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Abstract: Concentrating solar power (CSP), also known as solar thermal electricity (STE), is increas-
ing its deployment worldwide. One of the potential ways to decrease costs in CSP plants is the
improvement of corrosion resistance between the heat transfer fluid (HTF) and storage materials,
and the materials used for pipes, tanks, containers, and receivers. This paper assesses the literature
on this topic (290 publications) through a bibliometric analysis, identifying the trends of the research,
the topics of most interest to researchers, and literature gaps. Most documents are from Spain, Ger-
many, and the United States of America. Results show that the most recent approaches for corrosion
migration are selective coatings and the use of nanoparticles to reduce corrosiveness. The use of
nitrates is changing to other salts such as chloride mixtures and potassium compounds. In addition,
the techniques used to evaluate corrosion results are dominated by scanning electron microscopy
(SEM), X-ray diffraction (XRD), and electrochemical testing, but new dynamic techniques are starting
to be used, representing the biggest gap that needs to be filled for the testing of components such as
solar receivers.

Keywords: corrosion; concentrating solar power (CSP); solar thermal electricity (STE); bibliometric
analysis; trends

1. Introduction

In 2010, the International Energy Agency [1] stated that by 2050, concentrating solar
power (CSP, also known as STE—solar thermal electricity) could provide 11.3% of global
electricity. Moreover, CSP should become a competitive source of bulk power in peak and
intermediate loads. In 2016, the CSP/STE market had 7.638 GMWe installed worldwide [2],
of which 4.8 GWe were operational and the rest were under construction. In 2020, the
amount of installed capacity worldwide of CSP rose to 6.2 GWe [3].

There are four main technologies for CSP/STE: parabolic trough, tower, linear Fresnel,
and parabolic dish [2,4]. Parabolic trough and linear Fresnel systems track the sun along
one axis, and therefore use line focus; tower and dish systems track the sun along two axes,
using point focus. For each technology, the heat transfer fluid (HTF), the thermal energy
storage (TES) systems, and the power cycle is chosen from different available options.

Although commercially being addressed with success, corrosion is identified as one
of the potential ways to decrease costs in CSP plants if alternative methods to prevent
it are identified [4]. Both commercially used HTF and storage materials, as well as new
studied storage materials, are potentially corrosive [5]. Materials used for pipes, tanks,
receivers, etc., are mostly carbon steel, stainless steel and/or Ni-based alloys; materials used
as HTF or storage are water, synthetic oils, organic solvents, molten metals, and molten
salts [5,6]. A significant number of studies show that molten salt corrosion in metal alloys
has a fundamental relationship with the anion type, process temperature, HTF impurity
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content, cover gas atmosphere, flow state and metal alloy composition. In addition, the risk
of materials failure is further increased by thermal cycling and the possibility of mechanical
stress in solar plant [7]. The long-term stability of key components is essential to guarantee
the reliability of CSP and the confidence necessary for its financing.

A significant number of papers have appeared in the literature recently on the topic
of corrosion analysis and mitigation in CSP/STE plants, but the literature on this topic is
dispersed and still not well organized, and therefore, it could be difficult to understand
the state of the art and the respective gaps on the topic. With this objective in mind, this
paper aims to provide a better picture of corrosion on CSP that could help researchers and
institutions working on the topic. In this case, bibliometric analysis is a technique that
could help to address this issue allowing scientific progress to be evaluated using both
a quantitative and qualitative approach. Indeed, bibliometric techniques can be used to
evaluate the scientific output in terms of the number of publications and to identify the
main authors and institutions studying a certain topic. Furthermore, links between biblio-
metric items (items can be in terms of co-authorship, co-occurrence, citation, bibliographic
coupling, or co-citation links) can also be evaluated and visualized in maps using dedicated
software. Additionally, by analyzing the keywords used to tag the scope of papers, it is
possible to identify research trends and gaps. Recently, bibliometric techniques have been
used in the literature to allow a better understating of the state of the art on topics related
to energy, such as thermal energy storage [8,9], electrical storage [10,11], solar power [12],
and low carbon energy technologies [13].

Therefore, the aim of this paper is to evaluate the literature dealing with corrosion in
CSP/STE plants to be able to understand the trends of such research, the topics that have
aroused interest among researchers, and finally, to identify literature gaps.

2. Methodology

The literature search was carried out in the Scopus database on 19 January 2022. The
Scopus database was used because it compiles more documents on technologies than any
other available [14]. The query used was a simple one, but after looking at all the documents
found, it appeared likely that all of them were related to the study. The query was “(CSP
OR STE) AND corrosion”. A total of 290 documents were found and were assessed based
on the type of publication, distribution per year, per country, per author, per institution, per
subject area, and per journal. Moreover, the relationship between authors and keywords
was analyzed using the bibliometric analysis software VOSviewer [15].

3. Results and Discussion

The type of publication in which most documents related to corrosion in CSP/STE
were published is shown in Figure 1. In particular, most documents are published as
articles/papers (177 documents) and conference papers (90 documents). The high number
of conference papers shows that corrosion in CSP/STE is still an important subject for
researchers in conference publications. Only 16 reviews and four book chapters were found,
showing that this is quite a new topic.

The journals in which most documents are published are shown in Figure 2. In
particular, “Solar Energy Materials and Solar Cells” was found to be the first choice for
researchers to publish studies related to corrosion. From the results it is also noticeable
that conference proceedings (AIP conference proceedings and Energy Procedia) have published
various studies that can be consulted in an open access format.

The trend in the number of publications is presented in Figure 3. The first documents
appeared in 1968, and between zero and three publications appeared every year until
2005 (in which there were four publications), but the real increase in documents started in
2009 (with eight publications) until there were 33 published in 2019 and 39 published in
2020. This increase coincides with the increases in commercial plants in operation and the
capacity of thermal energy storage installed (Figure 4) [3], which shows that this issue is a
common development focus among technology developers and researchers.
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Countries that are researching this topic are shown in the heat map in Figure 5. The
top countries are highlighted in Figure 6. In this case, Europe was considered a single
territory covering the member states in the EU27. Up to 2021, the countries of the European
Union were leading all the territories with the most documents (122), followed by the USA
(63 publications), China (with 39), and Chile (17). Within the European Union, Spain and
Germany had the highest number of documents published (57 and 47, respectively).

It is interesting to note that the total number of publications per country is in line with
the operational capacity installed in each territory, as shown in Table 1 [16].

When studying the publication trends of the five top countries/territories, one can see
that the number of documents published per year in the USA has stagnated at 7–8; China,
the UK, and Chile are increasing slowly from 1–2 documents per year to 3–4; whereas the
European Union increased drastically from 8–10 documents per year to 25 documents in
2019, which represents the highest research output. The network of countries obtained
using VOSviewer is shown in Figure 7. The relationship between countries shows three
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clusters (Figure 7a); the first one includes the European Union, Morocco, and Chile, and
this is linked directly with the second cluster that includes Australia, the UK and China;
this second cluster is then linked to the third one that includes the USA, Japan and India.
It is interesting to see that the countries that were the earliest to start publishing on this
topic are the UK and Japan, and the newest ones are Chile, Australia, Morocco, and India
(Figure 7b).
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However, it is interesting also to see the relationships within the European Union. In
this case, the documents attributed to the countries of the EU by Scopus were downloaded
and the relationship between countries can be found in Figure 8. Here there are two main
clusters (Figure 8a). The first one shows the strong relationship between Spain, Chile,
and Italy. Spain is in the center of this network, and has relationships with the second
cluster, that includes Portugal, the UK, Germany, and France. It is worth mentioning
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that the second cluster is the one with older publications related to corrosion in CSP/STE
(Figure 8b).
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Table 1. Operational capacity of CSP installed in different countries/territories [16].

Country/Territory Operational Capacity Installed [MW]

Europe 2318
USA 1731

China 881
Morocco 533

India 242
Chile 110

Australia 2.6
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As expected, the institutions with the highest number of documents (at least six
documents published on the topic) belong to the countries/territories listed above (Table 2).
The European Union is mainly represented by institutions from Germany and Spain.
Outside Europe, institutions from Chile (University of Antofagasta), the USA (NREL
and University of South Carolina), China (University of Science and Technology Beijing
and Inner Mongolia University of Science and Technology), and Australia (Queensland
University of Technology) are present in this ranking.

DLR (Germany) is the institution with most documents in the literature. The most
cited paper was published in 2012, a study on the compatibility between inertized asbestos-
containing waste and molten salts using nuclear magnetic resonance, ex situ X-ray diffrac-
tion and scanning electron microscopy [17]. Another relevant document was published
in 2018 regarding the corrosion behavior of commercial alloys (stainless steel SS 310, In-
coloy 800 H, Hastelloy C-276) with molten salts (MgCl2/NaCl/KCl) [18]. The other two
institutions with the highest output are University of Antofagasta (Chile) and Universidad
Complutense de Madrid (Spain). Excluding reviews, the most cited document from the
Chilean university was a study on the corrosion resistance of pretreated alumina-forming
alloys to produce surface passivation that was tested against molten chlorides [5], whereas
from Universidad Complutense de Madrid the most relevant study was published in 2012,
on the corrosion of two different types of steel (low-Cr alloy steel (T22) and carbon steel
(A1)) with a molten nitrate salt mixture [19].
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The most published authors (at least 11 documents published) are listed in Table 3. As
expected again, the authors with most publications on this topic belong to the institutions listed
above, but it is interesting to see that most of them are from Spain and Germany. The author
with the most publications is A. G. Fernández, from Universidad del Pais Vasco (Spain).
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Table 2. Institutions with the highest number of documents published.

Institution Country Number of Publications

DLR Germany 22
Universidad de Antofagasta Chile 17

Universidad Complutense de Madrid Spain 17
NREL USA 13

Universitat de Lleida Spain 13
CIC energigune Spain 13

Universidad del Pais Vasco Spain 9
DECHEMA Forschungsinstitut Germany 8

TECNALIA Spain 7
Queensland University of Technology Australia 6

Chinese Academy of Sciences China 6
Harbin Institute of Technology China 6

CIEMAT-Plataforma Solar de Almeria Spain 6
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Table 3. Authors with the highest number of publications.

Author Institution Country Number of Publications
in This Query

Total Number of
Publications h-Index

A.G. Fernández Univ del Pais Vasco Spain 23 59 22
T. Bauer DLR Germany 16 69 22
F.J. Pérez Univ Complutense de Madrid Spain 15 178 30
A. Bonk DLR Spain 14 44 15
A. Faik Mohammed VI Polytechnic Univ Morocco 14 102 23

Y. Grosu Basque Research and Technology
Alliance Spain 13 60 16

L.F. Cabeza Universitat de Lleida Spain 12 546 76
W. Ding DLR Germany 12 15 9

M.I. Lasanta Univ Complutense de Madrid Germany 12 21 10
M.T. de Miguel Univ Complutense de Madrid Spain 11 19 8

V. Encinás-Sanchez Univ Complutense de Madrid Spain 11 22 8

The most recent publication from this author that is relevant in terms of number
of citations was published in 2019 and was a study regarding the corrosion properties
of nanoparticles included in molten salts on stainless steel [20]. This author has strong
co-authorship with L.F. Cabeza [4,21–25] and F.J. Pérez [19,26–28]. T. Bauer from DRL
accounts for 16 documents published on corrosion and has strong collaborations with
A. Bonk [29–38] and W. Ding [29–35,39,40]. One of the most recent studies that obtained
a significant number of citations concerned two mitigation strategies for corrosion of
structural material including the use of corrosion inhibitor and alloys with a protective
alumina layer on surfaces [41]. F.J. Pérez also has a higher output of publications on
corrosion due to strong collaborations with M.I. Lasanta, M.T. de Miguel, and V. Encinás-
Sanchez [42–51]. One of the most recent studies published was a study on the corrosion
resistance of austenitic steel HR3C to a carbonate molten salt [52]. Another significant
author on the topic is A. Faik from Mohammed VI Polytechnic University with a strong
collaboration with Y. Grosu (Basque Research and Technology Alliance) [53–60]. One of
the most relevant studies was published in 2018, on the effect of humidity, impurities and
initial state on the corrosion behavior of carbon and stainless steels in molten HitecXL
salt [61].

The mapping of the authors performed using VOSviewer (Figure 9) shows distinctive
clusters grouping authors within the same institution. Figure 9b shows that the authors
from University Complutense de Madrid together with A.G. Fernández (originally also
from this institution) are those who started to publish on this topic earlier, whereas the
authors that are now at or were associated in the past with CIC energiGUNE are those who
started to publish on the topic later [53–60,62].

Figure 10 shows the mapping by VOSviewer of the literature found using the query of
the Scopus database.

The keywords are grouped into three main clusters. The first cluster, in green, contains the
main keywords of the topic (“csp”, “corrosion”, and “solar energy”) and keywords related to
“corrosion resistance” of the steel structure of the storage. The second cluster, in red, is related to
the mitigation of corrosion caused by molten salts and nitrate salts which are the commercial
storage materials used today [19,63–67]. The blue cluster is related to thermal energy storage
materials. In the green cluster, different keywords related to different types of steel (“martensitic
steel” and “ferritic steel”) [68–72], and “alloy” [18,73–80] can be noted. However, “stainless
steel” belongs to the second cluster because it is the most common material used for storage
structures and relates to the evaluation of corrosion effects by molten salts [18,19,64,67,75,81–88].
Another keyword related to the first cluster is “potassium compounds”. The cluster also
contains “coatings” (and “aluminium coatings”) that represent one of the most common
techniques to reduce the corrosion effect of salts [89–94]. The keyword “accelerating
ageing” is interesting, representing one of the methodologies used to reduce the time of
experiments related to corrosion [95]. The cluster also contains the keyword “costs” because
achieving reduction of corrosion costs in CSP plants represents a key aspect. The red cluster,
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as mentioned, relates to “corrosion mitigation” by acting on the composition of molten
salts and nitrate salts at “high temperatures”; here, we note keywords such as “corrosion
inhibitor” and “alumina” that is often used as a protective layer against molten salts and
as a nanofluid [23,42,96,97]. Indeed, the cluster also contains the keyword “nanoparticles”
which includes studies on corrosion-related molten salts doped with nanoparticles for
thermal performance enhancement [54,96–99] and corrosiveness reduction [99,100]. The
cluster also includes the keyword “chlorides”; this is due either to the potential impurities
of “molten salts” or to the fact that today chlorine salts are seen as potential storage
salts for future CSP plants working at higher temperatures than the commercial ones
and their corrosivity is also known [19,74,75]. Figure 10 also shows the main analytical
techniques used to perform studies on corrosion in CSP plants, which can be useful for
researchers to see what is currently used to evaluate their tests. Figure 10a shows that “SEM”
(scanning electron microscopy), “XRD” (X-ray diffraction), and “electrochemical testing”
are widely used [18,23,53,65,101]. However, the biggest gap found in this study was the
use of “dynamic corrosion” testing techniques [26,87,97,102], that would be needed to test
components such as solar receivers. The third cluster includes storage materials and here
we note keywords such as “thermal energy storage”, “thermal stability”, “thermophysical
properties”, “operating temperature”, and “degradation”. It interesting that “PCM” is
also found in the literature map; this is due to the intense research carried out into the
substitution of the sensible storage systems used today with others that are more economic
or which have higher efficiency [18,101,103,104].
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The figure shows an overlay visualization that enables better understanding of the
latest trends in research dedicated to corrosion in CSP plants. For example, with regard
to storage materials, studies carried out on martensitic steel compared to alloys were
published recently [99,105]. In terms of storage media, potassium compounds (includ-
ing potash and potassium nitrate) and chlorides have been considered in recent studies
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related to corrosion. The results also show that with regard to corrosion techniques, the
use of nanoparticles or alumina is the most recent topic studied among researchers, be-
ing a promising solution for corrosion mitigation. Furthermore, in terms of corrosion
measurement techniques, we see a trend towards use of the dynamic methods: “SEM”
(scanning electron microscopy), “XRD” (X-ray diffraction), and electrochemical testing in
recent studies [106].

4. Conclusions

Corrosion is a critical issue in concentrating solar power technology, also known as
CSP or STE. The durability of materials is very important to guarantee the feasibility of
CSP and numerous studies have explored the corrosion behavior of construction materials
with different storage media or heat transfer fluids.

In this study, a scientific research field bibliometric analysis was performed, studying
more than 200 publications in relevant journals and conference proceedings. The results
indicated that most publications come from the European Union and the United States of
America, with clear links between these two geographical areas. Other key players are the
UK, Japan, China, Australia, Morocco, and Chile; in order of the oldest publications found.
In Europe, most research has been carried out in Spain and Germany. The keyword analysis
showed that most of the studies are related to evaluating the corrosion rates and resistance
of storage container materials, with molten salt being the most mature storage material
solution in CSP plants. From the literature, the analysis shows that “SEM” (scanning
electron microscopy), XRD (X-ray diffraction) and electrochemical testing are the most
widely used techniques for the analysis of the results of tests, but new, innovative dynamic
methods need to be developed to test corrosion in other key components in CSP plants,
including solar receivers. New approaches to increase the durability of materials are also
gaining relevance in recent times, following the latest technology roadmap: the use of
selective coatings to lower the cost of construction materials or the use of nanoparticles to
reduce corrosiveness. The trend to change from the use of nitrates to other higher stability
salts, such as chloride mixtures and potassium compounds, was also detected with an
increase in the number of recent publications on this topic.
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