detection in motors and its drives.

For the case of the reconstruction techniques, they include variants of the NN, Auto
Associative Networks, Radial Basis Function, Self-Organizing Maps, Sparse Autoencoder,
and Subspace Methods [152,153]. These methods imply to use a normal data set for training
a regression model. As result, when the trained model process atypical data the difference
(reconstruction error) between the regression objective and the real value observed yields
to a novelty detection. However, the main drawbacks are, for instance, the requirement of
an optimized quantity of parameters for defining the structure of the model, and the direct
relation of the performance to these model parameters. Additionally, the networks that
use reconstructive models with variable size on its structure suffer because it is necessary
to select an effective training method that allows to incorporate new units to the existing
model structure. In this same line, the approaches based on the subspace must select
correctly the values of the parameters that control the mapping to a subspace of lower
dimension. In this particular case, for instance, variants of the neural networks could be
very helpful to train regression models that describe power disturbances in the grid, or
fault conditions into a motor. Thus, the reconstruction techniques could be applied for the
quantification and classification tasks of abnormalities in the grid, or faults in the motor. A
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novel application of these approaches could be explored for mitigating the effects of power
disturbances, for example, by defining a model that generates the opposite behavior to the
disturbance to counteract their effects.

By its part, the domain-based techniques include the Support Vector Data Descrip-
tion [154] and the One Class Support Vector Machine [155]. These methods describe a
domain that have normal data, also define the limits that round the normal class and that
follows the distribution of the data, but they do not provide an explicit distribution of the
regions with high density. The usefulness of these techniques is observed mainly in the
classification task of abnormal conditions in the power network and motors and its drives,
since such conditions are represented by classes according to specific distributions of data.
Additionally, a complement can be made through feature extraction and dimensionality
reduction through LDA and PCA for all the novelty detection techniques.

In relation to the heuristic approaches, techniques such as the Genetic Algorithms
(GA) [156], the Evolutionary Programming (EP) [157], the Particle Swarm Optimization
(PSO) [158], and the Expert Systems (ES) [159]. These techniques can handle problems
in which the previous knowledge is not necessary, they are good for looking values in
searching spaces with non-linearities, non-convexities, and with high dimensionality. Ad-
ditionally, they are of simple concept and have easiness of implementation. As they were
originally designed for optimization problems, they can be adjusted for a wide variety of
situations where critical values need to be found. Therefore, the heuristic schemes could
be considered as opportune in solving the drawbacks present in the novelty detection
techniques. For example, in selecting the parameters needed by the novelty approaches
to work with high performance, or in founding the adequate dimension of the clusters.
Additionally, the application of heuristic approaches is not limited to provide support for a
medullar algorithm, they can also be used in parallel, or as the medullar algorithm, such as
in a reconstruction model. A perfect example of this is the GA, which have characteristics
that enable it to accurately estimate several parameters (multi-optimization search) of a
parameterized model [160]. In this same line the heuristic approaches could have appli-
cability in the quantification of fault conditions in motors, as long as a generalized model
of the conditions can be defined. Additionally, these techniques could be explored in the
mitigation task of power disturbances by optimizing a model that generates the opposite
behavior to the disturbance to counteract its effects.

6. Conclusions

This review presents the discussion of several works in the state of the art referring to
the following aspects: the efficiency of electric machines (motors and drives); the power
quality; the relationship between the power quality and electric machines affecting the
efficiency; the techniques for power quality disturbances detection, classification, and
mitigation; and the techniques for PQD analysis in motors and drives. The discussion of
the works related to electrical machines and energy efficiency allows to conclude that there
exists a mutual relation between motors and drives with the power quality. For example,
the efficacy of the PQ of a power source is reduced by the disturbances induced by electrical
equipment connected to the grid, but also, once the grid is contaminated with electric
disturbances, they reduce the performance of motors and drives. Is worth to highlight that
in the literature, several works have been developed with the purpose to detect, classify, and
mitigate the affectations generated by the PQDs. There are several methodologies; the firsts
of them were designed only for the detection task, and they were based mainly in space-
transform techniques. Later, the integration of artificial intelligence techniques arrived; this
brings out the opportunity for performing the classification of the PQDs. The most recent
strategies combine the aforementioned techniques to define well-structured approaches for
feature extraction, dimensionality reduction and classification. Alternative methodologies
such as novelty detection and heuristic techniques have also been addressed, making a
discussion about their characteristics which make them potential solutions to give accurate
and reliable results to problems where the reported methodologies cannot. For example,
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by performing the detection, identification and classification of power disturbances not
considered yet by the standards, or other types of disturbances different from those tackled
by the reported works. Additionally, in the fault conditions monitoring, in motors and
its drives, these approaches can be explored for detecting and classifying several faults
or their combinations. By the other side, the heuristic schemes can be adopted to give
support to the novelty detection methodologies, by selecting the parameters that play a
key role in the performance of such methodologies. Additionally, the heuristic approaches
could be used for estimating the values of parameterized models that describe the power
disturbances and the fault conditions, or their combinations, respectively. Mitigation
of PQDs is still an area of opportunity, since few works have handled this issue but
only for limited power disturbances. The alternative methodologies proposed in this
review could be opportune options for proposing strategies to meet this goal. For instance,
novelty detection can provide accurate information about the anomalies in the grid, or in a
motor, in order to develop mitigation strategies. One example about mitigation of power
disturbances could be developed through the use of heuristic techniques, by defining a
parameterized model capable of generating the opposite signal that mitigates (attenuating
or minimizing) the effects of the disturbances (or their combinations). Finally, the studies
of PQD affecting the efficiency of motors and drives the analysis considered until now
limits to some disturbances such as voltage sags, voltage unbalance, and harmonic content.
Here, the well-structured approaches could be useful to this matter. Regulatory agencies
are introducing energy efficiency requirements and the electric machine must meet these
restrictions. Therefore, it is important that the new lines of investigation look towards
solutions to mitigate the PQDs in order to rise the electric machines efficiency that in
consequence will increase the power grid efficiency.
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Glossary

FT Fourier transform
ST S-Transform
SVM Support vector machines
QC Quadratic classifier
RQA Recurrence quantification analysis
KNN K-nearest neighbor
RBFNN Radial basis function neural network
DL Deep learning
PSR Phase space reconstruction
KF Kalman filter
FFT Fast Fourier transform
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TQWT Tunable-Q wavelet transform
IAF Inductive active filtering
PEOM Post event overload mitigation
BPF Band-pass filter
STFT Short time Fourier transform
DWT Discrete wavelet transform
DT Decision trees
SC Symetric components
EMD Empirical mode decomposition
EWT Empirical wavelet transform
1DST 1-dinemsional S-transform
MOGWO Multi-objective grey wolf optimizer
PCA Principal component analysis
PSSAE Parallel stacked sparse autoencoder
SMNN SoftMax neural network
MSVM Multiclass support vector machine
SVG Static VAR generator
RSC Resonant controller
STATCOM Static synchronous compensator
HHT Hilbert–Huang transform
ANN Artificial neural networks
HOC Higher-Order cumulants
PLL Phase locked loop
VMD Variable mode decomposition
RKRR Reduced kernel ridge regression
2DRT 2-dimensional Riesz transform
CNN Convolutional neural network
NT Nutro tree
MST Modified S-transform
SAE Sparse autoencoder
HPF High-pass filter
SVC Static VAR compensator
MPC Model predictive controller
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