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Abstract: Recent research on solar irradiance forecasting has attracted considerable attention, as
governments worldwide are displaying a keenness to harness green energy. The goal of this study is
to build forecasting methods using deep learning (DL) approach to estimate daily solar irradiance
in three sites in Kuwait over 12 years (2008–2020). Solar irradiance data are used to extract and
understand the symmetrical hidden data pattern and correlations, which are then used to predict
future solar irradiance. A DL model based on the attention mechanism applied to bidirectional long
short-term memory (BiLSTM) is developed for accurate solar irradiation forecasting. The proposed
model is designed for two different conditions (sunny and cloudy days) to ensure greater accuracy in
different weather scenarios. Simulation results are presented which depict that the attention based
BiLSTM model outperforms the other deep learning networks in the prediction analysis of solar
irradiance. The attention based BiLSTM model was able to predict variations in solar irradiance over
short intervals in continental climate zones (Kuwait) more efficiently with an RMSE of 4.24 and 20.95
for sunny and cloudy days, respectively.

Keywords: solar radiation prediction; wavelet decomposition; coevolutionary neural network;
attention-based bidirectional long short-term memory

1. Introduction

The global increase in sustainable electricity demands to save the environment has
improved the penetration of renewable energy sources into electrical grids. Apart from
being plentiful and sustainable energy sources, solar energy also has low-to-nil environ-
mental damage, making it suitable for extensive electrical production [1]. Photovoltaic (PV)
modules are used to harness solar energy, though being environmentally beneficial alone
does not make PV systems a viable alternative to conventional energy sources. PV output
power is not dispatchable in terms of supply and demand. The absorbed solar irradiance is
the key meteorological element impacting the electricity generated by PV plants. There
is a linear relationship between the maximum power of PV modules and the sun’s irradi-
ance [2]. The degree to which PV modules accumulate solar irradiance varies depending
on the time, as well as the panel’s alignment to the sun [3]. Energy storage technologies
such as batteries and ultracapacitors are essential in managing the energy and transient
power demands by the electrical grid from PV plants [4]. Solar irradiance forecast is critical
to accurately size a solar PV power plant and energy storage. This study aims to predict
irradiance in an optimal and generalized manner, using deep learning. Solar irradiance
prediction is carried out using past data from Kuwait. The primary goal is to increase the
contribution of renewable or green energy to the total quantity of energy generated.
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1.1. World PV Growth

Electricity tariffs vary widely worldwide; installing solar power generation systems
in certain countries is much more economical for small consumers if the electricity tariff
electricity is higher, compared to the rate of solar power per kWh. In several countries,
the government provides incentives to encourage renewable energy systems, making
them reasonably profitable through attractive schemes. Solar cell technology is currently
being expanded by various commercial solar cells, including crystalline silicon cells, thin-
film, amorphous silicon cells, and multi-joint cells. By the end of 2040, almost 60% of all
electricity generated is projected to come from renewable sources, primarily wind and solar
photovoltaics [5,6]. A total of 629 GW of solar power had been installed globally by the end
of 2019 [5]. China was leading in solar power production, with a total installed capacity
of 208 GW by the beginning of 2020, accounting for almost one-third of the world’s solar
energy [7,8]. By 2020, it is expected that at least 37 countries will have a PV capacity of
more than one gigawatt. From 2016 to 2019, China, the USA, and India were the leading
installers of PV power production [9,10].

1.2. Related Work

Many artificial intelligence (AI) strategies have been developed to predict solar ir-
radiance, consisting of three fundamental “forecasting techniques: numerical prediction,
image-based prediction, and statistical and machine learning (ML) methods. Solar irradi-
ance data are time-series data, i.e., data that sequentially range over time” [11] (p. 2). Linear
forecasting methods were frequently employed in the past because they were well known,
simple to compute, and generated a consistent forecast for solar irradiance. Traditional
forecast models include autoregressive moving average (ARMA) [11], autoregressive with
exogenous inputs (ARX) [12], autoregressive integrated moving average (ARIMA) [13],
autoregressive moving average with exogenous inputs (ARMAX) [14], autoregressive com-
bined moving average with exogenous inputs (ARIMAX) [15], seasonal autoregressive
integrated moving average (SARIMA) [16], generalized autoregressive score (GAS) [17,18],
autoregressive integrated moving average (ARIMAX), and seasonal autoregressive inte-
grated moving average with exogenous inputs (SARIMAX) [19]. To estimate the global
solar radiation parameters, Belmahdi et al. presented the ARIMA and ARMA models [20].
In these models, only the solar radiation parameter was considered. There were no ge-
ographical or meteorological parameters used for model training; the models presume
linearity in the data, making them incapable of capturing complicated nonlinear patterns.
Ferlito et al. conducted a comparative study of eleven online and offline data-driven
models concerning grid-connected photovoltaic efficiency forecasting [21]. An automated
encoder was used by Gensler et al. to reduce historical data dimensions and LSTM was
used to predict solar irradiance [22]. Zhen et al. used multi-level wavelet decomposition to
pre-process solar irradiance data to further enhance the prediction accuracy [23]. A new
day-to-day model for predicting solar irradiance was created in another Zhen article based
on a time-section fusion pattern and mutual iterative optimization [24].

Yagli et al. tested 68 machine learning models, utilizing satellite-derived irradiance
data from several sites [25]. Multilayer perceptron (MLP) models have proved to be among
the best performers in the study. The artificial neural network (ANN) models utilized in
this study were optimized for day-ahead forecasting. ANNs use nonlinear transforming
layers to process data and are also good at detecting complicated structures in data; they
can reconstruct a noisy system driven by data, which makes them qualify for variable
time-series and complex forecasting. All of these are ideal to design challenges that need to
capture the dependencies and preserve information, as they advance through the data’s
successive time steps. In [26], the authors proposed employing deep recurrent neural
networks to estimate solar irradiance, reducing model complexity and facilitating feature
extraction. The proposed method outperformed traditional feedforward ANN and SVM.
The “recurrent neural network (RNN) design recognizes sequential characteristics of data
node dependencies by maintaining sequential information in an inner state, allowing data
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accumulated over time to be preserved” [27] (p. 3). The RNN, on the other hand, is prone
to exploding and vanishing gradients. Bidirectional LSTM networks [28], long short-term
memory (LSTM) networks [29], and “gated recurrent unit (GRU) have been created as RNN
extensions, substituting the traditional perceptron design with memory cells and gating
algorithms that govern information flow throughout the network” [30] (p. 3). LSTM is an
effective approach for predicting time-series and has been developed in [30] for day-ahead
solar irradiance prediction. The LSTM model was more robust than the other forecasting
methods used in the study. Using weather data, the authors of [31] suggested a mechanism
for hourly day-ahead sun irradiance prediction. RNN may be classified in attention-based
and classic memory-based models. GRU, LSTM, bidirectional RNNs, and other memory-
based models exist, while self-attention generative adversarial networks, attention LSTM,
and multi-headed LSTM are examples of attention-based models.

A set of mathematical equations that describe the physical condition and dynamic
motion of the atmosphere is referred to as a physical technique [32]. They are typically used
for applications with very short to very long-time horizons. These systems rely heavily on
numerical weather prediction (NPW), sky imagery, and satellite imaging [33]. They are
classified as global or mesoscale physical approaches based on the size of the simulated
atmosphere, which can be global or confined [34]. Only mesoscale models should be used
to forecast the electricity generated by PV plants; the main disadvantage of such models is
that their resolution is only 16–50 km [35].

Comparing forecast techniques is difficult in general because the factors influencing
performance are numerous and vary depending on the situation. They include historical
data and weather forecast availability, temporal horizon and resolution, weather conditions,
geographical location, and installation conditions, to name a few. Proper data preprocessing
(for example, deleting the night sample when no power is produced) is also required in
the case of statistical approaches to ensure acceptable performance and lower computing
costs [36]. The literature reviews offer some insight into the efficacy of various strategies,
though their findings are more qualitative than quantitative. Recent reviews [33,36] provide
a comparative analysis based on the work of multiple authors, as well as statistical flaws.
The comparison is not valid from a quantitative standpoint because the settings and
measures employed in each experiment differ.

In the literature, memory-based RNNs are by far the most extensively employed model
for solar irradiance forecasting; however, the research lacks attention-based RNN models.
In this work, an attention based BiLSTM mechanism for forecasting solar irradiation is
proposed. The training of the models was performed using actual meteorological data
from three regions of Kuwait—Al-Wafer, Kia, and Abdaly. The accuracy of the proposed
attention based BiLSTM is compared to and evaluated against that of other existing models,
using credible statistical indicators, such as root mean square error (RMSE), mean squared
error (MSE), mean absolute error (MAE), and mean absolute percentage error (MAPE).

2. Attention-Based BILSTM

The networks use historical sun irradiance data from the target locations as input char-
acteristics. Figure 1 depicts the design of a bidirectional LSTM network with an attention
mechanism. The input is represented as vector XT, vector YT is the corresponding solar ir-
radiation, and vector YT+θ represents the predicted solar irradiations in prediction analysis.
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Figure 1. Architecture of bidirectional LSTM network with attention mechanism.

XT = (X1, X2, X3 . . . ..XT), (1)

YT = (Y1, Y2, Y3 . . . ..YT), (2)

where
T = total length of the time steps
θ = future time steps
As there is no expressive information before the time window (w), and the input is

fixed, {X(t− w), X(t− w + 1), . . . , X(t− 1)} are utilized to calculate Y(t+ θ) for each task,
where ∆ is the time frame ahead of prediction. The problem is denoted by Equation (3),
with Y indicating predictions of solar irradiance data using only a deep neural network
model f on previously observed real-world data.

Y(t + ∆) = f (X(t− w), X(t− w + 1), . . . , X(t− 1)), (3)

Historical data at time (t− w) are represented by Irr(t− w) in Figure 2, and the input
variable is represented in Equation (4), for the solar irradiance forecast modeling.

{Irr(t− w), Irr(t− w + 1), . . . , Irr(t− 1)}, (4)

The partial autocorrelation and autocorrelation features of the data were used to
establish the size of the window for the lag time-series. The ith hidden layer L, in which the
i values are set during model tuning, is represented by Li. Overall, future sun irradiance
values were forecast based on previous and present values for the given window size.

The architecture used for prediction in this study is the attention based BiLSTM neural
network, made up of three layers: an encoder, an attention layer, and a softmax layer.
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Figure 2. Hourly distribution of solar irradiance on 1 October 2020.

2.1. Encoder Layer

The BiLSTM serves as the encoder layer. The attention layer uses the hidden outputs
from this layer before constructing a context vector, to create the scoring function first. The
predicted values of solar irradiance are subsequently transmitted towards the dense layer
or decoding the fully connected layer.

LSTM: Recurrent neural networks have been employed to model sequential data
in many engineering problems. However, due to difficulties with gradient vanishing or
exploding, RNNs are unable to learn long-term dependencies. To remedy these flaws,
LSTM networks are suggested and built based on RNNs. Cell memory states and three
gates comprise an LSTM’s fundamental structure. The following composite functions
implement a single LSTM cell:

ft = σ(W f [ht−1, xt] + b f ), (5)

it = σ(Wi[ht−1, xt] + bi), (6)

ot = σ(Wo[ht−1, xt] + bo), (7)

Ct = ft ∗ Ct−1 + it ∗ tanh(Wc[ht−1, xt] + bc), (8)

ht = ot ∗ tanh(Ct), (9)

Weighted matrices (Wi, Wf, Wo) and the LSTM cell biases (bi, bf, bo) are all parameters
of the input gate, forget gate, and output gate, correspondingly. The operator ∗ is an
element-wise multiplication and the sigmoid function. The word embedding of the LSTM
cell’s input is represented by xt, and the hidden state vector by ht.

BiLSTM: The inputs are processed in strict chronological order by the LSTM, leading
to an influence of the prior inputs only, and not the future ones. To make the model also be
influenced by future values, the bidirectional LSTM model was developed [37]. The LSTM
processing chain is duplicated, allowing the inputs to handle both reverse and forward
time sequences, allowing the network to consider the network’s future context. The final
output, ht, of the BiLSTM model at the step t is shown as:

ht = [ f ht + bht], (10)

2.2. Layer of Attention

The availability of solar irradiation depends on many weather parameters. The
attention mechanism is used to consider sensitive design variables. In practice, the LSTM
or BiLSTM network will output a hidden ht state at each time step, depending on the above.
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The ht vector is designed into a one-layer MLP, which then learns hidden representation ut.
Then, given ut and a solar irradiation parameter context vector uw, a scalar significance
value for ht is computed. Finally, the attention-based model uses a softmax function to
calculate the weighted mean of the state ht. The mechanism discussed is modeled as follows:

ut = tanh(Wwht + bw), (11)

at =
e(u

T
t uw)

∑
t

e(u
T
t uw)

, (12)

c = ∑
t

atht, (13)

2.3. Softmax Layer

A fully connected softmax layer is employed as a classifier in this paper. Vector c can
be used as the feature for irradiation prediction:

→
yi = so f tmax(WcC + bc), (14)

→
yi is the model’s predicted value, WcC represents the weighted matrix, and bc is bias.

2.4. Training of Model

The loss function is made up of the cross-entropy error of irritation classification:

L = −∑ yi log
→
yi, (15)

where yi is the observed irritation and
→
yi is the model’s predicted irradiation. The back-

propagation approach [32] is used to derive the derivative of the loss function for the entire
set of parameters, and stochastic gradient descent is used to update all the model’s parame-
ters.

2.5. Metrics for Performance Evaluation

To measure the quality of fit of forecasting models, the mean square error (MSE), the
coefficient of determination (R2), the root mean square error (RMSE), the normalized and
root mean square error (NRMSE), and the standard metrics were calculated. The metrics
used for the performance evaluation are statistically represented in (16). E stands for the
actual value observed, and F for the prediction model’s output, given weight w and input
X. MSE, MAPE, NRMSE, and RMSE give information about the error. Low MSE, NRMSE,
and RMSE values indicate better performance. R2 indicates how well the model fits the
baseline. The link between the response variable and the predictors are considered strong
when the R2 score value approaches 1, whereas an R2 score near 0 indicates the reverse.

NRMSE =

√
1
N

N
∑

n=1
Er(Dn |Xn )−F(Xn ,W)2

(Er(Dn |Xn )−F(Xn ,W))2

MSE = 1
N

N
∑

n=1
Er(Dn|Xn )− F(Xn, W)2

RMSE =

√
1
N

N
∑

n=1
Er(Dn|Xn )− F(Xn, W)2

R2 = 1−
N
∑

n=1
Er(Dn |Xn )−F(Xn ,W)

N
∑

n=1
Er(Dn |Xn )−F(Xn ,W)2



(16)
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3. Results and Discussion
3.1. Data Analysis

The climate of the PV station and the distribution and generation of solar irradiance
are determined by its position, which varies substantially depending on the latitude. A
cross-regional study is required to investigate the scalability of the BiLSTM models. Solar
irradiance forecast models were constructed using historical time-series data by accessing
Meteoblue. For Kuwait, Meteoblue historical weather simulation data in hourly resolution,
aggregated in daily values, were acquired for the period 2008–2020. Meteoblue provides
local weather data derived from worldwide statistical experimental datasets, using the
non-hydrostatic meso-scale modeling (NMN) technology and the NOAA environmental
modeling system (NEMS) framework. The data were collected for the location of Al-
Abdali, a farm in northern Kuwait (latitude: 30◦1” E, longitude: 47◦71” E, altitude: 23 m).
There was about 10 h of sunlight in winter and 14 h in summer. The radiation data were
measured every five minutes and averaged for 1 h over the entire study period. The data
were collected over 4500 days, from 2008. Figure 2 displays the regular hourly irradiance
difference all day long on 1 October 2020. As shown in Figure 2, solar irradiation was
observable at 6 a.m. The estimated irradiation increased by approximately 200 W/m2 per
hour, reaching the peak irradiation at noon. The irradiation decreased by about 210 kW/m2

per hour after 12 noon. In total, around 6 h of irradiation exceeded 600 W/m2. Figure 3
shows a sample of all the data used in this study.

1 
 

 
Figure 3. Sample data of solar irradiation used in this study.

Figure 4 shows irregular fluctuations in the total solar irradiation (24 h) from January
2019 to December 2019. In general, the volume of irradiation during the year varies from
2487 to 29,374 kWh/m2. Significant variations in irradiation are seen from February to April.
Figure 5 indicates the normal year-round variation in solar irradiation in 2019, without
monthly segregation, to better explain the annual trend. In general, the data are widely
distributed, especially during the spring season. The dispersion is minimal in autumn.
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Figure 4. Irregular fluctuations in total solar irradiation for year 2019.

Figure 5. Normal year-round variation in solar irradiation of 2019.

The irradiation difference between summer and winter is nearly threefold, which could
influence the performance of the solar photovoltaic panels. Irradiation ranges between
6 and 9 h in January, April, July, and October 2019. Overall, hourly irradiation appears
to be continuous, but can often change abruptly due to obstructions such as sandstorms
and clouds. The findings are shown in Figures 2–6 and depict a significant fluctuation of
solar radiation and a fluctuation in electricity from solar collectors. This would necessitate
the procurement of additional power from other sources to resolve deficiencies, leading to
higher operating costs.

The comparison between January, April, July, and October is the typical hourly dif-
ference in irradiation. The highest irradiation is seen in July (summer) and the lowest
in January (winter). The amount of irradiation during April and October is identical.
The amount of solar energy harvested during winter is smaller than in summer due to
significant variations. As a result, a backup power system will be required in winter to
compensate for solar production deficiencies.
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 Figure 6. Daily variations of solar irradiance for all months in 2019.

The data are split into training and testing sets in the ratio of 75% and 25%. The
data are standardized to [0, 1] to avoid neuronal saturation during the study process. The
number of neurons in the first and second hidden layers for the attention-based BiLSTM
is set to 64, and the activation function is chosen as ReLu. The dropout layer is used to
encounter the overfitting problem in the network. To optimize the system, the Adam
optimizer is employed in this study and in the MSE as a loss function.

3.2. Results

Four different statistical error indicators, viz., MSE, R-value, RMSE, NRMSE, and
MAPE, are chosen to measure the accuracy of the developed model as mentioned in Table 1.
Figure 7 shows that the model’s predicted values are consistent with the observed values.
The results show that all the models perform well in forecasting on sunny days, while
the attention-based BILSTM model outperforms (NME of 18.01, R-value of 0.9998, RMSE
of 4.2443, NRMSE of 0.0058, and MAPE of 2.48%). The statistical errors are presented in
Section 2.5. All models’ prediction performance suffers significantly on cloudy days. The
attention based BILSTM model is still the most accurate amongst all the models (MSE of
438.9861, R-value of 0.9957, RMSE of 20.9520, NRMSE of 0.0249, and MAPE of 20.2509%).
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Table 1. Statistical indicators of error for forecast models developed.

Model Error
Indicators

Attention-Based BiLSTM BiLSTM LSTM

Sunny Cloudy Sunny Cloudy Sunny Cloudy

MSE (W/m2) 18.01 438.9861 496.4167 4797.4 1563.3 9566.6
R-value 0.9998 0.9957 0.9958 0.9532 0.9867 0.9068

RMSE (W/m2) 4.2443 20.9520 22.2804 69.2635 39.5385 97.8091
NRMSE (W/m2) 0.0058 0.0249 0.0306 0.0823 0.0543 0.1162

MAPE (%) 2.4869 20.2509 12.0526 64.60 19.5141 69.1077

Figure 7. Forecast results obtained for sunny days.

As shown in Figure 8, the difference between the predicted values and the measured
values is significant on cloudy days and, in this case, the attention based BiLSTM model
outperforms the LSTM and BiLSTM networks.

Figure 8. Forecast results obtained for cloudy days.

The results show that, for binary sentiment categorization, the LSTM and BiLSTM
networks are shown to be effective. When bidirectional semantic information is considered,
the BiLSTM achieves an improvement over the LSTM.

According to the results of the LSTM and BiLSTM models, the bidirectional LSTM
model may be able to obtain more semantic information, which is beneficial for sentiment
classification.

As the basic LSTM model cannot attend to any informative sections of a sentence, it is
difficult for the LSTM model to enhance sentiment classification accuracy.

Compared to the LSTM, the AB-LSTM model shows that the attention mechanism can
improve the LSTM model’s accuracy for sentiment classification by around 2% to 3%. The
attention-based BiLSTM model obtains equivalent results on both corpora, compared to
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many of the external baseline approaches by including an attention component. Compared
to the above baseline approaches, the experiment results show that the suggested model is
more effective for sentiment classification.

4. Conclusions

Solar irradiance forecast has drawn the focus of contemporary research due to the
influx for and awareness in green and renewable energy. To comprehend the solar energy
perspective of a place, accurate forecasts of solar irradiance are essential, considering
both the potential and the constraints associated with forecasting. To properly estimate
solar irradiance, this study used a historical data collection of solar irradiance from the
previous 12 years, concerning both testing and training. Due to its distinctive hidden layer
cell structure design, attention-based BiLSTM, as the deep structure of RNN, provides a
solution for vanishing gradient and exploding gradient, allowing RNN models with LSTM
units to simulate both short- and long-term temporal relationships in time-series data. The
simulation results validate the fact that the attention mechanism in BILSTM was able to
effectively capture the variations in solar radiation under changing weather conditions.
Authors have compared the proposed attention based BiLSTM with the existing LSTM
and BiLSTM models. Comparing the actual data to the forecast data, it is clear that the
attention-based BiLSTM model is both more effective and reliable, compared to the LSTM
and BiLSTM models.
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