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Abstract: Accurate estimation of a battery’s capacity is critical for determining its state of health (SOH)
and retirement, as well as to ensure its reliable operation. In this paper, a dual filter architecture using
the Kalman filter (KF) and the novel sliding innovation filter (SIF) was implemented to estimate the
capacity and state of charge (SOC) of a lithium-ion battery. NASA’s Prognostic Center of Excellence
(PCOE) B005 battery data set was selected for this experiment based on its wide use in academia
and industry. This dataset contains cycling data of a 2 Ah lithium-ion battery until its capacity
was measured at 1.3 Ah or less. The dual polarity equivalent circuit model (DP-ECM) was selected
for modeling. The model parameter values were estimated using the least squares (LS) algorithm.
Under normal operating conditions, both the dual-KF and dual-SIF performed similarly in terms of
estimation accuracy. However, an uncertainty case was considered where the filters were subjected
to rapid changing dynamics by cutting the data by 300 cycles. In this case, the battery capacity
root-mean-square error (RMSE) for the dual-KF and the proposed dual-SIF were 0.1233 and 0.0675,
respectively. Under rapidly changing dynamics and faulty conditions, the dual-SIF shows better
convergence and robustness to disturbances.

Keywords: lithium battery; Kalman filter; dual Kalman filter; sliding innovation filter; state of charge;
state of health; battery retirement

1. Introduction

In today’s environmental movement towards greener technologies, lithium-ion batter-
ies (LiBs) have become a popular solution for portable energy storage devices across all
consumer electronics. Their high popularity can easily be attributed to the LiB’s specific
energy per weight [1]. LiBs provide a vast amount of energy while adding little weight to
the system. However, great challenges are faced when implementing this technology, due
to the LiB’s high nonlinear nature [2]. Currently, LiBs have been extended to electric vehicle
(EV) technology. In EVs, the battery is subject to aggressive current profiles, requiring a
robust monitoring system to allow for their safe implementation [3].

A battery monitoring system (BMS) ensures the battery operates within the desired
current, temperature, and voltage values [4]. Each LiB chemistry has a safe operating
window bounded by specific limits of current, temperature, and voltage. Violation of any
boundary can significantly reduce the battery’s life or cause failure [5]. A key feature of
the BMS is the accurate monitoring of the battery’s SOC to prevent over discharging the
battery while in operation [6]. SOC typically refers to the available amount of charge in
the battery at any given time during usage, often displayed as a percentage value. Due
to the LiB’s dynamics and structure, SOC cannot be measured directly; hence, it must be
estimated using indirect measurements such as voltage, current, and temperature [7]. In
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the literature, some techniques to estimate SOC include the discharge test, ampere-hour
counting, open circuit voltage (OCV), impedance spectroscopy, and implementation of
signal processing techniques such as Kalman filters (KF) [8–11]. Most of these methods
yield accurate SOC readings; however, it requires the battery to be offline, be in a laboratory
setting, or destroys the battery in the process [9].

Modified versions of the ampere-hour counting method are the most common tech-
niques to estimate for SOC [9]. The ampere-hour counting method is based on the relation-
ship between the current input and the remaining capacity of the battery. If the initial SOC
is known one may add/subtract based on the supplied/demanded current to the battery.
However, its high dependency on the initial SOC, potential to accumulate sensor error and
unknown current losses renders this method unreliable if it is not calibrated often [12,13]. A
minimum voltage-based correction is often used by look-up table gains or computed using
KFs and derivatives. Moreover, the battery is subject to aggressive current profiles causing
its maximum capacity to degrade overtime. Estimation algorithms such as the KF provide
a reliable strategy that yields accurate SOC estimates by making use of a battery model
and available sensor readings such as the terminal voltage of the battery and demanded
current [9,14].

The most popular battery models found in the literature are the electrochemical and
equivalent circuit models (ECM) [15]. Electrochemical models are based on the underlying
physics of the battery making use of complex partial differential equations, thus resulting in
long running times and requiring high computational power [16]. On the other hand, ECMs
have a simplistic mathematical structure that make use of electric elements such as resistors,
capacitors, and voltage sources to model the dynamics of the LiB [17]. ECMs require low
computational power and have low runtimes making them suitable for online applications.

The use of battery models, however, creates the need to accurately determine the
values of the parameters in the model. For ECMs there are three main parameters to be
determined which are a voltage source, a resistor, and resistor-capacitor (RC) branches
which represents the LiB’s open-circuit voltage (OCV), internal resistance, and transient
responses, respectively [18].

The voltage source is represented by a curve that can be derived using a relationship
between the OCV and SOC. To obtain the curve, the LiB is discharged using constant or
pulse currents and let to rest, taking several hours to complete the experiment [19]. Different
methods have been studied to determine the internal resistance and RC values. One
method uses electrochemical impedance spectroscopy (EIS) data to derive the resistance
and RC parameters in ECMs [20]. Several parameter identification techniques had been
implemented using current-voltage (Input-Output) data such as neural networks (NN),
least squares (LS), and grey box modeling [21–24]. Some of these techniques have long
runtimes or require data to be gathered beforehand, making them suitable for offline
implementation. To address this issue, some online techniques have been explored which
include simplified versions of the NN and LS techniques. Other methods include Kalman
filtering techniques which make use of a LiB parameter model that defines the parameters
as states. The states of the parameter model are perturbed lightly to allow for their value to
change throughout time [25].

In the literature, dual filters and joint methods have been studied to estimate for both
the model’s parameters and the states of the battery. In a joint KF strategy, the system
matrix is augmented to include the parameter states, resulting in a larger matrix [26].
On the other hand, dual filters break the estimation process into two filters, one for the
battery states and one for parameter estimation. Dual filters present several computational
advantages as they make use of smaller matrices. Dual filters can track changes of the
battery’s internal resistance and maximum capacity [27]. Tracking maximum capacity can
be used to estimate the current state of health (SOH) of the battery and allow for an accurate
method to determine battery retirement—often when the LiB’s maximum capacity is at
80% compared to a new one [28].
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This paper’s contributions are the study of the novel sliding innovation filter (SIF) for
SOC estimation, the proposed SIF architecture in a dual setting, and the use of NASA’s
PCOE B005 dataset to estimate the LiB’s capacity at the end of each cycle throughout
its lifetime. The performance of the dual-SIF is compared against a traditional filter in
a dual setting, namely the well-known Kalman filter (KF). Artificial measurements are
generated for each state by making use of the measurement equations and the battery
model equations, resulting in a linear battery model. The artificial measurements allow us
to fine tune the SIF’s delta, exploiting the potential of the SIF.

This paper is structured as follows: Section 2 presents the battery models used. Sec-
tion 3 details the experimental dataset used. Section 4 describes the SOC estimation algo-
rithms namely, Ampere-Hour counting method, KF, SIF, and the dual-filter architectures.
Section 5 presents the artificial measurement equations used for generating individual
measurements for each state from sensor data. Section 6 shows the parameter identifica-
tion algorithms used for identifying the model’s parameter values. Section 7 outlines the
experiment results using both dual filters. Section 7 presents the concluding arguments of
this paper.

2. Battery Models

This section presents the battery models used for simulation.

2.1. Dual Polarity Model

In the absence of current, the battery’s output voltage shows different short time and
longtime transient behaviors. These transient behaviors are accurately captured by a two
RC branch ECM as opposed to a single RC branch [18]. Furthermore, the use of more
than 2 RC branches may be slightly beneficial in terms of accuracy; however, it increases
computational time. The dual polarity (DP) model provides a balanced ECM in terms
of computational cost and accuracy. The DP model is composed of a voltage source, a
resistance and two RC branches, which represents the LiB’s OCV as a function of SOC,
internal resistance, and the concentration polarization and electrochemical polarization,
respectively [18]. In other terms, the voltage source represents the energy inside the battery,
the resistance, R0, represents the loss of energy during operation and the RC branches
capture the transient response of the LiB during the transfer of power to/from the battery,
that is the electrochemical and concentration polarization. The terminal voltage of the
battery is the voltage represented by UL and the current demanded/supplied to the battery
is represented by IL. Figure 1 shows a schematic of the battery model [18].
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Figure 1. Dual polarity model schematic [18].

After some mathematical analysis, it can be shown that the model can be represented
by two differential equations. In (1), the states of the model are the voltage across each RC
branch represented by Upa and Upc. Furthermore, the terminal voltage or output equation
can be described by (2) [18]:
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[
Upa, k+1
Upc, k+1

]
=

 e
− ∆t

RpaCpa 0

0 e
− ∆t

RpcCpc

[ Upa, k
Upc, k

]
+

 Rpa

(
1− e

− ∆t
RpaCpa

)
Rpc

(
1− e

− ∆t
RpcCpc

)
IL, (1)

UL, k+1 = Uocv(SOCk+1)−Upa,k+1 −Upc,k+1 − IL,kR0 (2)

where a positive IL discharges the battery.

2.2. Parameter Model

Assuming the LiB’s parameters vary slowly (e.g., minutes to hours), the parameter
changes during operation and the LiB’s aging can be represented by perturbing the states
with low levels of white noise. The following equations depict the parameter model.

θk+1 = θk + wθk, (3)

yθk = h(xk, uk, θk) + vθk, (4)

wθ ∼ N(0, Qθ), (5)

vθ ∼ N(0, Rθ), (6)

Here, θ represents the parameter vector, wθ represents the level of white noise pertur-
bation for each state with covariance Qθ .

3. Experimental Dataset and Estimation Methods
3.1. B005 Dataset

The PCoE published the Prognostic Data Repository which contains various types of
battery datasets intended to aid in the advancement of prognostic algorithms. Among these
datasets is the PCoE battery dataset, which provides cycling data of about 38 commercial
cells [29]. All these cells had a designed capacity of 2 Ah and were cycled to 70% or 80% of
their initial capacity under different temperatures [29]. Each dataset includes time, current,
voltage, and temperature measurements for each cycle. As well as impedance data and a
date stamp.

This paper selected the B005 dataset to test the dual filters. This dataset contains about
340 discharge and charge cycles or about 615 cycles if the impedance data is accounted
for. The battery has an initial capacity of 1.856 Ah and is cycled to 1.303 Ah. The data was
resampled from 3 s to 0.6 s to allow for better adherence of the algorithms. Figure 2 depicts
the battery capacity degradation over the 615 cycles.

3.2. Ampere Hour Counting

As discussed in Section I, this technique is one of the most popular for determining
battery SOC. The SOC is tracked based on the demanded/supplied current from/to the
battery. The accuracy of this method is highly dependent on the current measurement and
the initial SOC value [30]. Bias in the measurement reading could result in a drift between
the estimated SOC and the true value. The following formula depicts this method [30]:

SOC = SOC0 −
ηi
Cn

∫ t

t0

Is dτ, (7)

where, SOC0 is the initial SOC, Cn is the nominal capacity of the battery, Is is the discharge
current, ηi represents the correcting factor and i refers to the charge or discharge cycle.
In this paper, the charge and discharge cycles are assumed to be the same. Hence, the
hysteresis effect of the battery will be neglected and ηi was set to 1.
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3.3. Kalman Filter (KF)

A novel recursive solution to linear discrete-data filtering problems was described in
1960 by R.E. Kalman [31]. For a known linear system in the presence of white, Gaussian
noise, the Kalman filter (KF) yields the optimal solution by minimizing the state estima-
tion error [31]. The linear system dynamics and measurement model may be described,
respectively, by the following two equations [32]:

xk+1 = Axk + Buk + wk, (8)

zk+1 = Cxk+1 + vk+1, (9)

where A is the dynamics matrix, B is the input matrix, C is the output matrix, x is the
system states, z is the measurement output, u is the input, w is the system noise, and v is
the measurement noise.

The KF algorithm can be summarized in two stages: prediction and update [33].
Equations (10) and (11) represent the prediction stage, where the update stage consists of
(12) through (14).

x̂k+1|k = Ax̂k|k + Buk, (10)

Pk+1|k = APk|k AT + Q, (11)

Kk+1 = Pk+1|kCT
[
CPk+1|kCT + R

]−1
, (12)

x̂k+1|k+1 = x̂k+1|k + Kk+1

(
zk+1 − Cx̂k+1|k

)
, (13)

Pk+1|k+1 = [I − Kk+1C]Pk+1|k(I − Kk+1C)T + Kk+1RKT
k+1, (14)

where Q and R are the system and measurement noise covariance matrices, respectively.

3.4. Sliding Innovation Filter

The sliding innovation filter (SIF) is similar to the KF and (8) and (9) are applicable.
Both filters were derived using a predictor-corrector architecture where the objective is to
reduce the state estimates error and covariances using measurements. The prediction stage
of the filter is the same as the KF as per (10) and (11); however, the main difference between
the two is how the gain was derived [34].

Unlike the Kalman gain that uses the state error covariance matrix, the SIF gain makes
use of the measurement matrix, the innovation term, and a sliding boundary layer [34]. A
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time-varying layer was derived in [35]. It is still recommended to calculate for the state
error covariance as it contains useful information regarding the estimation error in the
filtering process. In simple words, the SIF gain drives the state estimates within the defined
boundary layer and pushes the states estimates to switch about the true trajectory [34]. The
following are the set of update equations for the SIF [34]:

Kk+1 = C+sat
(∣∣∣z̃k+1|k

∣∣∣/δ
)

, (15)

x̂k+1|k+1 = x̂k+1|k + Kk+1z̃k+1|k, (16)

Pk+1|k+1 = (I − Kk+1Ck+1)Pk+1|k(I − Kk+1Ck+1)
T + Kk+1 R KT

k+1 (17)

Note that C+ refers to the pseudoinverse of C, sat refers to the diagonal of the sat-
uration term (value between −1 and +1), δ is the sliding boundary layer width. The
pseudoinverse is calculated using the Moore-Penrose pseudoinverse. If the inverse of the
matrix C exists, performing the pseudoinverse results in a more computational expensive
process to calculate the inverse of the matrix.

3.5. Dual Filters: Dual-KF and Dual-SIF

In LiB literature, it has been shown that LiB’s capacity degrades overtime as it is
subject to deep discharging cycles, full charging cycles or regular use [30]. In addition, LiB
behave with a different battery capacity under different operating environments [30]. For
both cases, the battery model’s capacity would have to be updated to ensure accurate SOC
estimation—if the Ampere-Hour Counting method were to be implemented.

Dual filters seek to address the above problem dynamically by connecting two fil-
ters [36]. In LiB literature, among the popular dual strategies is the Dual-extended Kalman
filter (Dual-EKF) which have been applied to SOC estimation [36]. The EKF is a version of
the Kalman filter that can be implemented for nonlinear system. The Dual-EKF strategy
uses two EKF algorithms, one for updating the battery model’s parameters and the other
for SOC estimation. In simple words, the objective of the two filters is to increase the
estimation accuracy by allowing the battery parameters to change overtime [36].

The following set of equations summarize the Dual-EKF algorithm for SOC estima-
tion [36]. Equations (18) and (19) are the prediction equations for the state filter, and (20)
and (21) are for the parameter filter. Equation (22) through (24) are the update equations
for the state filter, and (25) through (27) are for the parameter filter.

x̂k+1|k = f
(

x̂k|k, uk

)
, (18)

Px,k+1|k = Âx,kPx,k|k ÂT
x,k + Qx, (19)

θ̂k+1 = θ̂k, (20)

Pθ,k+1|k = Pθ,k|k + Qθ , (21)

Kx,k+1 = Px,k+1|k ĈT
x,k+1

[
Ĉx,kPx,k+1|kĈT

x,k+1 + Rx

]−1
(22)

x̂x,k+1|k+1 = x̂x,k+1|k + Kx,k+1

[
zk+1 − h

(
x̂x,k+1|k, uk+1, θ̂k

)]
(23)

Px,k+1|k+1 =
[
I − Kx,k+1Ĉx,k+1

]
Px,k+1|k (24)

Kθ,k+1 = Pθ,k+1|k ĈT
θ,k+1

[
Ĉθ,kPθ,k+1|kĈT

θ,k+1 + Rθ

]−1
(25)

θ̂k+1|k+1 = θ̂k+1|k + Kθ,k+1
[
zk+1 − h

(
x̂θ,k+1, uθ,k+1, θ̂k

)]
(26)

Pθ,k+1|k+1 =
[
I − Kθ,k+1Ĉθ,k+1

]
Pθ,k+1|k (27)

where the nonlinearities of the state filter can be linearized. Furthermore, Ĉθ,k refers to the
total differential of (4). The following set of equations describe the result [25]:
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Ĉθ,k =
dh
(

x̂k+1|k, uk, θk

)
dθk

∣∣∣∣∣∣
θk+1=θ̂k+1|k

, (28)

dh
(

x̂k+1|k, uk+1, θ̂k+1|k

)
dθ̂k+1|k

=
∂h
(

x̂k+1|k, uk+1, θ̂k+1|k

)
∂θ̂k+1|k

+
∂h
(

x̂k+1|k, uk+1, θ̂k+1|k

)
∂x̂k+1|k

dx̂k+1|k

dθ̂k+1|k
, (29)

dx̂k+1|k

dθ̂k+1|k
=

∂ f
(

x̂k|k+1, uk, θ̂k+1|k

)
∂θ̂k+1|k

+
∂h
(

x̂k|k+1, uk, θ̂k+1|k

)
∂x̂k|k

dx̂k|k+1

dθ̂k+1|k
, (30)

dx̂k|k+1

dθ̂k|k
=

dx̂k|k

dθ̂k|k+1
− Kx,k

dh
(

x̂k|k, uk, θ̂k|k+1

)
dθ̂k|k+1

(31)

where Kx,k has little impact to the parameter estimates, thus it can be neglected [25].

Removing the right term in (31), reduces the equation to
dx̂k|k

dθ̂k|k+1
which can now be estimated

by recursion with an initial value of
dx̂k|k+1

dθ̂k|k
= 0 [25].

4. Artificial Measurements

This section presents the state measurement equations derived using the output
equation. It is important to note that by making use of the equations derived in this section,
the output equation has been linearized and can be represented as in (13). In other words,
the outputs (23) and (26) can be written as (13).

4.1. State Measurement Equations

The state measurement equations were derived to allow the SIF access to individual
δ for each state. The two measurements for this system are the current Is and the terminal
voltage UL. From the terminal voltage Equation (2), one can derive individual measurements
for each state and R0. The following are the derived state measurement equations:

Ûpa,k+1 = OCV(SOCk)−UL,k+1 − R0,k Is,k −Upc,k, (32)

Ûpc,k+1 = OCV(SOC)−UL,k+1 − Ro,k Is,k −Upa,k, (33)

ˆSOCk+1 = OCV−1
(

UL,k+1 + Upa,k + Upc,k + Ro,k Is,k

)
(34)

where Ûpa, Ûpc, and ˆSOC are the measurements for each state of the battery model.
OCV−1( ) is the inverse function of OCV(SOC).

4.2. Parameter Measurement Equations

To derive measurements for the parameter model, (2) was used to derive a measure-
ment for R0 and (7) was used to derive the Battcap measurement. The equations can be
summarized, respectively, as follows:

R̂o =
1

Is,k

[
OCV(SOC)−UL −Upa −Upc

]
, (35)

ˆBattCap =
∆t ∗ Is,k

abs(3.6 ∗ ∆SOCk)
, (36)

Figure 3 depicts a block diagram of the dual filter strategy including the measurement equations.
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5. Parameter Identification

In this section, the nonlinear least squares (NLLS) algorithm is used for parameter
identification. After analyzing the DP model described in section II, the parameters to be
identified are OCV(SOC), R0, Rpa, Cpa, Rpc, Cpc, Battcap. The dataset already provides
the initial Battcap at 1.856 Ah.

Least Squares

Analyzing the DP model, the required relationship for NLLS between the measurable
data and the parameters can be defined as [22]:

OCV(SOC) = α0 + α1SOC + α2SOC2 + α3SOC3 + α4SOC4 + α5SOC5, (37)

Upa = ILRpa

(
1− e

− t
RpaCpa

)
, (38)

Upc = ILRpc

(
1− e

− t
RpcCpc

)
, (39)

UL = OCV(SOC)− ILR0 − ILRpa

(
1− e

− t
RpaCpa

)
− ILRpc

(
1− e

− t
RpcCpc

)
, (40)

θ =

[
α0, α1, α2, α3, α4, α5, R0, Rpa,

1
RpaCpa

, Rpc,
1

RpcCpc

]
, (41)

where t is the sampled time vector, the OCV(SOC) curve is approximated as a 5th order
polynomial with α0 equal to 3.27 V which corresponds to the voltage at the end of the
first discharge cycle. θ is the parameter vector. The capacitance values are estimated as
1/RpcCpc and 1/Rpa Cpa to account for their significantly higher magnitude compared to
resistances. It has been reported in the literature that the capacitance values are two to
three orders of magnitude higher than the resistance values [22,37].

The lsqcurvefit MATLAB® function was used for parameter estimation subject to the
boundaries and initial conditions detailed in Table 1. Table 2 summarizes the results from
the NLLS method. These parameter values were used across all experiments. The terminal
voltage’s RMSE between the derived model and the measured data was 0.053. Moreover,
Figures 4 and 5 depict the error generated between the NLLS model and the measured data.
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Table 1. NLLS Boundaries and initial guess.

Parameters R0 Rpa Cpa Rpc Cpc

Unit Ω Ω 1/(ΩF) Ω 1/(ΩF)
LB 0.001 0.01 0.0001 0.01 0.01
UB 0.500 0.50 0.0020 0.50 0.10

Guess 0.020 0.10 0.0010 0.10 0.01

Table 2. NLLS parameter estimation results.

RC-Parameters Value OCV(SOC) Value

R0 0.065 α1 2.94
Rpa 0.0615 α2 −5.66
Cpa 1860 α3 2.70
Rpc 0.0227 α4 3.84
Cpc 146825 α5 −2.94
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Lastly, Figure 6 depicts the obtained SOC-OCV curve, and (42) illustrates the OCV(SOC) equation.

OCVLipoAvg = @(SOC)
(
−2.94 SOC5 + 3.84 SOC4 + 2.7 SOC3 − 5.67 SOC2 + 2.94 SOC + 3.27

)
, (42)
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6. Experimental Results and Discussion

This section details the experimental results obtained by both Dual-filter strategies:
Dual-KF and Dual-SIF.

6.1. SOC Estimation: 10th Cycle and 400th Cycle

This section presents the SOC estimation results using the B005 dataset and the dual
filter algorithms. Table 3 summarizes the initial conditions used for the experiment.

Table 3. Initialization values for both filters: Dual-KF/Dual-SIF.

Variable Battery Model Parameter Model

Vpa 0 0.065 Ω
Vpc 0 2 Ah

SOC 100% -
Q Diag (5 × 10−5, 3 × 10−5, 5 × 10−7) Diag (5 × 10−7, 1 × 10−8)
R Diag (0.1, 0.01, 1) Diag (10, 1)

Delta [10; 7; 2000] [450; 90]

The filter making use of the battery model was initialized to represent a relaxed and
fully charged battery. The final Q matrix values were chosen after running the experiment
several times and analyzing the resulting plots of each state at the end of the simulation.
The R matrix values were set based on the measurement data.

The second filter, making use of the parameter model, was initialized based on the
parameter identification values. The filter is only allowed to make changes to the internal
resistance, R0, and battery capacity, Batcap, parameters, which are critical markers of a
healthy battery. The values for Q were selected based on how much change was allowed
for each parameter.

Figure 7 illustrates the terminal voltage and SOC estimation results at the 10th Cycle.
This cycle is a discharge cycle starting with a 100% SOC to 0% SOC. Part (a) of the figure
illustrates a correct terminal voltage estimation compared to the model results in Figure 5.
Furthermore, the SOC results shown on parts (b) and (c) depict a full discharge of the
battery using (7). As shown in Figure 7, the battery model and parameter model derived
can accurately capture the behavior of the battery in conjunction with the KF and SIF.

Figure 8 shows the terminal voltage, and SOC estimation results of the battery at the
600th Cycle. Similar to the 10th cycle, this cycle is a discharge cycle; however, the battery
has significantly aged. The new Batcap is around 1.3 Ah compared to 1.86 Ah—about a 30%
reduction. Part (a) of this figure illustrates accurate terminal voltage results for both filters,
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showing that both filters have adapted to the new conditions. Part (b) shows the SOC
estimation results of the initial model using the dynamics of a new battery, no updates to
the parameters, and the SOC results of both filters. The filters correctly deplete the battery,
meaning that the parameter of the model have been updated successfully. Furthermore, it
can be seen that the battery is fully depleted before the 40th minute which is also reflective
of the terminal voltage in (a). Part (c) illustrates the artificial measurements generated
for SOC.
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6.2. Battery Capacity Estimation: Dual KF and Dual SIF

This section presents the battery capacity estimation results from both filters using the
B005 dataset. The algorithms were initialized as in Table 3.

Based on the first battery capacity measurement provided by the dataset, the starting
capacity of the battery was measured at 94% of the manufacturer’s datasheet (2 Ah). Both
filters should account for this starting battery capacity during the estimation process.
Figure 9 depicts the Batcap and R0 estimation at the end of each cycle. As the battery
ages, it is expected for its capacity to degrade, Batcap, and its internal resistance, R0, to
increase. Both filters show good profiles and estimation results; however, the KF mimics
more accurately the measured data’s trend. Table 4 shows the RMSE values for the battery
capacity estimate and terminal voltage estimate of both filters. Both filters show good
results; however, the dual-KF performs slightly better than the dual-SIF.
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Table 4. RMSE Results.

Output/State Dual-KF Dual-SIF

Batcap 0.0283 0.0342
Terminal Voltage 0.0227 0.0398

6.3. Battery Capacity Estimation under Fault: Jump in Data

This section shows the results generated using a shorten data by jumping from cycle
150 to cycle 450. Both filters should converge to the new battery dynamics—aged battery.

Based on the measured battery capacity at the 450th cycle the “true” Batcap should be at
1.39 Ah. Both filters, should account for this sudden drop in battery capacity. Furthermore,
the filters should significantly increase the internal resistance. Figure 10 illustrates the
estimation results of both filters. It is evident, that both filets converge to the “true” Batcap;
however, the dual-SIF shows faster convergence than the dual-KF. This rate of convergence
is also evident in Part A.
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Table 5 presents the RMSE results for both filters. The dual-SIF has a better RMSE
due to the faster convergence rate than the dual-KF. Moreover, the dual-SIF has a better
RMSE value estimating the terminal voltage as it makes use of the correct battery capacity
at earlier cycles.

Table 5. RMSE Results for both filters.

Output/State Dual-KF Dual-SIF

Batcap 0.1233 0.0675
Terminal Voltage 0.0776 0.0460
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7. Conclusions

In this paper, the sliding innovation filter and Kalman filter were implemented to
estimate the SOC of a lithium-ion battery. Moreover, the sliding innovation filter and
Kalman filter were also implemented using a dual strategy to estimate a lithium-ion
battery’s capacity under cycling. The experimental data used was NASA’s PCOE B005
dataset, which provides cycling data of a 2 Ah lithium-ion battery until retirement (1.3 Ah)
for the purpose of advancing prognostic algorithms. This experimental data was fed to the
algorithms, and the estimation results of both dual filters were compared to the dataset’s
measured battery capacity at the end of each discharge cycle. Lastly, this paper makes use
of artificial measurement equations to generate individual measurements for each state.

The terminal voltage and SOC estimation results from the 10th and 600th cycles
demonstrate good performance of both dual filter algorithms when the battery is at a
healthy state and as the battery aged. These results showed that both algorithms updated
the model accordingly and depleted the battery at the correct times, which can be corrobo-
rated by analyzing the terminal voltage plots. Moreover, the low RMSE values for battery
capacity estimation show good accuracy for both filters, with the Kalman filter having a
better profile trend and the sliding innovation filter resulting in a smoother curve.

Lastly, the proposed dual sliding innovation filter and the Kalman filter were tested
under rapid changing dynamics. The dataset was shortened by cutting the data from the
150th to the 450th cycle. The simulation results demonstrated that the dual sliding inno-
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vation filter has a faster convergence to the new battery dynamics than the dual Kalman
filter, resulting in lower RMSE values in battery capacity and terminal voltage estimation.
This faster rate of convergence suggests that the sliding innovation filter may adapt better
to more aggressive changes in battery dynamics than the Kalman filter; however, further
study should be done comparing both algorithm responses to different degrees of chang-
ing dynamics. Future work will look at performing a comprehensive comparison with
nonlinear estimation methods on an experimental setup currently under development.
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