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Abstract: A tunnel boring machine (TBM) is an important large-scale engineering machine, which is
widely applied in tunnel construction. Precise cutterhead torque prediction plays an essential role
in the cost estimation of energy consumption and safety operation in the tunneling process, since it
directly influences the adaptable adjustment of excavation parameters. Complicated and variable
geological conditions, leading to operational and status parameters of the TBM, usually exhibit some
spatio-temporally varying characteristic, which poses a serious challenge to conventional data-based
methods for dynamic cutterhead torque prediction. In this study, a novel hybrid transfer learning
framework, namely TRLS-SVR, is proposed to transfer knowledge from a historical dataset that
may contain multiple working patterns and alleviate fresh data noise interference when addressing
dynamic cutterhead torque prediction issues. Compared with conventional data-driven algorithms,
TRLS-SVR considers long-ago historical data, and can effectively extract and leverage the public
latent knowledge that is implied in historical datasets for current prediction. A collection of in situ
TBM operation data from a tunnel project located in China is utilized to evaluate the performance of
the proposed framework.

Keywords: tunnel boring machine (TBM); cutterhead torque prediction; operation parameters;
transfer learning

1. Introduction

Tunnel boring machines (TBM) are widely applied in various tunnel construction
projects, such as subways, mining ores, railways, etc., due to advantages of higher reliability,
safety, and environmental friendliness [1]. Figure 1 illustrates a typical structure of the TBM,
which contains multiple sub-systems, such as the cutterhead driving system, thrust system,
cutterhead system, etc. In real-world applications, TBMs generally work in heterogeneous
and complicated geological environments, such as spalling, faulting, fracturing, rock
bursting, squeezing, swelling, and high water in the flow [2], that pose severe challenges to
the operation of TBMs. A schematic illustration of the geological conditions of a tunnel is
demonstrated in Figure 2. To ensure construction safety and reduce energy consumption, it
is desirable to accurately predict the dynamic load (generally referring to the cutterhead
torque) under spatio-temporally varying geological conditions and to dynamically adjust
the TBM control parameters during excavation.
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Figure 1. A typical diagram of the TBM. Reproduced with permission from [3], Springer Nature, 
2016. 

In general, the prediction methods for cutterhead torque can be roughly grouped into 
three types: rock–soil mechanics methods, empirical methods (combined with experi-
ments), and soft computing methods. The rock–soil mechanics method establishes a 
model according to the force balance among rock, cutters, and internal machinery [4,5]. 
The empirical models are based on engineering experience involving a large amount of 
laboratory tests, field measurements, and construction records [6,7]. The soft computing 
methods are developed as data-based solutions for predicting the TBM’s load through 
mathematical mapping. Rostami [8] elaborated theoretical and empirical methods in a re-
cent review. S. K. Shreyas [9] and Shahrour Isam [10] provided a brief retrospect of recent 
application of soft computing methods to predict various parameters in tunneling and 
underground excavations. 

 
Figure 2. Longitudinal geological profile of a tunnel. Reproduced with permission from [11], IEEE, 
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By dividing the tunnel alignment into three general sections in terms of geological 
and geotechnical conditions, Avunduk et al. [12] proposed an empirical model for pre-
dicting excavation performance of TBM. Through the mechanical decoupling method for 
analyzing the cutterhead–ground interaction, Zhang et al. [13] proposed an approximate 
calculation method for determining the load acting on the cutterhead. Based on the inter-
action between the TBM and excavated material, Faramarzi et al. [14] applied the discrete 
element method (DEM) to evaluate the TBM torque and thrust. Rock–soil mechanics 
methods and empirical models are both based on the premise that the geological infor-
mation is known. However, the accurate prediction of a geological profile before excava-
tion is a hard and challenging task. In tunneling and underground excavation, the geo-
logical information is obtained through borehole sampling, and the stratum between sam-
pling points are usually estimated by linear fitting. The distance between the sampling 
points is typically considerable, and the relevant result is often different from the real dis-
tribution, which may affect the accuracy of the rock-soil mechanics methods and the em-
pirical models [15]. 

Figure 1. A typical diagram of the TBM. Reproduced with permission from [3], Springer Nature, 2016.

In general, the prediction methods for cutterhead torque can be roughly grouped
into three types: rock–soil mechanics methods, empirical methods (combined with ex-
periments), and soft computing methods. The rock–soil mechanics method establishes a
model according to the force balance among rock, cutters, and internal machinery [4,5].
The empirical models are based on engineering experience involving a large amount of
laboratory tests, field measurements, and construction records [6,7]. The soft computing
methods are developed as data-based solutions for predicting the TBM’s load through
mathematical mapping. Rostami [8] elaborated theoretical and empirical methods in a
recent review. S. K. Shreyas [9] and Shahrour Isam [10] provided a brief retrospect of recent
application of soft computing methods to predict various parameters in tunneling and
underground excavations.
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Figure 2. Longitudinal geological profile of a tunnel. Reproduced with permission from [11],
IEEE, 2019.

By dividing the tunnel alignment into three general sections in terms of geological and
geotechnical conditions, Avunduk et al. [12] proposed an empirical model for predicting
excavation performance of TBM. Through the mechanical decoupling method for analyzing
the cutterhead–ground interaction, Zhang et al. [13] proposed an approximate calculation
method for determining the load acting on the cutterhead. Based on the interaction between
the TBM and excavated material, Faramarzi et al. [14] applied the discrete element method
(DEM) to evaluate the TBM torque and thrust. Rock–soil mechanics methods and empirical
models are both based on the premise that the geological information is known. However,
the accurate prediction of a geological profile before excavation is a hard and challenging
task. In tunneling and underground excavation, the geological information is obtained
through borehole sampling, and the stratum between sampling points are usually estimated
by linear fitting. The distance between the sampling points is typically considerable, and
the relevant result is often different from the real distribution, which may affect the accuracy
of the rock-soil mechanics methods and the empirical models [15].
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Assisted by the advancement of sensor and measurement technology, modern TBMs
can record series of operation parameters closely related to dynamic load, which provides
a basis for the practical application of soft computing methods. Sun et al. [16] utilized the
random forest (RF) algorithm to design a predictor for TBM load. Kong et al. [17] took
geological conditions and operational data as inputs to build a prediction model based on
the RF for predicting driving forces of a TBM in a soil–rock, mixed-face ground. Li et al. [18]
used the one-dimensional convolutional neural networks and long short-term memory
network (CNN-LSTM) to predict cutterhead speed and penetration rate (PR). Qin et al. [19]
applied a deep neural network-based method to predict dynamic cutterhead torque based
on operating data and status parameters. Suwansawat et al. [20] applied the multi-layer
perceptron (MLP) to determine the correlation among TBM operational data, groundmass
characteristics, and surface movements. Lau et al. [21] used a radial basis function (RBF) to
estimate tunneling production rates of successive cycles. Gao et al. [22] used three kinds
of recurrent neural networks (RNNs) to deal with TBM operating parameters’ real-time
prediction. Soft calculation methods usually involve the optimization of many parameters,
and the selection of parameters based on experience will reduce the accuracy of the analysis
results. To deal with this problem, there have been many hybrid methods proposed in the
literature. For example, Zhou et al. [23] applied three optimization algorithms to optima
of the hyper-parameters of the support vector machine (SVM) technique in forecasting
the advance rate (AR) of TBMs. Armaghani et al. [24,25] proposed two hybrid, intelligent
systems, namely the particle swarm optimization (PSO)-artificial neural network (ANN)
and the imperialism competitive algorithm (ICA)-ANN, to approximate the PR and AR of
TBMs, respectively.

Although relatively accurate prediction results can be achieved by soft computing
approaches, most of them generally assume that training samples and future test sam-
ples have identical distribution characteristics, and their practicability still has room for
improvement. During the excavation process, TBMs encounter varying geological and
working conditions, such as accelerating, turning, jamming releasing, etc., resulting in
considerable changes in the underlying pattern of operation data over space and time. So,
historical datasets behave as a non-stationary time series that makes the correlation among
parameters in a high degree of complicated, changeable, and challenging conditions to be
described by simple or fixed mathematical expressions. Hence, it is a serious challenge
to extract common knowledge from historical datasets to assist in building an adaptive
model which dynamically changes with geological conditions and operating parameters,
for implementing dynamic cutterhead torque prediction at the current moment. To a certain
degree, this problem is similar to the paradigm of transfer learning [26,27], which addresses
this problem by utilizing experiences gained from source tasks to improve the learning of
new related tasks. Hu et al. [28] applied the concept of transfer learning for efficient wind
speed prediction. The prediction model was trained on samples from older data-rich farms
to extract wind speed patterns, and then finely tuned with samples from newly built farms.
Rui et al. [29] constructed a novel transfer learning paradigm for time series prediction, and
the principle of transfer learning is employed. However, TBM’s historical data contains
a variety of geological information and working modes. So, directly adopting the most
intuitive transfer learning method without distinguishing all the working modes in the
historical data may result in negative transfer problems.

Herein, a novel hybrid data-mining framework based on clustering, multitask learning
(MTL), transfer learning, and least-squares support vector regression machines (LS-SVR),
abbreviated as TRLS-SVR, is proposed for dynamic cutterhead torque forecasting of TBMs.
In this framework, LS-SVR is selected as a baseline model, which has a powerful capabil-
ity to capture underlying nonlinear relationships for a complex system. The underlying
patterns in historical data are effectively divided according to the relationship among at-
tributes [30]. To take advantage of the knowledge contained in different working modes and
to eliminate the damage from dataset bias, we adopt the idea of MTL [31], which explicitly
exploits commonalities and differences across multiple working modes by learning them
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simultaneously rather than individually, to improve knowledge extraction ability. Based
on the common knowledge extracted from historical data, we utilize the newly collected
operation data to continuously update the pattern-specific biases parameters for adapting
to the changing geological and working conditions. This study offers the following inno-
vations and contributions. (1) The unsupervised learning algorithm for data clustering is
combined with the MTL paradigm to explore and exploit the correlations among multiple
working modes by learning simultaneously rather than individually, which enhances the
ability of extracting public knowledge from a diversely recorded TBM historical dataset.
(2) It employs a transfer learning paradigm to reuse the public knowledge that is contained
in the historical dataset to supply new data, and it alleviates random noise interference
and fits the varying geological and working conditions well. (3) The TRLS-SVR performs
superior performance in geologically complex and changeable locations, compared with
that of conventional data-driven algorithms.

The rest of this study is organized as follows. Section 2 presents details of the proposed
framework. In Section 3, the experimental verification is presented. In Section 4, some
discussions on experimental results are provided. Section 5 concludes the whole study and
provides future work.

2. The Proposed Dynamic Cutterhead Torque Prediction Framework
2.1. Overall Framework

The framework of dynamic cutterhead torque prediction proposed in this paper draws
inspiration from various machine learning methods, including clustering, MTL, and transfer
learning. The overall framework of the TRLS-SVR mainly consists of four components,
namely data pre-processing, dividing of typical working modes based on unsupervised
clustering algorithm, extracting implicit common knowledge by MTL algorithm, and
knowledge reuse based on transfer learning, as described in Figure 3. In the first step,
a large number of historical datum that have a long-time span with current sample are
extracted from the database. In the second step, a clustering algorithm was used to
effectively divide working modes in the historical dataset according to the relationship
among attributes. Next, the MTL paradigm was used to exploit representative knowledge
from multiple working modes. Based on the transfer learning paradigm, experiences
extracted from the historical dataset were retained and utilized to train a fresh model. The
detailed descriptions of each component are introduced below.
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2.2. Clustering Based on the Relationship among Attributes

Due to continuous changes in geological conditions and work patterns, the historical
dataset may contain multiple modes. In order to better extract public knowledge under
different patterns, the first step is to divide the historical dataset into different clusters.
Clustering as a pre-processing algorithm to uncover the underlying patterns and find
natural partitioning within a dataset is widely utilized in engineering data analyses, such
as fault detection, pattern recognition, and risk analysis. Currently, widely used clustering
algorithms such as K-Nearest Neighbor (K-NN) and the fuzzy c-means algorithm (FCM)
are mostly based on the spatial distribution to classify the dataset. However, the spatial
distribution of different categories of TBM operation data is often similar, and conventional
data clustering methods might not partition it effectively. The relationship among attributes
varies considerably under different working and geological conditions, which can be used
to improve clustering performance [32]. Thus, in this paper, we employ the modified FCM
algorithm, namely, SVR-FCM, presented by Shi et al. [30] for TBM operation data clustering,
which is designed under the architecture of FCM, but it partitions the data based on the
relationship among attributes rather than their spatial distribution. The distance Dik is
defined as follows:

Dik = (xobj,k − SVR(x1,k, . . . , xobj−1, xobj+1,k, . . . , xs,k)i)
2 (1)

The clustering objective function modified as follows:

JSVR−FCM =
c

∑
i=1

n

∑
k=1

um
ik(xobj,k − SVR(x1,k, . . . , xobj−1,k, xobj+1,k, . . ., xs,k)i)

2 (2)

The necessary conditions for minimizing (2) result in the following partition matrix:

uik =

 c

∑
t=1

(
(xobj,k − SVR(x1,k, . . . , xobj−1,k, xobj+1,k, . . . , xs,k)i)

2

(xobj,k − SVR(x1,k, . . . , xobj−1,k, xobj+1,k, . . . , xs,k)t)
2

) 1
m−1


−1

(3)

A more detailed description of the algorithm architecture can be seen in [22].

2.3. Extracting Public Knowledge from Historical Dataset

The clustering categories correspond to typical working modes, which are combined
of representative working and geological conditions. It should be noted that the data distri-
bution is distinct but similar in different working modes. To extract the public knowledge
contained in typical working modes, we adopt the paradigm of MTL, which explicitly
exploits commonalities and differences across multiple working modes by learning them
simultaneously rather than individually to improve knowledge extraction ability. MTL
reinforces each task by using the interconnections between tasks, considering both the
relevance and the difference between tasks to enhance the generalization performance.
There has been abundant literature on MTL, showing that learning various related tasks
simultaneously can be advantageous in predictive performance relative to learning these
tasks independently [33,34]. This study adopts the MTL method based on the minimization
of the regularization function similar to LS-SVR, which has been successfully utilized for
single-task learning [35]. The LS-SVR can be formulated as Equation (4), which solves
the regression problem by optimizing the output weight vector, w, and bias term, b, by
minimizing a cost function with constraint, as shown in Equation (5).

y = wT ϕ(x) + b · 1 (4)
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where ϕ(•) denotes a features map.

minJ(w, e) = 1
2 wTw + ρeTe

s.t.y = wT ϕ(x) + b · 1 + e
(5)

e is a vector consisting of slack variables, and the hyper-parameter ρ controls the
relative weight of each term. Herein, the output weight vector of different working modes,
noted as ws, can be divided into the common vector w0, shared by all working modes and
working-mode-specific bias vectors, vs, which can be formulated as follows:

ws = w0 + vs, ∀s ∈ S (6)

We estimate all vs as well as the (common) w0 simultaneously. To this end, we
solve the following optimization problem, which is analogous to the LS-SVR used for
single-task learning:

min
w0,vs ,ξs,i ,ρs,i

{
J(w0, vs, ξs,i, ρs,i) := γ · 1

2

S
∑

s=1

ns
∑

i=1
ξs,i

2 + η · 1
2

S
∑

s=1

ns
∑

i=1
ρs,i

2 + 1
2 ·

λ
S

S
∑

s=1
||vs||2 + 1

2 ||w0||2
}

s.t.φ(xs,i)
T · (ws) + bs = ys,i − ξs,i

φ(xs,i)
T ·w0 + bs0 = ys,i − ρs,i

(7)

The number of tasks is S, which is equal to the number of clustering results. Specifically,
xs,i represents the ith sample of the sth task, λ is the constraint coefficient, γ and η are
penalty coefficient, and ξs,i and ρs,i represent the training error vector of the sth task.
According to the Lagrangian multiplier method, to solve Equation (7) is equivalent to
solving the corresponding Lagrangian problem:

LD = 1
2 ||w0||2 + 1

2 ·
λ
S

S
∑

s=1
||vs||2 + γ · 1

2

S
∑

s=1

ns
∑

i=1
ξs,i

2 + η · 1
2

S
∑

s=1

ns
∑

i=1
ρs,i

2−
S
∑

s=1

ns
∑

i=1
αs,i ×

{
(w0 + vs)

T · φ(xs,i) + bs + ξs,i − ys,i

}
−

S
∑

s=1

ns
∑

i=1
βs,i ×

{
w0

T · φ(xs,i) + bs0 + ρs,i − ys,i
} (8)

where αs,i and βs,i are the ith Lagrangian multiplier for the sth task. Based on the Karush–
Kuhn–Tucker (KKT) conditions, setting the first partial derivatives of LD to zero,

∂LD
∂w0

= 0⇒ w0 =
S
∑

s=1

ns
∑

i=1
(αs,i + βs,i) · φ(xs,i)

∂LD
∂vs

= 0⇒ vs =
S
λ

ns
∑

i=1
αs,i · φ(xs,i), ∀s ∈ S

∂LD
∂bs

= 0⇒
ns
∑

i=1
αs,i = 0, ∀s ∈ S

∂LD
∂bs0

= 0⇒
S
∑

s=1

ns
∑

i=1
βs,i = 0

∂LD
∂ξs,i

= 0⇒ αs,i = γ · ξs,i, ∀s ∈ S
∂LD
∂ρs,i

= 0⇒ βs,i = η · ρs,i, ∀s ∈ S
∂LD
∂αs,i

= 0⇒ (w0 + vs)
T · φ(xs,i) + bs + ξs,i − ys,i = 0, ∀s ∈ S

∂LD
∂βs,i

= 0⇒ w0
T · φ(xs,i) + bs0 + ρs,i − ys,i = 0, ∀s ∈ S

(9)

Eliminating w0, {vi}S
i=1, {ξs,i}

S,ni
s=1,i=1, and {ρs,i}

S,ni
s=1,i=1 results in the solution of

(9), being α∗ = (α∗T1 ,α∗T2 , · · · ,α∗TS )
T and β∗ = (β∗T1 ,β∗T2 , · · · ,β∗TS )

T
, where
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α∗s = (α∗s,1, α∗s,2, · · · , α∗s,ns)
T and β∗s = (β∗s,1, β∗s,2, · · · , β∗s,ns)

T . The working mode-specific
bias vectors can be mathematically formulated as follows:

vs =
S
λ

ns

∑
i=1

α∗s,i · φ(xs,i), ∀s ∈ S (10)

The extracted public knowledge is denoted as the following vector:

w0 =
S

∑
s=1

ns

∑
i=1

(α∗s,i + β∗s,i) · φ(xs,i) (11)

2.4. Dynamic Cutterhead Torque Prediction Based on Transfer Learning

Transfer learning is an emerging framework that aims to provide a paradigm to
utilize previously acquired experience to solve new but similar problems faster and more
effectively [33]. There are some commonalities and associations between transfer learning
and MTL. Both of them aim to improve the performance of learners via knowledge transfer.
Transfer learning has been studied extensively for different applications in recent years,
providing many opportunities for applying data-based methods to assist in design and
analysis of complex engineering systems.

During the excavation process, geological information and operating parameters gen-
erally change continuously, so operation data around the excavation point have more
reference significance for subsequent dynamic cutterhead torque prediction. In addition,
vibration and shock often occur during excavation, and random noise interference in-
evitably exists in the measurement of fresh data, which may have a substantial impact
on the prediction performance. Hence, training a new model by utilizing the knowledge
contained in the historical dataset to reduce the requirement of number of new samples
and alleviate the interference of random noise is always considered advisable. To leverage
experiences extracted from the historical dataset, the output weight vector of the fresh
model, noted as wt, is feasible to minimize the difference with the public vector, w0, that
can be regarded as the public knowledge transferred from the historical dataset. We intend
to train an approximator which has the minimal norm parameter vector and training errors
for available fresh samples, that can be written as,

minL = 1
2 ||wt||2 + 1

2 µ||wt −w0||2 + C
2

mt
∑

j=1
ξ2

j

s.t.φ(xj)
Twt + bt = yj − ξ j

(12)

where wt is the output weight vector over the fresh data, µ denotes the penalty parameter,
C is the regularization parameter, ξ j is the training error, and mt is number of fresh training
sets around the excavation point. According to Lagrangian multiplier method, to solve
Equation (12) is equivalent to solving the corresponding Lagrangian problem:

LD =
1
2
||wt||2 +

1
2

µ||wt −w0||2 +
C
2

mt

∑
j=1

ξ2
j −

mt

∑
j=1

αj(φ(xj)
Twt + bt − yj + ξ j) (13)

where αj is the jth Lagrangian multiplier, and based on the KKT conditions, the problem
can be solved with the Lagrangian multiplier method,

∂LD
∂wt

= 0⇒ wt =
1

1+µ

(
(µw0 +

mt
∑

j=1
αjφ(xj)

)
∂LD
∂ξ j

= 0⇒ αj = Cξ j

∂LD
∂bt

= 0⇒
mt
∑

j=1
αj = 0

∂LD
∂αj

= 0⇒ φ(xj)
T ·wt + bt − yj + ξ j = 0

(14)
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On analysis of Equation (14), it can be concluded that:
1

1+µ

(
φ(xj)

T · µ · w0 +
mt
∑

k=1
αkφ(xk)

T · φ(xj)

)
+ bt − yj +

αj
C = 0

mt
∑

j=1
αj = 0

(15)

Plugging Equations (12) and (13) into Equation (15) can we obtain:

1
1+µ

(
µ

S
∑

s=1

ns
∑

i=1
(αs,i + βs,i) · φ(xs,i)·φ(xj

T) +
mt
∑

k=1
αkφ(xk) · φ(xj

T)

)
+ bt − yj +

αj
C = 0

⇒

 1
1+µ


φ(x1) · φ(x1

T) · · · φ(x1) · φ(xmt
T)

...
. . .

...
φ(xmt ) · φ(x1

T) · · · φ(xmt ) · φ(xmt
T)

+ 1
C




α1
α2

...
αmt

+ bt =



−µ
1+µ ·

S
∑

s=1

ns
∑

i=1
(αs,i + βs,i) · φ(xs,i) · φ(x1

T) + y1

−µ
1+µ ·

S
∑

s=1

ns
∑

i=1
(αs,i + βs,i) · φ(xs,i) · φ(x2

T) + y2

...
−µ

1+µ ·
S
∑

s=1

ns
∑

i=1
(αs,i + βs,i) · φ(xs,i) · φ(xmt

T) + ymt



⇒

 1
1+µ


φ(x1) · φ(x1

T) · · · φ(x1) · φ(xmt
T) 1 + µ

...
. . .

...
...

φ(xmt ) · φ(x1
T) · · · φ(xmt ) · φ(xmt

T) 1 + µ

1 · · · 1 −1−µ
C

+ 1
C




α1
α2

...
αmt
bt

 =



−µ
1+µ ·

S
∑

s=1

ns
∑

i=1
(αs,i + βs,i) · φ(xs,i) · φ(x1

T) + y1

−µ
1+µ ·

S
∑

s=1

ns
∑

i=1
(αs,i + βs,i) · φ(xs,i) · φ(x2

T) + y2

...
−µ

1+µ ·
S
∑

s=1

ns
∑

i=1
(αs,i + βs,i) · φ(xs,i) · φ(xmt

T) + ymt

0



(16)

Let the solution of (16) be α∗t = (α∗1 , α∗2 , · · · , α∗mt)
T and b∗t . In addition, the dynamic

cutterhead torque prediction of fresh data can be mathematically formulated as follows:

ft(x) = φ(x)Tw∗t + b∗t

= µ
1+µ

S
∑

s=1

ns
∑

i=1
(α∗s,i + β∗s,i)φ(xs,i)φ(xT) + 1

1+µ

mt
∑

k=1
α∗k φ(xk)φ(xT) + b∗t

(17)

3. Numerical Experiments

In this section, a collection of real-world operational and status parameters of TBM is
utilized to demonstrate the superiority and applicability of the framework.

3.1. Experimental Settings

The tunnel project studied in this study is located in Shenzhen, China, which is about
2000 m long and 6.4 m in diameter. As described in Figure 4a, from the ground surface
to the tunnel floor, various geological layers, such as clay, sand, and rock, are unevenly
distributed. The tunneling equipment used in this tunnel is shown in Figure 4b, and has
an earth pressure balance shield TBM with 500 T of total mass and 120 knives on its cutter
head. The basic equipment parameters are listed in Table 1. During the tunneling process,
the operational and state data of the TBM were recorded by a PLC, which was further read
by an industrial computer at regular intervals and stored in the database. Thus, the fresh
data in the database were added in batches during the tunneling process. The collected
operation dataset represents the operational information and status parameters along the
length of the tunnel, which contains about 44 attributes, such as cutterhead torque, chamber
pressure, and advance velocity, etc. Please refer to the appendix for a detailed list of these
attributes (see Table A1). In the process of dynamic cutterhead torque prediction, data
come in batches. We selected five sets of sequence data to construct the test datasets,
covering various working and geological conditions. Each collection of data contained
approximately 5000 rows and 44 columns; the first 80% of the dataset were used as training
samples and the last 20% were used as test samples. Each row of data represents the data
of all physical quantities at a certain moment, and each column of data represents the data
of a physical quantity at any moment.
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Table 1. Basic parameters of the TBM used.

Parameters Value Unit

Cutterhead diameter 6680 mm
Maximum torque 8322 kNm

Rated power of drive motor 160 kW
Number of drive motors 8 1

To improve prediction accuracy, in this paper, we first normalized the samples with a
normalization method, which is an essential pre-processing step in the field of machine
learning. It is commonly referred to simply as “normalization,” or sometimes as “feature
scaling,” and can be formulated as:

min−max =
x− Xmin

Xmax − Xmin
(18)

where x is the current value and Xmin and Xmax are the minimum and maximum values of
the entire dataset, respectively. The min–max method rescales values and confines samples
to an interval between 0 and 1.

The operational data modeling was conducted with a personal computer (CPU: Intel
Core i7-10700; RAM: 32 G). The framework was coded by the author with Matlab and set as
follows: the clustering algorithm parameter set refers to the setting of references [30], where
the fuzzification parameter, m, was 2, threshold value, ε, was 10−6, number of clusters
was 4, and maximum iteration was 1000. The radial basis function (RBF) was selected as
a kernel function for LS-SVR. Compared with ordinary LS-SVR models, the framework
proposed in this paper has more hyper-parameters, such as, η, λ, and µ, that determine
the information extracted from historical data and knowledge transferred for constructing
a new model. In this section, we set η = 100, λ = 1, and µ was determined according to
the forecast accuracy of the previous batch, varying with the value of µ as {1, 5, 10, 15}.
Other hyper-parameters were set to the same values with the baseline model LS-SVR, i.e.,
γ = C = 100.

3.2. Experiments and Results

To verify the efficacy and superiority, the performance of TRLS-SVR was compared to
that of existing data-driven methods, such as RF, SVR, Lasso, and deep neural networks,
i.e., long short-term memory (LSTM) networks [22] and online learning methods (i.e.,
online support vector regression (OSVR) [36]). The fitness of these prediction models was
evaluated with four error criterions, i.e., the coefficient of determination (R2), mean absolute
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error (MAE), root mean square error (RMSE), and mean absolute percentage error (MAPE).
These metrics have the following formula.

R2 =
∑n

i=1 (y
′
i − y)2

∑n
i=1 (yi − y)2 (19)

MAE =
1
n

n

∑
i=1
|yi − y′i| (20)

RMSE =

√
1
n

n

∑
i=1

(yi − y′i)
2 (21)

MAPE =
1
n

n

∑
i=1

|yi − y′i|
yi

× 100% (22)

where n is total number of samples, yi is the average of all actual values, and y′i is the
predicted value of yi. The closer R2 is to 1, the better the performance is. The MAE and
RMSE measure the disparity between actual values and predicted values, which reflects
the dispersion of models. The RMSE is more sensitive to large errors than MAE because the
errors are squared, and the large errors are amplified further. MAPE is the ratio between
errors and actual values. It can be considered as a relative error function, and the smaller
the value, the higher the prediction accuracy. These four error criterions can be applied to
evaluate the fitness of these prediction models from various viewpoints.

The evaluation results of the proposed TRLS-SVR and other five data-driven models
on the five test datasets are shown in Tables 2–5. In general, the results show that three
indicators of TRLS-SVR, i.e., MAE, RMSE, and MAPE, are lower than the other five data-
driven models, and the coefficient of determination, R2, is higher than others. The average
value of R2, MAE, RMSE, and MAPE in the five datasets are 0.83, 63.34, 95.11, and 3.61% for
the proposed TRLS-SVR; −3.03, 321.60, 385.72, and 16.38% for RF; −0.391, 199.86, 235.22,
and 10.58% for LSTM; −0.48, 194.75, 236.27, and 10.52% for SVR; −0.146, 160.55, 211.86,
and 8.89% for Lasso; 0.56, 88.97, 148.40, and 5.28% for OSVR, respectively. Hence, the
average MAE of TRLS-SVR is 80.3% less than RF; 68.31% less than LSTM; 67.48% less than
SVR; 60.55% less than Lasso; 28.8% less than OSVR, respectively. In addition, the average
RMSE of TRLS-SVR is 75.34% less than RF; 59.56% less than LSTM; 59.74% less than SVR;
55.11% less than Lasso; 35.91% less than OSVR, respectively. Moreover, the prediction
precision of TRLS-SVR is 77.95% higher than RF; 65.85% higher than LSTM; 65.67% high
than SVR; 59.35% higher than Lasso; 31.61% higher than OSVR, respectively.

Table 2. R2 of different methods in five datasets.

Datasets RF LSTM SVR Lasso OSVR TRLS-SVR

1 0.43 0.68 0.73 0.55 0.58 0.83
2 −9.86 −1.60 0.31 −1.33 0.55 0.85
3 −2.10 −1.21 −3.27 −0.84 0.46 0.85
4 −0.43 0.56 0.46 0.74 0.77 0.85
5 −3.17 −0.39 −0.64 0.15 0.45 0.77

Table 3. MAE of different methods in five datasets.

Datasets RF LSTM SVR Lasso OSVR TRLS-SVR

1 172.49 123.69 116.54 135.93 98.61 81.37
2 493.13 231.81 108.57 213.93 71.23 38.00
3 264.91 218.95 298.31 186.23 77.73 49.12
4 215.99 152.91 163.10 93.97 75.85 58.91
5 461.49 271.95 287.26 172.69 121.41 89.31
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Table 4. RMSE of different methods in five datasets.

Datasets RF LSTM SVR Lasso OSVR TRLS-SVR

1 205.35 153.85 143.10 183.64 176.36 111.59
2 549.17 268.61 138.01 254.49 111.35 65.46
3 309.10 260.87 362.76 238.04 128.90 67.80
4 311.40 173.49 190.99 133.39 124.72 101.36
5 553.55 319.28 346.48 249.76 200.65 129.36

Table 5. MAPE of different methods in five datasets.

Datasets RF LSTM SVR Lasso OSVR TRLS-SVR

1 9.18% 6.53% 6.51% 7.85% 6.31% 4.45%
2 22.19% 10.45% 5.04% 9.69% 3.38% 1.82%
3 15.89% 14.05% 18.18% 11.58% 5.14% 3.09%
4 13.56% 10.53% 10.64% 7.26% 5.78% 4.65%
5 21.09% 11.33% 12.22% 8.05% 5.79% 4.04%

For visual comparison, the real cutterhead torque values and predicted cutterhead
torque values with these models are also provided in Figures 5–9. It can be observed
that the prediction accuracy of existing data-driven models, i.e., RF, LSTM, SVR, and
Lasso, is relatively low, and can only predict the average value and changing trend but
cannot achieve prediction dynamically and accurately. The main reason may lie in that the
cutterhead torque sequence is nonlinear and non-stationary, and it may contain several
different working conditions simultaneously. Therefore, it is not advisable to describe
the cutterhead torque sequence data by a simple or fixed mathematical formula. The in
situ monitoring data are spatio-temporally coupled, and the data close to the excavation
point have more reference significance for subsequent load prediction. Using these fresh
data to update the model parameters dynamically can capture the load data sequence’s
changing trend with the geological parameters and the working parameters. Therefore,
online learning-based methods’ prediction accuracy is higher than traditional statistical
data-driven models. In addition, in spite of online learning-based methods, OSVR has
high prediction accuracy in some samples; its accuracy is still less than TRLS-SVR on the
entire dataset, mainly because there is random noise interference in the measurement of
cutterhead torque data. Only using a small amount of fresh data that are close to the
excavation point to update model parameters will inevitably overfit random noises and
introduce model bias, which leads to performance degradation.
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Figure 8. Comparisons between real and predicted cutterhead torque for dataset 4. (a) Prediction
result of RF. (b) Prediction result of LSTM. (c) Prediction result of SVR. (d) Prediction result of Lasso.
(e) Prediction result of OSVR. (f) Prediction result of TRLS-SVR.
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Figure 9. Comparisons between real and predicted cutterhead torque for dataset 5. (a) Prediction
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(e) Prediction result of OSVR. (f) Prediction result of TRLS-SVR.

The TRLS-SVR can effectively divide different working and geological conditions of
historical data, and learn the cutterhead torque sequence’s changing rule under different
working modes. When the new coming data are disturbed by random noises or the exca-
vation section’s geological conditions, the implicit knowledge contained in historical data
is explicitly transferred to reduce over-fitting of random noise, and to avoid introducing
model bias. As a result, the proposed TRLS-SVR can achieve better prediction performance
than that of existing data-driven methods.

4. Discussion

Compared with those of the baseline data-driven method, LS-SVR, the TRLS-SVR has
more hyper-parameters, for example, η, λ, µ, and the number of fresh training sets, mt.
These hyper-parameters determine the amount of information extracted from historical
data and the proportion of this information in the model update, which may affect the
performance of the algorithm. As mentioned in Section 3.1, regularization parameter µ is
determined according to the prediction accuracy of the previous batch. In this section, we
focus on how the hyper-parameters η, µ, and number of fresh training sets, mt, influence
the prediction accuracy of the TRLS-SVR framework.

4.1. Analysis of the Number of Fresh Training Sizes

In these experiments, we select 10, 20, 50, 100, 200, 300, and 400 of the datum which
are near the excavation point as fresh training sets. The prediction accuracy of the different
number of fresh training sets is compared in Figure 10. It can be seen that when the number
of training sizes, mt, is small, the performance of TRLS-SVR improves faster as the number
of samples increases, and when the number of training size, mt, is relatively high, the
performance decreases as the number of samples increases. When the number of training
sizes, mt, is 50, the proposed framework tends to provide the best prediction performance.
This is because too little training data cannot reduce the interference of noise, which will
lead to over-fitting of the noise and affect the prediction accuracy, while too much training
data will smooth the changing characteristics of the continuous data to obtain average
statistical characteristics and reduce the prediction accuracy.
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4.2. Analysis of Regularization Parameters

We conduct experiments on the TBM dataset to discuss the sensitivity of the two
regularization parameters η and λ. We fix the number of fresh training sets, mt, as 50, hyper-
parameters as C = γ = 100, and regularization parameter µ is determined according to the
prediction accuracy of the previous batch. For the sensitivity analysis of the regularization
parameter, η, we fix λ = 1 and vary the value of η as {10−3, 10−2, 10−1, 1, 10, 100, 200, 500,
1000, 2000}. For the sensitivity analysis of the regularization parameter, λ, we fix η = 100
and vary the value of λ as {10−5, 10−4, 10−3, 10−2, 10−1, 1, 10, 100, 1000}. The prediction
accuracy of different values of regularization parameters are compared in Figures 11 and 12.
In Figure 11, it can be seen that the optimal prediction accuracy by TRLS-SVR is achieved
by setting η = 100 when λ = 1 is fixed. From Figure 12, it can be seen that the optimal
prediction accuracy by TRLS-SVR is achieved by setting the value of λ as a small value. In
addition, the prediction accuracy of TRLS-SVR changes slightly when the value of λ is in
the range of [10−5, 1].
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4.3. Limitations and Recommendations

The heterogeneous in situ data of the TBM include not only numerical data but also
categorical data, such as the geological data. The heterogeneous in situ data have one
special characteristic that is different for the sizes of the geological data and the operation
data, which limits the application of data-driven techniques on them. Thus, in this paper,
we only consider the operational data and ignore the geological data. In the future, to
further improve the prediction accuracy of the framework, it is necessary to integrate
geological data through multi-source heterogeneous data fusion.

5. Conclusions

In this study, a novel hybrid transfer learning framework named TRLS-SVR, that aims
to enhance the accuracy of TBM dynamic cutterhead torque prediction, is proposed. In
the proposed framework, the underlying patterns in historical datasets were effectively
divided according to the relationship among attributes. The idea of MTL was adopted to
exploit commonalities and differences across various working modes by learning them
simultaneously rather than individually, to capture the public knowledge from historical
datasets. In order to cope with the changing geological and working conditions, the idea
of transfer learning was adopted and the newly collected operation data were utilized to
continuously update the parameters of the forecasting model as a supplement. Real-world,
in situ operational and status parameters from a tunnel located in Shenzhen, China, were
utilized to evaluate the efficacy and superiority of the proposed framework. Experimental
results demonstrated that the TRLS-SVR alleviated the shortcoming of traditional statistical
data-driven methods, which can only predict the average value and changing trend of
the cutterhead torque but cannot achieve dynamically and accurately the prediction of
the load. Additionally, compared with the method of an online learning paradigm, which
puts more attention to data closer to the excavation point, the framework has stronger
robustness. This is because the model can use the knowledge contained in historical data to
reduce the impact of random noise and alleviate over-fitting issues. In summary, the major
novelty of this study is to provide a first test of merging MTL and transfer learning for TBM
dynamic cutterhead torque prediction. Though the framework is presented in the context
of dynamic cutterhead torque prediction of TBM, it can be easily extended to the status
monitoring of other engineering systems, such as wind power equipment, automobiles,
etc. In the near future, we plan to further investigate the adaptable adjustment of TBM’s
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operating status based on the proposed framework, which is of great significance to the
operation safety and energy consumption.
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Appendix A

Table A1. List of operating parameters.

Parameter (Unit) Parameter (Unit)

Temperature of oil tank (◦C) Temperature of gear oil (◦C)
Rotation speed of cutterhead(r/min) Cutter power (kw)
Propelling pressure (bar) Propelling pressure of A group (bar)
Propelling pressure of B group (bar) Propelling pressure of C group (bar)
Propelling pressure of D group (bar) Pressure of equipment bridge (bar)
Pressure of articulation system (bar) Pressure of shield tail seal at top right front (bar)
Pressure of shield tail seal at right front (bar) Pressure of shield tail seal at left front (bar)
Pressure of shield tail seal at top right back (bar) Pressure of shield tail seal at right back (bar)
Pressure of shield tail seal at bottom back (bar) Pressure of shield tail seal at left front (bar)
Pressure of shield tail seal at top left front (bar) Pressure of shield tail seal at left back (bar)
Pressure of shield tail seal at top left back (bar) Pressure of shield tail seal at right back (bar)
Rolling angle (◦) Pressure of screw pump at back (bar)
Pressure of chamber at top left (bar) Pressure of chamber at bottom left (bar)
Pressure of chamber at bottom right (bar) Bentonite pressure (bar)
Temperature of screw conveyor (◦C) Pitch angle (◦)
Thrust of cutterhead (kN) Advance velocity (mm/min)
Torque of cutterhead (kNm) Displacement of A group of thrust cylinders (mm)
Displacement of B group of thrust cylinders (mm) Displacement of C group of thrust cylinders (mm)
Displacement of D group of thrust cylinders (mm) Displacement of articulated system at top right (mm)
Displacement of articulated system at left (mm) Displacement of articulated system at top left (mm)
Displacement of articulated system at right (mm) Bentonite pressure of shield shell (bar)
Pressure of screw conveyor at front (bar) Pressure of screw pump (bar)
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