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Abstract: Maintaining the performance of a fuel cell stack requires appropriate management of water
in the membrane electrode. One solution is to apply an external humidifier to the supply gases.
However, the operating conditions change continuously, which significantly affects the humidifier
performance and supply gas characteristics. A straightforward humidifier module is needed for
integration with the fuel cell system model. In this study, a lumped-mass model was used to simulate
a hollow-fiber membrane humidifier and investigate the effects of various input conditions on the
humidifier performance. The lumped-mass model can account for heat transfer and vapor transport
in the membrane bundle without losing simplicity. The humidifier module was divided into three
parts: a heat and mass exchanger in the middle and two manifolds at the ends of the exchanger. These
components were modeled separately and linked to each other according to the flow characteristics.
Simulations were performed to determine the humidifier response under both steady-state and
transient conditions, and water saturation was observed in the outlet manifold that may affect the
humidifier performance. The findings on the effects of the operating conditions and humidifier
dimensions on the cathode gas can be used to improve humidifier design and control.

Keywords: fuel cell system; membrane humidifier; heat and mass transfer; lumped-mass model

1. Introduction

Fuel cells are an emerging power generation technology for various applications, such
as power stations and vehicles. The fuel cell converts hydrogen and air/oxygen to electricity
through electrochemical reactions at its electrodes. A proton-exchange membrane fuel cell
(PEMFC) has a membrane between the cathode and anode that only allows protons to cross.
Because the process is highly efficient, silent, and environmentally friendly, it has become
the focus of recent research and development [1–3]. The energy conversion in a PEMFC
strongly depends on the proton conductivity of the membrane. Increasing the moisture
content in the membrane fosters proton movement and improves the performance of the
fuel cell stack. However, too much water can saturate the channels and block the gas flow,
while too little water leads to high proton resistance and membrane degradation. Therefore,
water management is essential for optimizing the PEMFC performance [4–11]. This can be
accomplished by humidifying the anode and cathode gases; however, studies have shown
that the cathode gas dominates the anode gas. Thus, water management of the fuel cell
membrane should focus on humidifying the supply of air/oxygen [12–14].

Membrane humidifiers have low energy consumption and simple construction. The
membrane has a porous structure that allows water particles to move from the wet side to
the dry side while blocking undesired substances. Depending on the shape of the mem-
brane, a membrane humidifier can be classified as planar or tubular. Tubular membrane
humidifiers are commonly used for automotive applications because of their high efficiency.
These humidifiers recirculate the cathode exhaust air, which has a high relative humidity,
to humidify the supply air through a bundle of membranes. The moist air moves outside
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the bundle, and the dry air flows inside, normally in the opposite direction. Two manifolds
at the ends of the humidifier collect the dry flow. The humidified gas is then supplied to
the cathode and is circulated in the PEMFC system. The water transfer rate and relative
humidity of the dry flow are important parameters that affect the humidifier performance.
The system is subjected to various working conditions, and transient phenomena make
water management difficult. Such changes affect the characteristics of the supply gas
for the cathode. Therefore, understanding humidifier behavior under different operating
conditions is critical to controlling the PEMFC [15,16].

Modeling the humidifier can help with understanding the factors that influence the
supply gas characteristics and improving the PEMFC performance. However, balancing
the complexity of the model for accuracy and straightforwardness for later integration in
the PEMFC model is a challenging task. Bhatia et al. [17] developed an analytical model for
predicting the steady-state heat and mass transfer of both planar and tubular membrane
humidifiers that considers the effects of vapor transport. Yu et al. [18] built a static model
of a planar membrane humidifier to investigate the effects of the operating conditions and
membrane characteristics. Park et al. [19] studied the dynamics of an external humidifier
for a fuel cell system and developed a one-dimensional model of the mass transfer in
membrane tubes that discretizes the volumes along the flow channels. Kang et al. [20]
used a two-dimensional model and experimental data to investigate the dynamics of a
hollow-fiber membrane humidifier. Solsona et al. [21] presented a dynamic model of a
water-to-gas membrane humidifier that regulates the relative humidity of the cathode
supply air. Fu et al. [22] integrated a lumped-mass model of an external humidifier into
a fuel cell system for humidity control. Some of the above models used discretization
to evaluate the changes in the flow characteristics with the membrane geometry, which
increased the computational time. Other models only considered the characteristics at
the inlets and outlets, and they neglected the dynamics in the membrane channels. These
models are more suitable for integration into the PEMFC model than complicated models.

None of the above models considers the manifolds of the humidifier, where water
saturation may occur. Due to the high humidity of the supply air and temperature change,
water could be formed in the manifolds, especially in the exiting one. The saturated water
may block the air moving paths and affect the fuel cell performance. In this study, manifold
dynamics were considered, which account for changes in the supply air characteristics in
the humidifier manifolds and identify noticeable operating conditions that result in the
water formation.

A lumped-mass model was developed for a hollow-fiber membrane humidifier, which
is a type of tubular humidifier that consists of a heat and mass exchanger and two manifolds
at the ends of the exchanger. The model provides a simple approach to capturing the heat
and mass transfer phenomena in the humidifier components. It can be used to simulate the
humidifier performance under different operating conditions and point out possible water
saturation of the manifolds. It can help with understanding the dynamics of the PEMFC
and developing a control strategy.

2. Model Description
2.1. Gas-to-Gas Membrane Humidifier

The humidifier should provide the desired amount of water vapor to the supply air
under various conditions. Understanding the behavior of the humidifier is beneficial to
designing and controlling the PEMFC system to maximize its performance. In this study,
the effects of the operating mass flow rate, temperature, and relative humidity on the mass
transport rate and characteristics of dry air at the humidifier outlet were investigated. In a
PEMFC system, moist air from the cathode exhaust correlates with the supply air. Moist air
interacts with dry air when the humidifier is integrated with the fuel cell stack. However,
this study was focused on the humidifier. Thus, the humidifier operating conditions were
predetermined and assumed independent of the fuel cell system so that their effects could
be identified.
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The humidifier was assumed to allow moist air to transfer water particles to dry air
in a counter-flow setup. The main component is a bundle of porous membranes placed
inside a cylindrical shell, as shown in Figure 1. The membranes support vapor transport
from a higher concentration surface to a lower concentration surface while preventing the
transport of other substances. Moist air is exhausted from the cathode and pumped to the
shell side of the humidifier. The dry air from the compressor moves in the bundle and
gains humidity from the moist air. The two flows are arranged in opposite directions by
four ports on two manifolds and on the shell. The two manifolds deliver the inlet flow on
the dry side to the membranes and collect the outlet flows from the membranes.
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Figure 1. Schematic diagram of the humidifier module.

The humidifier module was divided into three control volumes: (1) the inlet manifold
that takes the supply air and distributes it to the membrane tubes; (2) the heat and mass
exchanger, which includes the membrane bundle comprising tubes housed in a shell; and
(3) the outlet manifold that exhausts the moist air from the humidifier. Control volume
1 was used to study the heat transfer from the internal flow to the manifold and outside
ambient air. Control volume 2 was used to study the heat and mass transfers between
the two flows. Similar to control volume 1, control volume 3 was used to study thermal
transport phenomena. The output of control volume 1 was a dry flow, which was the input
for control volume 2. The flow characteristics output by control volume 2 were the input
parameters for control volume 3.

Table 1 describes the dimensions of the humidifier module, which were taken from
the FC300-1660-10LP/HP humidifier of Perma Pure company [23]. The humidifier was
designed for a 5 kW PEMFC system and to work in both water-to-gas and gas-to-gas modes.
The membrane characteristics were taken from the literature [24].

Table 1. Humidifier module and membrane parameters.

Parameters Value

Shell diameter (mm) 86
Inner tube diameter (mm) 0.9
Membrane thickness (mm) 0.1

Number of tubes 1660
Membrane material PTFE
Length of tube (mm) 254
Port diameter (mm) 38

Length of manifold (mm) 65
Housing/shell material ABS

Total length of humidifier module (mm) 384
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2.2. Manifolds

The thermal energy of a manifold is affected by changes in the flow energy and
heat loss to the environment. The characteristics of the manifold affect the temperature
difference, which in turn influences the relative humidity of the flow. The mass of the
manifold depends on the dimensions and density of the manifold material, which in turn
influences the heat capacity and temperature of the manifold. The heat transfer from
the flow to the inner surface of the manifold can be calculated by using the convective
heat transfer coefficient and log mean temperature difference between the inlet and outlet
temperatures. The energy balance in the manifold is given by:

.
m f c f

dTf

dt
= h f ,is A f ,is∆Tlm − h f ,os A f ,os

(
Tf − Ta

)
(1)

The convective heat transfer coefficient between the inner surface of the manifold and
the flow is determined according to the Nusselt number:

h f ,is =
Nukd

Dh
(2)

The Nusselt number depends on the flow conditions:

Nu = 3.66 for laminar flow (Re ≤ 2300) (3)

Nu =
( f /8)(Re− 1000)Pr

1 + 12.7( f /8)1/2(Pr2/3 − 1
) for turbulent flow

(
3000 ≤ Re ≤ 5× 106

)
(4)

For the transition zone between laminar and turbulent conditions, interpolation can
be used to calculate the Nusselt number. The Reynolds number Re for the flow is given by:

Re =
ρVdDm,is

µ
(5)

The friction factor also depends on the flow conditions. For a fully developed laminar
flow, the friction factor f is inversely proportional to the Reynolds number:

f =
64
Re

for laminar flow (6)

f = [0.79ln(Re)− 1.64]−2 for turbulent flow (7)

The log mean temperature difference can be calculated by using the manifold temper-
ature and inlet and outlet temperatures of the dry flow [25]:

∆Tlm =

(
Tdi − Tf

)
−
(

Tdo − Tf

)
ln
( Tdi−Tf

Tdo−Tf

) (8)

The heat transfer of the internal flow can be used to determine the correlation between
the outlet and inlet temperatures [25]:

Tf o − Tf

Tf i − Tf
= exp

(
−

h f ,is A f ,is
.

mdcd

)
(9)

Solving the system of Equations (1), (8) and (9) gives the temperatures of the manifold
and outlet flow. The flow temperature can be used to calculate the saturation pressure and
relative humidity of the outlet air.
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The saturation pressure depends only on the flow temperature:

Ps(T) = 103 × 10A− B
C+T [Pa] (10)

where A = 7.16728, B = 1716.984, C = 232.538 for a temperature range of 0 to 100 ◦C.
The relative humidity of air is calculated as follows:

ϕ =
ωP

(0.622 + ω)Ps(T)
(11)

The pressure at the manifold outlet is determined from the head loss, which can be
estimated from its correlation with the velocity and friction factor [26]:

He = f
L
D

V2

2g
(12)

The flow characteristics from the inlet manifold are the inputs for the heat and mass
exchanger, and the flow from the exchanger in turn supplies the input data for the outlet
manifold. The two manifolds are modeled in the same way.

2.3. Heat and Mass Exchanger
2.3.1. Heat Transfer

Heat is transferred from the moist air outside the membrane tubes to the dry air
inside. Because the inlet temperature is known under each operating condition, the outlet
temperature of the heat transfer model can be estimated by using the effectiveness-number
of the transfer units (NTU) method, which is applicable to different kinds of flow arrange-
ments. In this case, the effectiveness of the counter-flow arrangement can be determined as
follows [27,28]:

ε =
1− exp[NTU(C− 1)]

1− C× exp[NTU(C− 1)]
(13)

where C is the heat capacity ratio of the flows and takes a value from 0 to 1 [28]:

C =

( .
mc
)

min( .
mc
)

max
(14)

The NTU for heat transfer analysis is calculated as follows:

NTU =
UAm( .
mc
)

min
=

1
R
× 1( .

mc
)

min
(15)

The total thermal resistance R has three components: the convective thermal resis-
tances at the inner and outer surfaces of the membranes and the conductive thermal
resistance through the membrane structure:

R =
1

hm,is Am,is
+

ln(Dm,os/Dm,is)

2πnLmkm
+

1
hm,os Am,os

(16)

The convective heat transfer coefficients for the inner surface hm,is and outer surface
hm,os are determined by the Nusselt number, similar to the manifolds. The flow inside the
membrane channels is laminar, while the flow characteristics on the shell side depend on
the flow rate. The thermal conductivity km is determined by the membrane material.

The heat transfer rate in the exchanger is given by:

q = ε
( .
mc
)

min(Tw,i − Td,i) (17)
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The temperatures of the moist air and dry air at the outlet are:

Tw,o = Tw,i −
q

.
mwcw

(18)

Td,o = Td,i +
q

.
mdcd

(19)

The temperature is an important output for heat transfer analysis because it affects
the relative humidity of the outlet flow, as given in Equation (11). The head loss in the
exchanger is calculated in the same way as for the manifold, which is given in Equation (12).
The relative humidity of the air in the channels also depends on the flow pressure.

2.3.2. Mass Transfer

A similar approach to heat transfer analysis was employed for analyzing the mass
transfer in the exchanger. The effectiveness of the mass transfer was defined as the propor-
tion of the actual vapor transfer rate to the maximum possible transfer rate [28]:

ε =
1− exp[NTU(C− 1)]

1−C× exp[NTU(C− 1)]
(20)

The mass flow rate ratio is the proportion between the mass flow rates:

C =

.
mmin
.

mmax
(21)

The NTU for mass transfer is given by:

NTU =
ρdUAm

.
mmin

=
ρd
R ×

1
.

mmin
(22)

The total mass resistance R is associated with the convective and conductive mass
transfers of the membrane tubes:

R =
1

hm,is Am,is
+

ln(Dm,os/Dm,is)

2πnLmkm
+

1
hm,os Am,os

(23)

The convective mass transfer coefficient is determined by the Sherwood number:

hm =
ShDi

Dh
(24)

The Sherwood number for mass transfer in the membrane is given by [28]:

Sh = 1.62

(
D2

m,isV
2
d

LDi

)
for the inner surface (25)

Sh = (0.53− 0.58γ)Re0.53Sc0.33 for the outer surface (26)

The Schmidt number Sc and packing fraction γ are:

Sc =
υ

Di
(27)

γ =
nDm,os

Dsh
(28)

The conductive mass transfer coefficient represents the diffusivity of vapor in the
membrane, which was taken from experimental results [24].
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The mass transfer rate can then be calculated with the effectiveness:

.
mt = ε

.
mmin(ωw,i −ωd,i) (29)

The mass flow rates of the moist air and dry air at the outlet are given by:

.
mw,o =

.
mw,i −

.
mt (30)

.
md,o =

.
md,i +

.
mt (31)

The mass transfer rate can also be used to calculate the mass of the vapor and thus the
specific humidity in each flow. Because the temperature, pressure, and specific humidity
are given, the relative humidity of the dry flow at the outlet of the exchanger can then be
determined by using Equation (11).

2.4. Simulation

The model was developed in MATLAB/Simulink environment. The program is
suitable for creating analytical models with simulation blocks that link inputs and outputs
of each block together in a system. The simulation was conducted to analyze operating
conditions, geometric parameters, and transient responses of the humidifier, as described
in Table 2. The operating parameters are relative humidity, temperature, and mass flow rate
of dry air and moist air. Effects of each parameter were studied when others are fixed. In
addition, membrane length, thickness, and the number of membranes in the bundle were
considered as design parameters. For humidifier dynamics, two cases were investigated,
which are short-term operation and long-term operation. These simulations illustrate
responses of the humidifier with stepwise rapid changes of input parameters and also
stable working conditions. The mass transfer rate, heat transfer rate, and flow characteristics
at the exits of the humidifier module are plotted to represent the humidifier performance.

Table 2. Description of simulation cases and purposes.

Case Simulation Purposes Fixed Parameters Varied Parameters

1 Effects of operating temperature
and mass flow rate ϕw,i = 100%, ϕd,i = 5%

.
mw =

.
md = 0.001→ 0.015 kg/s
Tw,i = 40→ 70 ◦C
Td,i = 30→ 60 ◦C

2 Effects of operating relative
humidity and mass transfer rate

ϕd,i = 5%
Tw,i = 60 ◦C, Td,i = 50 ◦C

.
mw =

.
md = 0.001→ 0.015 kg/s
ϕw,i = 60→ 100%

3 Effects of temperature difference
on heat transfer rate

.
mw =

.
md = 0.01 kg/s
ϕd,i = 5%

Td,i = 40 ◦C

Tw,i = 50→ 70 ◦C
(∆T = 10→ 30 ◦C)

4

Effects of geometric parameters:
Membrane length

Membrane thickness
Number of membranes

ϕw,i = 100%, ϕd,i = 5%
Tw,i = 70 ◦C, Td,i = 60 ◦C

.
mw =

.
md = 0.001→ 0.015 kg/s

L = 0.178→ 0.381 m
d = 0.05→ 0.15 mm

n = 800→ 2500

5 Responses of humidifier in
long-term transient operation

.
mw = 0.015 kg/s
.

md = 0.005 kg/s
ϕw,i = 100%, ϕd,i = 5%

Tw,i = 70 ◦C, Td,i = 60 ◦C
t = 1000 s

(All parameters are fixed)

6 Responses of humidifier in
short-term transient operation

ϕw,i = 100%, ϕd,i = 5%
Tw,i = 60 ◦C, Td,i = 50 ◦C

t = 10 s

.
mw =

.
md = 0.001→ 0.015 kg/s
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3. Results and Discussion
3.1. Effects of Operating Conditions

In the first simulation case, all of the supply gas was recirculated after going through
the cathode. The mass flow rates of the dry air and moist air had the same patterns. Figure 2
plots the mass transfer rate in the humidifier over the mass flow rate of the moist air at
different operating temperatures. The mass transport increased with the mass flow rate
on both sides, and the trends were almost linear for a given temperature. Increasing the
mass flow rate of the moist air made more water particles available for transfer to the
dry side, which increased the mass transport. However, the relative humidity of the dry
air was influenced by the mass flow rate in the opposite direction. When the mass flow
rates increased on the dry and wet sides simultaneously, the humidity in the dry flow
decreased, which indicates that the humidifier performance deteriorated. The increase
in the vapor transport rate could not compensate for the increased flow rate of the dry
air. Thus, the vapor fraction of the total air flow decreased, which reduced the relative
humidity. At a high flow rate, the humidifier reached its capacity limit when trying to
provide the cathode supply air with the desired moisture content. In addition, the model
captured transition regions between laminar and turbulent flows which flattened the curves
of relative humidity at the flow rate around 0.0025 kg/s.
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Figure 2. Effects of the operating temperature on the mass transfer rate and relative humidity of
dry air.

As the temperature of the moist air increased, the transfer rate became more sensitive to
the flow rate. Thus, the temperature is an important operating parameter for the humidifier.
At the same flow rate, the mass transfer rate increased rapidly with the temperature. The
difference between the rates at 40 ◦C and 50 ◦C was much smaller than the difference
between the rates at 60 ◦C and 70 ◦C. A high operating temperature would enhance the
vapor transport through the membranes. For dry air, a higher operating temperature would
also increase the relative humidity, but the influence would be less than that of the mass
flow rate.

In the second simulation case, the relative humidity of the moist air at the inlet was
changed to investigate the effects on the dry air. Figure 3 shows that the performance
of the humidifier was improved when the relative humidity was close to the saturated
level. Both the mass transfer rate in the humidifier and relative humidity of the dry air
were highest when the relative humidity of the moist air was 100%. Increasing the relative
humidity of the moist air flow increased the difference in water content on the two sides
of the membranes, so the higher concentration gradient drove more water particles to
the dry side. Under normal conditions, the cathode of the PEMFC system often exhausts
saturated air, which is useful for humidifying the supply air. However, an upsurge in
demand could result in undesirable conditions: increased mass flow rates and decreased
relative humidity on both sides of the humidifier. A heavy operating load can cause the
humidifier to become unable to supply sufficient moisture to achieve the desired relative
humidity for the supply air.
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Figure 3. Effects of operating relative humidity on the mass transfer rate and relative humidity of
dry air.

As shown in Figure 4, the temperature difference between the two flows significantly
affected the heat transfer in the exchanger and relative humidity of the supply air. Unlike
the previous simulation cases where the temperature difference was kept constant, the
temperature difference was varied in this case. When the temperature difference between
the moist air and dry air was 30 ◦C, the heat transfer rate was almost three times higher
than when the temperature difference was 10 ◦C. In addition, the relative humidity of the
dry air at the outlet was increased by 13%. The mass flow rate had the opposite effect on
the relative humidity compared with the temperature difference. Increasing the dry air
mass flow rate decreased the relative humidity of the supply gas.
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Figure 4. Effects of temperature difference on the heat transfer rate and relative humidity of dry air.

The simulation results on operating conditions of the humidifier provided the effects
of mass transfer rate, relative humidity, and temperature of the flows to the heat and mass
transfer. If the flow rates are constant, the supply air’s relative humidity depends more
on the relative humidity of the wet side. In contrast, the mass transfer rate significantly
varies with both temperature and humidity. When the changes in flow rates are considered,
the wet flow has less effect on the humidifier performance than the dry side. Therefore,
controlling the dry air flow rate is quicker and more effective in managing the supply
air humidity.

3.2. Effects of Geometric Parameters

The developed model was used to predict the humidifier performance when the mem-
brane dimensions change. The effects of the membrane thickness, length, and number
of tubes on the heat and mass transfer rates were studied. Figure 5 shows that longer
membranes improved both the vapor transport and heat transfer. Three standard mem-
brane lengths were considered for the bundle: 0.178, 0.254, and 0.381 m. At low flow rates,
the heat and mass transfer rates had similar values. However, the curves deviated when
the dry air flow rate was increased. At low demand, the three membrane lengths easily
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achieved the maximum possible heat and mass transfers between flows. Therefore, the
curves coincided at the beginning of the simulation range. At heavier loads, deviations
occurred because longer membranes supported a larger surface area for increased transport.
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Figure 5. Effects of the membrane length on the humidifier performance.

The membrane thickness is an important factor for its manufacture. The bundle
requires a sufficient membrane thickness to support the structure. However, a thinner
membrane allows for a higher mass transfer rate. Figure 6 illustrates the effects of the
membrane thickness on the heat and mass transfers. As the thickness increased, the mass
resistance of the membranes became more significant, which prevented the movement of
vapor particles between membrane surfaces. Increasing the thickness from 0.05 mm to
0.15 mm decreased the mass transfer rate by 15%. In contrast, the heat transfer rate was
less affected by the membrane thickness. The membrane thickness directly affects heat
conduction. However, the convective heat transfer dominates transport phenomena, which
makes the heat transfer rate less dependent on the thickness.
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Figure 6. Effects of the membrane thickness on the humidifier performance.

The number of membranes determines the shell diameter of the humidifier. Increasing
the number of membranes can increase the operating capacity of the humidifier but in-
creases its volume. Figure 7 shows the humidifier performance with 800–2500 membranes.
The mass transfer rate increased with more membranes. However, the effects differed
between the ranges of 800–1660 membranes and 1660–2500 membranes. The higher range
increased the required space, but the humidifier performance improved more slowly than
in the lower range. These results can be used to optimize the sizes of the membrane bundle
and humidifier.
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Figure 7. Effects of number of membranes on the humidifier performance.

3.3. Humidifier Performance under Transient Conditions

The operating conditions of the humidifier fluctuate because of the continuous changes
in demand. Understanding the response of the humidifier to different conditions can help
with controlling the PEFMC system. Therefore, the humidifier performance under transient
conditions was investigated. The variations in load were simulated as stepwise increases
or decreases in the dry air flow rate.

In Figure 8, the flow rates were varied suddenly in intervals of 10 s. When both
the dry and moist flow rates increased, the mass transfer rate increased in parallel. This
is because of the higher vapor concentration on the wet side, which drove more water
particles through the membranes. The relative humidity of the dry air decreased because
the additional vapor was insufficient to offset the higher mass of the dry flow. Although the
dry flow lacked water vapor, the relative humidity was higher on the wet side because the
humidifier reached its capacity limit and could not transfer more water particles through the
membranes. Therefore, the performance may suffer under high load conditions because of
low moisture content. This can dry out the membranes in the fuel cell stack and cause them
to degrade. Meanwhile, decreasing the mass flow rates increased the relative humidity of
the supply air, which approached saturation.

The second case simulated the long-term operation of the humidifier module, as
illustrated in Figure 9. For the first manifold at the inlet of the dry air flow, saturation
could not occur because of the low moisture content. However, the second manifold
sometimes experienced saturation because of the high relative humidity of the outlet air
after it moved through the membrane bundle. The saturated air flow could reduce the
humidifier performance because it would block the outlet channel. This situation occurred
when the system operated under low load conditions for a long time. At a low flow
rate, the supply air absorbed sufficient water vapor from the moist air to become nearly
saturated at the inlet of the second manifold. Because the outlet of the manifold had a
lower temperature than the exchanger, the dry flow approached the manifold inlet and
experienced a temperature drop, which increase the relative humidity. As the operating
time increased, the manifold temperature increased, which reduced the relative humidity.
The increased temperatures of the manifolds were caused by heat transfer from the dry
flow to the manifolds. The time for the manifolds to reach the saturated state depended on
their specific heat capacity and mass and the heat transfer to the ambient air. Manifolds
with higher mass and better insulation took longer to reach the steady-state condition.
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Figure 8. Response of the humidifier to stepwise changes in the dry air flow.
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Figure 9. Effects of long-term operating conditions and possible water saturation in the outlet manifold.

4. Conclusions

A lumped-mass model was developed for investigating the heat and mass transfers
inside a hollow-fiber membrane humidifier. The model provides an effective approach
to understanding the transport phenomena of manifold and exchanger components as
mathematical equations. The transient responses of the humidifier to different operating
conditions were captured by the simulation results. The key contributions are as follows:

1. The model can be used to study the transient responses of the humidifier, which
would be beneficial for the water management of PEMFC systems. The changes in
flow characteristics over time can be applied to the development of a control strategy
for the humidifier.

2. If the flow rates are fixed, the relative humidity of the moist air had the strongest
effect on the relative humidity of the dry air at the outlet.

3. Compared to the dry air flow rate, the moist air flow rate had a less significant
influence on the relative humidity of the moist air. Adjusting the flow rate on the dry
side is an effective approach to manage the water content in the supply air.

4. The manifolds may become saturated with water during long-term operation, espe-
cially under low load conditions. This situation should be avoided to improve the
PEMFC system performance.

Further study on the integration of the lumped-mass humidifier model into the PEMFC
system should be conducted to analyze the interconnections between the components and
effects of the humidifier on the system performance.
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Nomenclature

A area
c heat capacity
C heat capacity ratio
C mass flow rate ratio
d membrane thickness
D diameter
Di diffusion coefficient
∆Tlm log mean temperature difference
f friction factor
g gravitational acceleration
h convective heat transfer
h convection mass transfer
He head loss
k thermal conductivity
k mass diffusion coefficient
L length
.

m mass flow rate
n number of membranes
NTU number of transfer units for heat transfer analysis
NTU number of transfer units for mass transfer analysis
P pressure
Pr Prandtl number
q heat transfer rate
R total thermal resistance
R total mass resistance
Re Reynolds number
Sc Schmidt number
Sh Sherwood number
t time
T temperature
U overall heat transfer coefficient
U overall mass transfer coefficient
V velocity
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Greek letters
γ packing fraction
ε effectiveness for heat transfer analysis
ε effectiveness for mass transfer analysis
µ dynamic viscosity
ρ density
υ kinematic viscosity
ϕ relative humidity
ω specific humidity

Subscripts and superscripts
a ambient
d dry flow
f manifold
h hydraulic
i inlet
is inner side
m membrane
min minimum
max maximum
o outlet
os outer side
sh shell
w wet flow
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