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Abstract: Estimating the quantity of seepage through the foundation and body of a dam using proper
health and safety monitoring is critical to the effective management of disaster risk in a reservoir
downstream of the dam. In this study, a deep learning model was constructed to predict the extent
of seepage through Pakistan’s Tarbela dam, the world’s second largest clay and rock dam. The
dataset included hydro-climatological, geophysical, and engineering characteristics for peak-to-peak
water inflows into the dam from 2014 to 2020. In addition, the data are time series, recurring neural
networks (RNN), and long short-term memory (LSTM) as time series algorithms. The RNN–LSTM
model has an average mean square error of 0.12, and a model performance of 0.9451, with minimal
losses and high accuracy, resulting in the best-predicted dam seepage result. Damage was projected
using a deep learning system that addressed the limitations of the model, the difficulties of calculating
human activity schedules, and the need for a different set of input data to make good predictions.

Keywords: dam seepage; deep learning; recurrent neural network; LSTM; prediction; time series data

1. Introduction

The emerging artificial intelligence technology in hydrological science has improved
the scientific problem in the last decades; mathematical models and computers are basic
instruments for scientists, engineers, and planners involved in water resources and hy-
drological operations. Artificial intelligence models are now used in river water outflow,
dam water inflow, and dam seepage problems. Global warming and climate change have
increased the complexity of the hydrological cycle, resulting in greater unpredictability
in water reservoirs all across the world [1]. The increase in Asia’s population will have
an immediate impact on water, food, and energy. Global warming, climate changes, rise
in population, floods, and droughts have a direct effect on the water resources manage-
ment system. A key water resource management structure is the dam, which has multiple
purposes, including direction for the stability of irrigation system, power generation, and
water distribution for communities’ developments. In the northern region of Pakistan,
glacier melting and rainfall concentration increases in summer, which affects the stability
and safety of the world’s 2nd largest earth and rockfill dam (Tarbela) downstream, in terms
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of an increase in the seepage problem. Seepage is the slow percolation of the water from
the body of the dam or foundation that affects the soil properties, and threatens the stability
and safety of the dam. The 30–40% of dam failure caused by seepage is highlighted in
the earth-fill dam. Controlled seepage is good for the health of the dam, but uncontrolled
seepage may cause dam failure, which affects the local communities and economies [2].
For this purpose, there is a need for a method that can effectively predict the amount
of seepage from a multi-purpose dam, using artificial intelligence. The scarcity of water
resources is a prominent issue restricting human development, but artificial intelligent
plays an important role in managing this problem in the near future [3].

Artificial intelligence (AI) is a rapidly expanding field that uses soft computing ap-
proaches to simulate seepage phenomena, and detect or predict trends of seepage if they
exist. Since 1980, the artificial neural network (ANN) has been a hotspot of study across many
fields [4]. Many researchers have used various approaches for dam seepage modeling in artifi-
cial intelligence, machine learning, and deep learning, such as artificial neural network (ANN),
logistic regression (LR), multiple linear regression (MLR), support vector machine (SVM),
adaptive neuro-fuzzy inference system (ANFIS), and the Gaussian process (GP) model [5–9].
The BPNN–GA dam seepage prediction model was developed by Zhang et al. [10], who used
a genetic algorithm (GA) to optimize the weights and thresholds of a backpropagation neural
network (BPNN). According to Rehamnia et al. [11], the daily seepage flow of an embankment
dam in Algeria was computed using an extended Kalman filter, in conjunction with a feed-
forward artificial neural network that included MLP. Traditional machine learning methods
interpret natural raw data without needing any changes to internal data [12]. Deep learning,
used for time series data, sparked a lot of interest in hydrological time series forecasting
interpretation in recent years [13]. For early prediction, hydrological issues are modeled using
time series datasets [14]. Salmasi and Nouri [15], for example, investigate the influence of
seepage on an upstream semi-impervious blanket with the hydraulic condition, by calculating
the permeability coefficient, thickness, and length using a numerical model. The findings
show that installing an impermeable covering at the right length and thickness upstream of
an earthen dam decreases seepage, and improves dam stability. The superposition of reservoir
water level and rainfall is thought to be the primary cause of dam body seepage. According
to Xu et al. [16], the seepage volume and reservoir water level are positively and significantly
connected. It is difficult to forecast how a dam’s seepage will develop since it is usually
complex and unpredictable. The influence of several factors on the reservoir’s water level
may be used to predict seepage levels [17].

Deep learning is a type of learning algorithm that uses a large number of layers and
a large number of learning parameters to model nonlinear data and predict time series
issues accurately for water resources problems. For time series data, such as hydrological
prediction, RNNs are a particularly well-suited neural network architecture [18,19]. The
literature shows a limited amount of research conducted on large time series data in dam
seepage problems. Apaydin et al. [20] use RNN to predict water inflow in the Ermenek dam
reservoir in Turkey, using daily observation flow data from 2012 to 2018. RNN outperforms
ANN in terms of accuracy, with 90% in training and 87% in testing, and 86% in training
and 87% in testing, respectively. Similarly, using 15-year dam inflow and meteorological
data, Lee and Kim [21] use a combined sequence-by-sequence machine learning (ML) and
bidirectional LSTM technique to accurately anticipate the two-day influx rate at the Soyang
River dam in South Korea. For dam seepage prediction, no evidence has been found for
using a combination of RNN and LSTM. On the other hand, RNN and LSTM are preferable
solutions for dam seepage prediction when the data are time series.

The most significant research on the time series dataset of two dams was conducted
by Apaydin, Feizi, Sattari, Colak, Shamshirband, and Chau [20]. To evaluate water inflow
time series data from 2012 to 2018 at the Earmark hydroelectric dam in Turkey, Ouled,
Sghaier, et al. [22] use deep learning model recurrent neural network architecture, including
simple RNN, LSTM, Bi-LSTM, and GRU. The study’s major purpose was compare and
assess model correctness. As a geoscientist, seepage is a key concern for dam safety and
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stability. The dam operation monitoring section forecasts seepage using dam vernier gauge
data from seepage galleries in a dam. Our technical solution to the dam seepage issue differs
from the one described above. It focused on enhancing hydropower’s electric efficiency,
rather than that of a thermal power plant, which has an environmental impact. For this,
they used water inflow data. In contrast, we used 49 variables of observable information
data for dam seepage prediction, using deep learning to concentrate on the structural safety
and stability of dams. Lee and Kim [21] look into the water input at the Soyang dam in
South Korea, which is affected by global warming and climate change. The study looks
at the impact of water influx on future floods, droughts, and power outages in the Seoul
metropolitan area. To estimate the inflow rate, they use a sequence-to-sequence mechanism
combined with a bidirectional long short-term memory (LSTM), using a 15-year time series
dataset. Their primary focus is on accuracy and forecasting for the next two days. While
these two authors employ water input for power production and global climate change,
our research focuses on dam seepage issues, structural stability and safety triggered by
global climatic changes, and future planning improvements for dam seepage concerns.

To address this issue, water resource management authorities must construct dam
infrastructure that allows water to be stored for a long period. Dam infrastructure is connected
to socio-economic development, which is impacted by global warming and climate change.
There have been almost 1600 dam collapses described in the literature, with earth-fill dams
accounting for 1065 of them. Earth-fill dam collapse may result in overtopping, leaking, and
seepage from the foundation and body of the dam [23]. The problem of seepage in earth-fill
dams affects 30–40% of all instances [24]. Soil properties and climatic elements such as soil
permeability, soil compaction, temperature, precipitation, and evaporation, among others,
influence the point of seepage failure. Dam officials monitor daily observations to prevent the
possibility of seepage failure, since seepage failure has a direct impact on dam stability and
safety [25]. The observation is a time series dataset, combined with artificial intelligence and
deep learning, to forecast dam seepage and provide a mechanism to deal with the possibility
of disaster before it happens. In observations in the above discussed literature, it is concluded
that there is a research gap for seepage problems with respect to RNN and LSTM. There is no
use of the RNN and LSTM combined algorithms to monitor the dam seepage.

RNN–LSTM deep learning is used to evaluate the model’s accuracy and performance in
predicting seepage from a dam. This study is divided into four sections: (1) Emphasize the
importance of artificial intelligence and deep learning in solving the seepage from the earth-fill
dam, (2) Discuss the use of RNN–LSTM for time series prediction to address the problem,
(3) Exhibit data preparation and experiment outcomes, and (4) Discuss the study’s findings.

2. Materials and Methods
2.1. Description of Case Study

The Tarbela Dam is one of the largest earth-fill dams in the world [26]. The dam is
located on the Indus River, some 130 km north of Islamabad, in Khyber Pakhtunkhwa (KP)
(Figure 1). Under the supervision of Pakistan’s Water and Power Development Authority
(WAPDA), the dam was constructed in 1970 and completed in 1974. The dam’s construction
purpose was to improve Pakistan’s low-cost hydroelectric power, flood control, and agri-
cultural water storage system [27,28]. This dam is a vital national resource, providing 52%
of Pakistan’s total irrigation and 30% of the country’s power needs [29,30]. The reservoir
behind the dam is more than 100 km long and encompasses 260 square kilometers when
full. The reservoir’s initial live storage capacity was 11.9 billion m3, but due to floods and
erosion during the previous 35 years of operation, it has reduced to 6.8 billion m3. With
two spillways carved into the left bank and pouring into a lateral valley, the Tarbela dam
is 2743 m long and 143 m high above the riverbed. The reservoir’s main characteristics
include a catchment area of 169,600 km2, an annual discharge at Tarbela of 64 MAF, a lake
area of 259 km2, a design live storage of 9680 MAF, existing live storage of 6849 MAF,
a maximum depth of 137 m, a maximum elevation of 472.44 m, a minimum operating
elevation of 420.01 m, a crest elevation of 477 m, a crest elevation of 2743 m, and a maximum
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height above the riverbed of 147.82. The dam has two spillways, one of which serves as
a service spillway and has seven gates, while the other has nine gates and serves as an
auxiliary spillway. The World Bank and the Asian Infrastructure Investment Bank are
supporting the 5th extension project, which will increase the Tarbela dam hydroelectric
facility’s installed capacity from 4888 MW to 6298 MW.
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Figure 1. The study area of earth-fill Tarbela dam of Pakistan. (a). Tarbela dam main embankment
Google Earth overview. (b). Origin and overview of Indus River, which inflows into dam reservoir.

2.2. Data Description

Real-time monitoring data is gathered on a daily basis, to ensure the smooth func-
tioning of the Tarbela dam in Pakistan. Daily real-time sensor information of the reservoir
water level is acquired in feet, water input from Indus River in Cusic feet per second, water
outflow from the dam Cusic feet per second, and barrage level in feet; piezometers gauge
measures the pressure, and seepage data is taken from audits galleries; maximum tempera-
ture, minimum temperature, and various other information from installed dam devices
were gathered from the 2014 to 2020 summer seasons, as shown in Table 1. This data can
also be used in other scientific applications such as civil engineering for structural stability
and engineering design rehabilitation; geotechnical engineering for seepage treatment with
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relatively stable dam structure reforms; environmental hazard assessment of risk of disaster
in case of dam failure; and artificial intelligence application, which can help dam manage-
ment authorities make decisions and design policies. For LSTM–RNN model mapping and
training, a time series dataset with 49 variables was used. The dataset has 49 features with
a one-day timestamp. The window used for training purposes was 10 days’ data, which
means 10 days’ history was used for prediction. The input sequence had a dimension
of (49 × 10), where 49 feature and 10 days’ data was used for extracting contexts. As an
output label, five seepage values were employed, and these seepage values were averaged
to generate single seepage values. The data collection points of the other parameters are
shown in Figure 2d, and the seepage data collection point is shown in Figure 2a–c. Figure 3
shows the research for this algorithmic study for dam seepage prediction.
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Figure 2. (a) overview of Tarbela dam; (b) the seepage location of left and right abutment; (c) the seepage
location of auxiliary, service spillway, and seepage at auxiliary dam foundation; (d) the cross-section of
Tarbela dam with audit points; (e) the audit for seepage water in Tarbela dam; and (f) the vernier gauge
instrument used for seepage measurement in the Tarbela dam.
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Table 1. The input data for deep learning models.

Input Variables for Network Target Variables

Reservoir level (ft) MB/P8-3 P4-67 gauge (P)

Seepage

Barrage level In (ft) MB/T2-6 P6-77

P6-gauge P2-57 P6-78

Actual inflow P2-62 Ext gauge (P)

Actual outflow P2-67 P8-1

Skardu temp min P2-74 P8-2

Skardu temp max MC-1 (house) P8-6

P2-55 MD-1 (house) BB-223

P4-56 gauge(P) P2-61 B-661

P4-54 gauge(P) MA/P2-1 B-662

P4-65 gauge(P) MB/P2-1 B-686

P4-67 MD/P2-3 B-764

MB-1 (house) ME/P2-4 B-593

MB-1 (house left) P4-51 gauge (P) B-756-1

MB-1 (house right) DFSD gauge B-756-2

MB-P8/62 BB-203 (TIC)

MB/P8-1 (New) BB-204 (TIC)

2.3. Recurrent Neural Network

A wide range of water resource challenges were solved using recurrent neural network
(RNN) approaches [31]. RNNs are built to operate with arbitrary input data throughout
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extended sequences, performing the same job for each element in the series and depending
on the output calculation from the previous calculation [29,32]. The model application,
many-to-one model, many-to-many model, and other aspects all influence RNN design.
The problem of the statement, which is dependent on phenomena, determines the eventual
structure. Given all of the former seepage values as input, we used a many-to-one one-step
prediction model to estimate the current seepage value.

RNN is a fully convolutional model with interconnections that uses internal memory
to simulate temporal interactions between inputs with unknown durations and outputs.
Figure 4 show the basic structure of RNN. The distinction between RNNs and loops is
that RNNs do not have a direct information flow between neurons. As a result, until the
sequential time series is completed, the influence of information for a variable may be
maintained for a specific period. The output of each neuron is coded by the recurrent
connections, whereas the memory of the RNN is coded by the recurrent connections [33].
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Figure 4. A typical RNN structure in the unrolled (network of entire sequence) form of a completely
linked network [34].

The input time is denoted by the letter t. The hidden state at time step t in Figure 4 is
represented by the black square, which receives input from other neurons at a previous
time step. The network’s “memory” is calculated using the previous concealed state and
the current step’s input. Equation (1) gives further details regarding what happened in
each of the prior stages.

St = CMt + VSt−1 (1)

For example, a vector of probabilities over the time series may be used to forecast the
next sequence in the time series. Typically, the function is a nonlinear activation function,
such as tanh. RNNs have many parameters in common (C, D, V). Figure 4 depicts the same
task conducted with various inputs in each phase.

2.4. Long Short-Term Memory Network (LSTM)

The RNN handles time series data correctly. However, there is still a significant
gradient vanishing issue with the training log time lag for time series prediction, particularly
for hydrological time series data [35,36]. As a result, a LSTM–RNN model was employed
to forecast dam seepage in this study to overcome the limitations of RNN. The LSTM–RNN
model was presented by Hochreiter and Schmidhuber as a state-of-the-art technique [37].
An input gate, a neuron with a self-recurrent connection (a link to itself), a forget gate, and
an output gate are the four basic parts of an LSTM, much as an RNN, as shown below
(Figure 5). One of the three nonlinear gates in the block is the summing unit, which governs
the inside–outside movement of information via activation cells using multiplications.
The memory cell’s self-recurrent connection is multiplied by the gates of the input and
output cells. The forget gate, on the other hand, doubles the prior state (the memory cell’s
self-recurrent connection), and uses the activation function to enable it to forget or recall its
previous state [38].
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The gate activation function (ft) is typically represented as a logistic ReLU, as gate
activation is between 0 and 1 (gate close and open). In contrast, the output activation func-
tion (‘Ot’) is typically represented as a tanh or logistic sigmoid to overcome the vanishing
gradient problem, with a second derivative that sustains for a long period before going to 0.
Furthermore, based on the various issue formulations, there is an amplification relationship
between the two parties. Figure 5 shows the connection between the cell and the gates,
which is made up of weighted weights (the ‘peephole’ connection), with the remainder
of the connection being unweighted (or equivalently, a fixed weight). The output of the
memory block is connected to the remainder of the network through the use of output
gate multiplication. The model input is denoted as x = (Ct−1), and the output sequence
is denoted as y = (ht−1) where t is the prediction period, and t′ is the next time step
prediction. In the case of seepage prediction, x is considered historical input data, and y is
the single lag period series. The purpose of LSTM–RNN is to predict dam seepage in the
next time step using previous data, and it is computed using the equation:

input gate it = σ(Wixxi + Wih.ht−1 + Wic.ct−1 + bc) (2)

f orget gate ft = σ
(

W f x.xt + W f h.ht−1 + W f c.ct−1 + b f

)
(3)

Cell state ct = fi.ct−1 + it.g(Wcx.xt + Wch.ht−1 + bc) (4)

output gate ot = σ(Wox.xt + Woh.ht−1 + Woc.ct + b◦) (5)

hidden gate ht = ot.h(ct) (6)

output layer yt = Wyh.ht + by (7)

where σ denotes the ReLU activation function.
The memory block is made up of three gates: an input gate, an output gate, and a

forget gate. The outputs of the three gates are shown in this way: it, ot, ft. For each cell or
memory block, the activation vectors are indicated as ct and ht. The weight matrices W,
and the bias vectors b, are used to build connections between the input layer, the output
layer, and the memory block.

2.5. Swish Activation Function

Kahraman [39] developed the Swish function, which is as computationally efficient as
ReLU, but outperforms it in more complicated models. The following is the definition of
this function:

f (x) = x∗ sigmoid(x)
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Swish has values ranging from negative infinity to infinity, which helps during the
model optimization phase, and is one of the reasons why Swish is better than ReLU. The
swish activation function is used to activate the net input in mathematical form:

f (x) = x∗
(

1
1 + e−x

)
Looking into different functions, such as tanh and sigmoid, both are bounded above

and below. The ReLU function is bounded above, while the swish function is not bounded,
performs well in case of near-zero cost, and its response of derivative is better for others.
Similarly, ReLU has zero with negative net input to a neuron.

2.6. Experimental Setup

This experiment used the RNN–LSTM deep learning model to forecast dam seepage.
The data were time series, and for this analysis, the data from chosen days in every month
from the years 2014 to 2020 were used. MATLAB 2021a, with Machine toolbox deep neural
network designer, was used in this experiment. The experimental analysis was subdivided
into several steps: first, data normalization; second, data division for training 70%, testing
15%, and validation 15%; third, data mapping of training, testing, and validation using a
deep neural network designer tool (MATLAB deep learning toolbox 2021a); and fourth,
model error and accuracy evaluation with dam seepage prediction.

2.7. Network Architecture Design

The RNN–LSTM network design had three LSTM layers, each with 256, 512, and
1024 neurons, with a swish activation function, as shown in Figure 6. The swish function is
a sigmoid function variation that is represented mathematically as:

f (x) = x× 1
(1 + e−x)

The sequence input layer is where sequence data was imported into the network. In
time series and sequence data, an LSTM layer learns long-term correlations between time
steps. The layer inferred correlations between the values in the input sequence through
contextual interactions between the input and output layers, increasing gradient flow over
long training sequences. For regression, a fully connected layer multiplied the input by
a weight matrix, while inserting a bias vector and an output layer. A regression layer
calculated the half mean squared error loss for regression tasks.
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2.8. Model Performance Evaluation

The mean square error is a performance metric that calculates the difference between
observed and expected values. The total of squared errors of all cases under observation is
the mean square error.

The historical observation of seepage data was compared to the computed seepage
from RNN–LSTM in this research. The value of this accuracy in the network was de-
termined by the cost function, which minimized the squared error. The training was
performed using 512 sample batches. Using the observed and predicted dam seepage
values officially defined in the below equation, the cost was computed as the MSE of each
repeated step.

MSE =
1
n

m

∑
i=1

(
y(i) − ŷ(i)

)2

In above equation, y(i) is actual, ŷ(i) is the predicted value for ith observation in batch,
and n denotes the observations numbers in the minibatch. The last layer output of the
network at the final time step was linked to a dense layer with a single output neuron.
Between the layers, a dropout equal to 10% was used. Fully connected layers had 200 and
150 neurons. The ReLU activation function was applied for the fully connected layers.
The main advantage of using ReLU is that, for all inputs greater than 0, there is a fixed
derivative. This constant derivative speeds up network learning.

3. Result and Discussion

The RNN–LSTM methods accurately predict dam seepage, and make a direct compar-
ison between the amount of seepage observed and the amount predicted. The Tarbela dam
in Pakistan was used as a case study site in this experiment. The scenario performance
was evaluated using the MSE, MAE, and MAPE values when comparing observed data
and predicted values during the validation or testing process. The size of the training
dataset varies, depending on the model being employed. The 2014–2018 data was used for
training purposes, while the 2019 data was used for testing, and the 2020 data was used
for validation purposes. According to this study, using RNN–LSTM methods to model
the daily seepage time series yielded a significant improvement in prediction performance
over traditional RNN.

3.1. Earhfill Dam Seepage Model Accuracy

The model is trained using a training set of 4900 value training examples, distributed
across 10 time stamps. The training settings are 200 epochs with 512 batch sizes, resulting in
10 iterations for each epoch. The model progressively converges as the number of iterations
rises, and there is no noticeable difference between the findings of 300 and 500 epochs. As
a result, it is determined that a limit of 500 epochs is sufficient. The number of neurons in
the hidden layers is another factor impacting model accuracy. A dropout approach with a
10% dropout, which deactivates multiple neurons, was used to overcome this issue.

The goal of this research was to develop a many-to-one RNN–LSTM model. The model
was developed in MATLAB, and the dataset was separated into three sections: training,
validation, and testing. For model error, the appropriate mapping of the dataset was
investigated. For training based on MSE of the whole dataset and minibatch MSE, there are
two sorts of errors to consider. The overall error is determined on the whole dataset, while
the minibatch error is calculated on each batch. Figure 7 depicts the MSE estimated for the
training process at a batch level, as well as the MSE calculated for all training samples. The
MSE for training decreases for both overall and batch level error throughout the training
process, and eliminates overfitting when validation data confirm the training process, as
shown in Figures 7 and 8. During training, early stopping conditions were used to prevent
the model from overfitting. After 200 epochs, the training was stopped, since the training
MSE improved, while the validation MSE increased after 180 epochs and 3 validation
tests failed.
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Table 2 below shows the accuracy (MSE, R) of the deep learning models prediction
of seepage from the earth-fill Tarbela dam. The result from the RNN–LSTM model shows
that LSTM has the highest accuracy during model evaluation, with an MSE of 0.124,
while R is 0.945. Recently, in hydrological stream inflow, different researchers report the
good applicability of RNN–LSTM, e.g., J. Hong et al. use a combined machine learning
model for dam inflow in South Korea, using the input variables of solar radiation, wind
speed, humidity, temperature, precipitation; and water inflow as an output variable. The
RNN–LSTM has an accuracy of NSE 0.429, MAE 26.332 m3/s, and R 0.675 [40]. When
compared with this RNN–LSTM dam seepage prediction model, this model performed
well in model evaluation. In another study, J. Hong et al. (2021) use the combined machine
learning algorithm for the discharge prediction of a multipurpose dam in South Korea,
with the input variables of inflow, precipitation, discharge, and the output variable of
discharge prediction. In this study, RNN–LSTM was also used with other machine learning
algorithms. The result shows that MAE is 10.024 m3/s, R is 0.89, and when compared with
our model it performs well [41]. It is observed that J. Hong et al. (2021) use seven input
variables in the first study, and three input variables in the second study. In our model,
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there are 49 input variables, including maximum information and the data values from
2014–2020, which increases the performance of our model as compared to above discussed
model. From the above comparison, it is concluded that our model performance is as good
as the J. Hong et al. (2021) models used for dam inflow and discharge study in South Korea.
Although it is a different study conducted for hydrological time series, these two are near
to our scope of study.

Table 2. Test data results of RNN–LSTM model.

Test Data Samples Mean Squared Error MSE Correlation Coefficient

479 0.1249 0.9451

Artificial intelligence, machine learning, and deep learning are the emerging technolo-
gies from the last decade, especially in solving the dam seepage problem. V. Nourani et al.
(2012) integrated the ANN model with the earth-fill dam, using upstream and downstream
water level use for a developed comparison between observed and computed water levels,
using feed-forward backpropagation (FFBP), radial basis function (RBF), and ANN. The
result shows good agreements between computing and observing reservoir water heads at
different piezometers, with a validation determination coefficient higher than 0.79 in single
ANN, and 0.87 and 0.67 in FFBP and RBF integrated modeling, respectively. The result of
the ANN is satisfactory when compared to FFBP and RBF [42]. Similarly, S. Emami et al.
(2019) used RBF and GFF to analyze the piezometer data and water level difference of the
dam. The result shows good agreement with the model, and accuracy measurements R2

and RMSE were 0.81 and 33.12, respectively. Similarly, other studies were conducted in
2019 and 2020, but all the studies are related to artificial neural networks. This is the first
time that a deep learning time series dataset study was conducted in Pakistan for Tarbela
dam seepage using the RNN-LSTM model. All the previous studies show normal results,
but our study has a good performance when compared to the previous studies.

3.2. Earthfill Dam Seepage Prediction Model Result

The earth-fill dam seepage problem is a critical problem throughout the world, and
the last decade of integration of artificial intelligence into water resources management
and dams plays an important role in terms of the safety and stability of dams. For this
purpose, an earth-fill dam in Pakistan was studied using the RNN–LSTM technique to
predict the dam seepage. A total of 49 variables were used for the model mapping for
this study. The model was validated using 479 test observations, spanning 479 days of
data. In Figure 9, the real and projected time series for seepage are shown. The networks
produce larger inaccuracies in the peaks in the actual time series. This inaccuracy is due to
the previous observation’s window size being too small to estimate the next seepage value
using the model. This leads to the identification that if the ideal window size is chosen,
the network performs effectively. This occurs even though the dam seepage abundance
has multiple low values, allowing the model to be trained properly and effectively during
the training stage. The difference between the minimum and maximum seepage values
is significant, according to the data, and the validity of these values is tested over the
research period, using hydro-climatological parameters in the area. The maximum rainfall
is a substantial quantity during times when peak dam seepage is detected, indicating
the accuracy of peak water inflow values. However, of the approaches used, the LSTM
network outperforms the others and properly represents seepage. As previously stated,
the network’s greatest strength is its ability to learn long-term dependencies, and the forget
gate allows the network to maintain or forget the required amount of past knowledge,
which helps in modeling improvement.
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Figure 9 shows the actual and predicted seepage, which is the peak session data for
two years, from August 2019 to October 2020, in the Tarbela dam of Pakistan. The dam is
at its maximum reservoir level at that time due to the summer season and rapid glacier
melting, along with monsoon precipitation. The diagram shows data points of days on
the x-axis, from 0 to 500 days. Similarly, on the y-axis, seepage is scaled. The peak level
seepage is predicted at 5 to 6.5, which is the peak session seepage, and it is observed that
actual and predicted seepage in that time show good relation to each other. The overall
seepage trend is the same, but little fluctuation is observed between points 150 and 300 on
the graph, which is due to dry weather and more outflow from the dam, decreasing the
seepage from the body of the dam in terms of reservoir level pressure. Overall, the model
performance is good for comparing the observed seepage vs. predicted seepage.

Support vector machine learning is a supervised algorithm that is used for classifi-
cation and regression studies. As our proposed model is based on regression, the SVM
regression model is used for comparison for this research. To compare the proposed model
with state-of-the-art techniques, the support vector machine model was selected and trained
on the same data and tested with test data. SVM is a soft computing technique that maxi-
mizes the margin across the decision boundary. Mean square error (MSE), mean absolute
error (MAE), and mean absolute percentage error (MAPE) are used to compare the models
for test data. The test results are presented in Table 3. The proposed network’s LSTM layer
is replaced with a gated recurrent unit (GRU), and the network is trained using the same
data. Table 3 summarizes the test results for GRU, SVM, and the suggested model. The
findings demonstrate that the suggested approach outperforms previous RNN algorithms,
with the Bi-LSTM being significantly closer competition. However, the Bi-LSTM is more
complicated than the LSTM.

Table 3. Comparison of model’s performance evaluated.

Sr. No. Technique MSE MAE MAPE

1. SVM regression 0.9124 0.1897 4.3245
2. GRU 0.7055 0.5866 8.2234
3. Bi-LSTM 0.5136 0.1064 2.8271
4. RNN–LSTM (proposed method) 0.5603 0.0796 3.1469

The overall experiment and comparison with SVM, Bi-LSTM, and GRU results show
that the RNN–LSTM performance is good for the prediction of dam seepage, for a time
series dataset as compared to SVM, Bi-LSTM and GRU.
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4. Conclusions

In this study, deep learning algorithm models were used to predict the amount of dam
seepage in the Tarbela dam, built on the Indus River of Pakistan, and model performance
was evaluated. Deep learning techniques were used to compensate for the shortcomings of
dam monitoring operations, such as data collection of different operations in dam schedules,
human decision, and the uncertainty due to human activities.

The goal of this research was to explore whether a new RNN–LSTM approach could
forecast dam seepage. For model construction and training, daily data of real-time observed
information from the instruments from 2014 to 2020 was used as a case study. The model’s
performance was assessed using the standard statistical performance assessment measure-
ment MSE. The RNN capacity of LSTMs to forget, remember, and update information
made it possible to develop time series models using it. According to the findings of this
study, the RNN–LSTM approach may be used to model dam seepage prediction at the
earth-fill Tarbela dam and provide good results. RNN–LSTM is capable of analyzing, and
forecasting time series with unknown time gaps between critical events. It includes search-
ing for patterns that develop through time, and is based on both present and past values of
observable data. The authors recommend employing RNN–LSTM approaches to forecast
dam seepage, using a time series dataset, in order to aid water resources management
decision making and policymaking, and for improved monitoring of seepage losses at any
dam around the globe using AI-based models. The selection of window size is one of the
challenges with such time series prediction. The window size in this study was 10, and the
model was predicted based on the prior 10 days’ data.

In light of global warming and climate change, water resources management should
be a research priority. This should be accomplished by creating a database of all dam
variables from the entire hydrological cycle, via dam site data collections and applying
various algorithms to improve dam problems. This work recommends the performance of
such a model can be improved for dam seepage prediction problems for time series datasets
by adopting several stack layers (multiple hidden LSTM layers), GRU (gated recurrent
unit), and bi-directional LSTM, which would be the scope of future work.
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