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Abstract: The number of microgrids within a smart distribution grid can be raised in the future.
Microgrid-based distribution network reconfiguration is analyzed in this research by taking demand
response programs and power-sharing into account to optimize costs and reduce power losses.
The suggested method determined the ideal distribution network configuration to fulfil the best
scheduling goals. The ideal way of interconnecting switches between microgrids and the main grid
was also identified. For each hour of operation, the ideal topology of microgrid-based distribution
networks was determined using optimal power flow. The results were produced with and without
the use of a demand response program and power-sharing in each microgrid. Different load profiles,
such as residential, industrial, commercial, and academic, were taken into account and modified
using appropriate demand response programs and power-sharing using the Artificial Bee Colony
algorithm. Various scenarios were explored independently to suit the diverse aims considered by
the distribution network operator for improved observation. The ABC optimization in this research
attempted to reduce the system’s total operation costs and power losses through efficient networked
microgrid reconfiguration. The results of optimal microgrid topology revealed the effects of power-
sharing and demand response (TOU) programs. The results obtained in the proposed idea shows
that costs were reduced by 8.3% and power losses were reduced by 4%. The IEEE 33-bus test system
was used to demonstrate the effectiveness of the proposed approach.

Keywords: microgrid; demand response; power-sharing; optimization; ABC; smart grid

1. Introduction

A microgrid is an excellent way to integrate distributed generation. Uncertain re-
newable DG output and load demands can hinder energy management in microgrids.
Price-based demand response can adapt loads to renewables [1]. Recent efforts to stabilize
renewable energy microgrids using storage and demand response have been discussed
in [2,3], who proposed a plan to reduce the uncertainty of the renewable energy sources
and demand response to minimize the cost of the system. The impact of demand response
both on grid-connected and islanded microgrids was investigated in [4]. Energy sharing
based on demand response in microgrids is an important factor for meeting load demand
at a low cost [5]. Demand response affects the system’s price in domestic, commercial, and
industrial settings [6]. Price-based demand response for both flexible and non-flexible load,
and proper utilization of renewable energy resources use a PSO optimization method [7].
Cost optimization for large-scale plug-in electric vehicles and renewable energy resources
in microgrids was investigated in [8]. In [9], a heuristic approach was used for energy
management systems in microgrids.

Energies 2022, 15, 3274. https://doi.org/10.3390/en15093274 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en15093274
https://doi.org/10.3390/en15093274
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0001-8917-9278
https://orcid.org/0000-0003-4305-0908
https://orcid.org/0000-0001-9583-3029
https://doi.org/10.3390/en15093274
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en15093274?type=check_update&version=2


Energies 2022, 15, 3274 2 of 22

Various factors regarding the economic operations of microgrids, such as environmen-
tal factors, distributed generation, demand response, and the stability of microgrids play
an important role in demand-side management [10]. The low-voltage network issue is
solved by using end-user flexibility [11]. The Harris Hawks optimization (HHO) algorithm
is used for the reconfiguration problem of current distribution networks (DN). The goal
of reconfiguration is to reduce total power losses while maintaining a better DN voltage
profile [12]. In [13], the Water Cycle Algorithm (WCA) was utilized to find a near-optimal
solution for network reconfiguration, as well as DG scale and placement. Furthermore,
the power factor of DG is designed to minimize power losses. An optimization model for
a microgrid operating in day-ahead market operations was considered here, taking the
uncertainties of distributed renewable energy generation, electrical load, and day-ahead
market prices into account. The results show that implementing demand responses reduces
the microgrid’s operating costs. Demand response programs can shift the peak load from
high- to low-price periods, reducing peak valley differences and stabilizing load curves [14].
In [15], the author established an optimal energy dispatch strategy for grid-connected and
standalone microgrids with photovoltaic arrays, wind turbines, fuel cells, microturbines,
distributed generation, and battery energy storage systems (ESS). The techno-economic
benefits of hybrid power systems have been explored. This problem has been addressed so
far solely to reduce operating costs. Figure 1 shows the microgrid setup. A multi-objective
security-constrained microgrid energy management system (MOSC-MEMS) based on a
coordinated unit commitment-optimal power flow (UC-OPF) framework was introduced
in [16]. As smart homes become more prevalent in distribution systems, scheduling micro-
grids in the presence of smart homes has become a critical issue. An energy management
framework for microgrids with smart homes and demand response (DR) programs was
presented in [17].
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Figure 1. A microgrid energy management system.

Furthermore, peak load is a problem in the power grid. Because loads are adjustable,
demand-side strategies such as demand response (DR) are better suited to meet these
challenges. The authors of [18] investigated how DR programs affect multi-microgrid
operation (MMG). Demand response is the most crucial factor for cost reduction and energy
management systems (EMS). The upstream network uses time of use (TOU) demand
response [19]. Demand reaction (DR) is the end-users’ behavior in response to pricing
adjustments. For example, when wholesale market prices are high or the system’s stability
is affected, DR is characterized as an incentive payment. DR includes all intentional changes
to the end-users’ electricity consumption patterns intended to change the timing, level of
instantaneous demand, or overall consumption.

Figure 2 shows various DR programs. These are incentive-based programs (IBPs) and
price-based programs (PBPs). In PBPs, customers manage their power use in response
to load service entity-determined prices, which include time of use (TOU), critical peak
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pricing (CPP), and real-time pricing (RTP). Interruptible/curtailable (I/C) programs are
examples of IBP. Market-based IBPs include DR programs, demand bidding, capacity
markets, and ancillary services. Traditionally, IBP participants get a bill credit or a discount
for participating. Participants in market-based schemes are compensated for reducing
critical load. DLC initiatives enable utilities to turn off participants’ equipment remotely.
Air conditioners and water heaters are commonly remote-controlled. These programs
may interest residential and small commercial customers [19]. A PSO algorithm is used to
check the impact of TOU demand response to minimize the operational cost of the system
and mitigate pollution [20]. A Robust Model Predictive Control (RMPC) technique was
used in [21] to account for data uncertainties in the microgrid, with the goal of minimizing
total economic costs while satisfying end-user comfort and energy demands. Demand
management strategies can be used to optimize the management of customers’ energy
resources and demand profiles [22]. A microgrid’s return on investment can be accelerated
if it maximizes profits. Demand response can help to achieve this. The MG’s loads can be
shifted from peak to off-peak times or reduced during peak times [23].

Energies 2022, 15, x FOR PEER REVIEW 3 of 23 
 

 

load service entity-determined prices, which include time of use (TOU), critical peak 

pricing (CPP), and real-time pricing (RTP). Interruptible/curtailable (I/C) programs are 

examples of IBP. Market-based IBPs include DR programs, demand bidding, capacity 

markets, and ancillary services. Traditionally, IBP participants get a bill credit or a 

discount for participating. Participants in market-based schemes are compensated for 

reducing critical load. DLC initiatives enable utilities to turn off participants’ equipment 

remotely. Air conditioners and water heaters are commonly remote-controlled. These 

programs may interest residential and small commercial customers [19]. A PSO algorithm 

is used to check the impact of TOU demand response to minimize the operational cost of 

the system and mitigate pollution [20]. A Robust Model Predictive Control (RMPC) 

technique was used in [21] to account for data uncertainties in the microgrid, with the goal 

of minimizing total economic costs while satisfying end-user comfort and energy demands. 

Demand management strategies can be used to optimize the management of customers’ 

energy resources and demand profiles [22]. A microgrid’s return on investment can be 

accelerated if it maximizes profits. Demand response can help to achieve this. The MG’s 

loads can be shifted from peak to off-peak times or reduced during peak times [23]. 

Demand Response Programm 
(DRP)

Incentive Based Programs

Classical Market Based

 

Curtailable Programs Direct Control

Demand Bidding Emergency Bidding Capacity Market Ancillary Service Markete

Price Based Programs

Time of 
Use(TOU)

Critical Peak 
Pricing 
(CPP)

Extreme Day 
CPP(ED-

CPP)

Extreme Day 
Pricing 
(EDP)

Real Time 
Pricing(RTP)

 

Figure 2. Demand Response. 

The optimization problem includes demand response to show its implications for 

effective energy dispatch as well as technological and economic advantages. Table 1 

shows a few examples in the literature that worked on EMS and DR. 

Table 1. Comparison of this model with existing works. 

References Objective Function Wind Turbine PV EES Demand Response Electric Vehicles 

[24] Power loss, VDI ✓ ✓ ✓ ✓  

[25] DRP’s to control system operation ✓ ✓ ✓ ✓  

[26] 
DRP(TOU) and EV’s for economic and 

environmental assessment. 
✓   ✓ ✓ 

[27] Optimal sizing of microgrid. ✓ ✓ ✓ ✓ ✓ 

[28] Cost ✓ ✓  ✓  

[29] Cost  ✓ ✓ ✓  

[30] Cost ✓ ✓  ✓  

[31] Cost ✓ ✓ ✓ ✓  

[32] Cost and emissions ✓ ✓ ✓ ✓  

[33] Cost and emissions ✓ ✓ ✓ ✓ ✓ 

[34] Cost ✓ ✓ ✓ ✓  

[35] Losses and emissions ✓ ✓ ✓ ✓  

[36] Stability, cost, emissions ✓ ✓ ✓ ✓  

[37] Cost, stability, pollution ✓ ✓ ✓ ✓  

This article Cost, losses ✓ ✓ ✓ ✓  

Figure 2. Demand Response.

The optimization problem includes demand response to show its implications for
effective energy dispatch as well as technological and economic advantages. Table 1 shows
a few examples in the literature that worked on EMS and DR.

Table 1. Comparison of this model with existing works.

References Objective Function Wind Turbine PV EES Demand Response Electric Vehicles

[24] Power loss, VDI X X X X

[25] DRP’s to control system
operation X X X X

[26]

DRP(TOU) and EV’s for
economic and
environmental

assessment.

X X X

[27] Optimal sizing of
microgrid. X X X X X

[28] Cost X X X
[29] Cost X X X
[30] Cost X X X
[31] Cost X X X X
[32] Cost and emissions X X X X
[33] Cost and emissions X X X X X
[34] Cost X X X X
[35] Losses and emissions X X X X
[36] Stability, cost, emissions X X X X
[37] Cost, stability, pollution X X X X

This article Cost, losses X X X X
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In this article, the impact of power-sharing and demand response on cost and power
losses using the ABC algorithm was studied, and it shows that the proposed idea produces
optimal costs and minimizes power losses. The rest of the article is organized as follows:
Section 2 describes the proposed work, Section 3 is about problem formulation, Section 4 is
the mathematical modeling for the microgrid, Section 5 describes the demand response,
Section 6 is about the power-sharing model in microgrids, Section 7 is the results and
discussion; and finally, in Section 8, the article is concluded.

2. Proposed Work

The proposed work presents the impact of demand response and optimal power-
sharing in microgrids for cost and loss optimization using Artificial Bee Colony optimiza-
tion. Solar photovoltaic panels, wind energy generation units, fuel cells, microturbines,
and gas turbines are examples of distributed energy sources that provide clean energy. The
term “microgrid” refers to a group of these microsources and loads that operate as a single
controllable unit and provide electrical power to a particular area. In this work, microgrids
have generation sources. e.g., wind generation or photovoltaic generation. Gas turbines
and battery energy storage systems are used. In the proposed idea, the microgrids try to
meet their demands from the generation sources. If the generated energy in the microgrid
exceeds the required demand, the extra energy will be shared with other microgrids on
an optimal basis. Demand response is used to reduce losses and optimize the cost of the
system. The proposed idea consists of four different cases. In Case 1, the cost and loss are
calculated using demand response and power-sharing. This is supposed to be the worst
case. In Case 2, the cost and losses are calculated using the demand response but not
power-sharing, and the impact is measured. In Case 3: cost and power losses are calculated
using power-sharing but not demand response. In the last case, which is our proposed
case (Case 4), both demand response and power-sharing in microgrids are considered. The
overall impact of both the demand response and power-sharing was calculated, showing
the lowest cost and minimum losses.

The proposed idea of optimal power-sharing and demand response in microgrids is
presented in Figure 3.
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In Figure 3, a 33-bus radial distribution system is categorized into six microgrids. MG1
consists of a PV source, a BESS, and a residential load. MG2 consists of a PV array, battery
energy storage, and an academic load. MG3 consists of a PV array, a gas turbine, WT, and
a commercial load. MG4 consists of a PV array, wind generation (WT), battery energy
storage (BESS), and a residential load. MG5 consists of a PV array, wind generation, and a
residential load. MG6 consists of a PV array, a wind turbine, battery energy storage, and
an industrial load. The details of the loads are given in Table 2.
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Table 2. Microgrids’ generation and load profiles (from [38]).

Time Period Residential Load Academic
Load

Commercial
Load

Industrial
Load Wind Turbine Photovoltaic

Generation

1 0.60 0.23 0.07 0.89 0.40 0.00
2 0.49 0.26 0.06 0.90 0.40 0.00
3 0.43 0.16 0.06 0.91 0.40 0.00
4 0.43 0.27 0.06 0.82 0.40 0.00
5 0.42 0.17 0.06 0.89 0.40 0.00
6 0.42 0.16 0.06 0.96 0.30 0.30
7 0.43 0.17 0.27 0.88 0.30 0.50
8 0.45 0.43 0.21 0.82 0.30 0.60
9 0.50 0.52 0.71 1.00 0.20 0.70
10 0.45 0.80 0.80 0.94 0.20 0.80
11 0.46 0.88 0.79 0.90 0.20 0.90
12 0.48 1.00 0.85 0.92 0.20 1.00
13 0.48 0.89 0.98 0.82 0.15 0.90
14 0.44 0.76 1.00 0.83 0.15 0.80
15 0.44 0.74 0.99 0.85 0.15 0.70
16 0.44 0.79 0.75 0.87 0.20 0.60
17 0.44 0.69 0.81 0.88 0.20 0.50
18 0.52 0.56 0.87 0.86 0.30 0.40
19 0.82 0.37 0.88 0.90 0.40 0.00
20 0.96 0.27 0.84 0.96 0.60 0.00
21 1.00 0.33 0.66 0.98 0.75 0.00
22 0.94 0.29 0.30 0.99 0.80 0.00
23 0.86 0.31 0.08 0.99 0.90 0.00
24 0.74 0.25 0.08 0.91 1.00 0.00

The proposed idea was implemented using Artificial Bee Colony optimization for cost
and power loss optimization. A detailed explanation of the ABC algorithm is presented in
the next section.

3. Problem Formulation
3.1. Artificial Bee Colony Algorithm

Karaboga developed the ABC algorithm in 2005. Since then, Karaboga and Bastürk
have studied the ABC algorithm’s performance on unconstrained optimization prob-
lems [39]. The ABC algorithm divides a colony’s bees into three categories: employed
(foragers), onlookers (observers), and scouts. One employed bee is used for each food
source. In other words, employed bees are equivalent to food sources. An abandoned food
site’s employed bee is forced to scout for random food sources. Employed bees inform
onlooker bees to choose a food source to forage from. The ABC bees are more specialized,
with two groups (foragers and observers), similar to the honeybee algorithm.

A swarm of ABC solutions (food sources) is generated randomly by the ABC. Let
Xi = xi,1, xi,2, . . . , xi,D describe the swarm’s ith solution. Each employed bee Xi generates
a new candidate solution Vi in its immediate vicinity:

vi,j = xi,j + φi,j ·
(

xi,j − xk,j

)
(1)

where Xk is a randomly selected candidate solution with i = 1, 2, 3, . . . . . . , N and
j = 1, 2, 3, . . . . . . , D, where i 6= k and ϕi,j [−1, 1] is a random value ranging from −1
to 1. After generating Vi, greedy selection is used. If Vi

′s fitness value exceeds than Xi
′s,

the algorithm updates Xi; otherwise, it leaves Xi Unchanged.
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The amount of nectar at a given location x can be encoded as F(x), and the probability
Pi of an onlooker bee selecting the best food source at Xi can be defined as [40]:

Pi =
Fiti

∑S
j=1 Fitj

(2)

where S is the food source quantity. The intake efficiency of a food source is determined by the
ratio F/r, where F is the amount of nectar and r is the time passed there. An abandoned food
source has been tried/foraged at least a certain number of times without improvement [41], in
which Fiti is the swarm fitness value. A better solution i increases the probability of selecting
a better ith food source. The value of Fiti is determined by using Equation (3):

Fiti =

{
1

1+ fi
, i f fi ≥ 0

1 + | fi|, i f fi ≤ 0
(3)

where fi is the objective function. If the new value of the location is better, the old value is
replaced. If the new value is not superior, then the old value is not changed.

An abandoned food source cannot be upgraded over a specified number of cycles. We
assume that the scout bee replaces Xi, which is abandoned for a new food source:

xi,j = xlbj + ϕi,j ·
(

xubj − xlbj

)
(4)

where xlbj and xubj are jth the lower and upper bound values, respectively, and i and j are
the same.

3.2. The ABC Algorithm Representation in Flowchart

Recent research has shown that the ABC can outperform PSO, differential evolution,
and evolutionary algorithms (EA) for various test functions Figure 4.
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4. Mathematical Modeling of Microgrid Components

A hybrid energy system in a microgrid may include renewable energy conversion
components such as wind turbines, solar panels, and hydro turbines; non-renewable
generators such as diesel generators and microturbines; and energy storage devices such as
batteries. All or portion of it could be found in a hybrid energy system. A general setup
of a microgrid is shown in Figure 1. Modeling individual components is the first step in
appropriately selecting the components and subsystems for optimal system sizing. The
modeling approach helps identify and understand the features of the components, and
in decision-making. The performance of prediction accuracy is reflected in the modeling
parameters; however, designing a precise model can be too complex or time-consuming. A
suitable model should strike a balance between complexity and accuracy. An individual
component’s performance is modeled using either deterministic or probabilistic methods.
The following is a description of the general methodology of modeling an energy system.

The following equation represents the power generated by a wind turbine [42]:

pw =
1
2
·ρ·C(λ)·π·R2·v3 (5)

In Equation (5), ρ is used for air density, v3 is used for the velocity of the wind, R is the
wind turbine’s blade radius, and C(λ) is the tip speed ratio’s λ coefficient. The λ is defined
as the wind turbine’s angular velocity with respect to wind speed.

Power generated by the solar panel array is represented in Equation (6) [43]:

ppv = pmax·
Gpv

Go
·(1 + k(Tc − Tr)) (6)

In Equation (6), ppv is the solar panel array output power, pmax is the rated power
generated by the PV array, Gpv is the solar irradiance, and Go is a standard irradiance. This
means the ratio of solar irradiance and standard irradiance will be less than or equal to 1. K is
the coefficient of temperature, Tc is the cell temperature, and Tr is the reference temperature.

The third generation unit is a gas microturbine, which operates on the principles of
microcombustion. Under specific conditions, a mixture of compressed air and fuel is burned
at a constant pressure. When the hot gas expands, mechanical energy is produced. The gas
microturbine has the potential to generate energy that renewable energy sources cannot [44].
We took the following technical inputs into account: installed capacity, maximum and
minimum instantaneous power, ramp down and ramp up limits, and minimum start-up
and shut-down times:

uµT
t pµT

min ≤ PµT
t ≤ uµT

t pµT
max (7)

where uµT
t is a binary variable, whose value is either 0 or 1. When the microgrid is in

an operational state, then uµT
t is 1; when it is in an off state, then uµT

t will be equal to
0. Moreover, pµT

min is the minimum power generated by the microturbine and pµT
max is the

maximum power generated by the gas microturbine.
When the gas microturbine is operated, on the other hand, the variable PµT

t will have values
within a range based on the prior variable’s value PµT

t−1. The difference between the generation
level at time t− 1 and time t must stay within a defined range (Rl , Ru). The machine’s properties
determine the range, and these restrictions are referred to as the ramp limits.

Rl ≤ PµT
t − PµT

t−1 ≤ Ru, t ∈ T{1} (8)

When the generated power exceeds the demand, it will charge the BESS. When the
BESS is discharged, it produces electricity. Two sets of positive variables are used to
represent the performance of the storage device because of this dual procedure.

Eb(t + 1) = Eb(t)(1− σ) + Ps·ηbc (9)
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Equation (9) represents the charging mode of the battery when the generated energy
exceeds the demand [45].

Eb(t + 1) = Eb(t)(1− σ)− Pdis/ηbdis (10)

In Equation (10), the battery is in discharging mode and ηbdis shows the discharging
efficiency of the battery.

5. Methodology

This section introduces the mathematical formulation of the concepts of the demand
response programs and network reconfiguration.

5.1. Demand Response

Demand response programs are generally categorized into two types: time-based
DR and incentive-based DR. Time of use (TOU), real-time pricing (RTP), and critical peak
pricing (CPP) are examples of time-based programming (TBRP). Direct load control (DLC),
interruptible/curtailable (I/C) services, emergency demand response (EDRP), demand
bidding (DB), capacity market (CAP), and ancillary service (A/S) markets are examples
of incentive-based programs (IBP) [46]. Figure 2 shows this classification. The majority of
incentive-based programs are based on rewards and penalties. Energy pricing in time-based
DR programs is based on distinct periods, with high peak load prices and low off-peak
prices in TOU, CPP, and RTP programs. Energy prices in TOU programs are categorized
into three modes: peak, off-peak, and valley; however, the range of energy costs in RTP
programs is significantly greater. During the critical peak in CPP schemes, the energy
price is substantially higher than the normal peak price. The time of use (TOU) program is
explored in this article.

5.2. Elasticity

Elasticity is measured by the amount of change in demand when the price of electricity
increases or decreases by one unit or as the load’s sensitivity to price changes. The elasticity
parameter [47] is represented by Equation (11).

E =
ρo

Pdo

∂Pd
∂ρ

(11)

In Equation (11), ∂Pd is the change in demand due to a change in the price ∂ρ, and ρo
and Pdo are the base price and demand. Elasticity is categorized in two types: self-elasticity
(SE) and cross-elasticity (CE), according to the following definition. Self-elasticity (Ei, i) is
the term for varying the amount of load in the ith period as a result of changing the price
of electricity in the ith period, whereas cross-elasticity (Ei, j) is the term for varying the
amount of load in the ith period as a result of changing the price of electricity in the jth
period. SE is always negative, while CE is always positive. Self-elasticity and cross-elasticity
are represented by Equations (12) and (13), respectively.

Es(i, i) =
ρ0(i)
do(i)

·∂d(i)
∂ρ(i)

(12)

Ec(i, j) =
ρ0(j)
do(i)

· ∂d(i)
∂ρ(j)

i 6= j (13)

Equation (12) shows the self-elasticity for the change in demand ∂d(i) in the ith period
due to a change in the price ∂ρ(i) in the ith period. Equation (13) shows the change in
demand ∂d(i) in the ith period due to a change in the price ∂ρ(j) in the jth period.
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5.3. Types of Load

There are different types of loads used in demand response. The different types of
loads are represented in Figure 5.
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For all of the types of loads above, the elasticity term must be explained using the
demand response for the energy management system. The hourly loads and generation
profiles are shown in Table 2.

6. Proposed Model

This part introduces the mathematical formulation and the concept of network recon-
figuration in the proposed idea.

6.1. Proposed Model Methodology

This part introduces the suggested design and system model, which will be used
as a framework throughout the article. The suggested model implies that the system
contains many buses situated in a number of MGs, as shown in Figure 3. Each bus can
act as a producer, consumer, or prosumer. Each bus can contain a variety of energy
sources, including both renewable and non-renewable options. This work used optimal
power-sharing and demand response for cost reduction and power loss optimization. Four
different cases are discussed in this article. Case 1: in this case, the cost and power losses are
calculated to meet load demand without power-sharing or the demand response. Case 2:
in this case, the cost and power losses are calculated using power-sharing but not demand
response. Case 3: in this case, the cost and power losses are calculated in the microgrids
to meet load demand using demand response but not power-sharing. Case 4 is related to
calculating the cost and power losses using both demand response and power-sharing.

6.2. Power-Sharing, Costs, and Power Losses in Microgrids

Different generation and load sources are available in microgrids. The microgrids are
interconnected, as shown in Figure 3. The following mathematical models were used in all
four cases.

PVgen = PVpro f ile·PVcap PV generation (14)

Pwg = Pwpro f ile·Wcap Wind generation (15)

0 ≤ BESS ≤ BESScap battery storage (16)

LMG1−net = PVMG1 − LMG1 (17)

LMG2−net = PVMG2 − LMG2 (18)

LMG3−net = PVMG3 + PMG3(w) + PMG3(GT) − LMG3 (19)
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LMG4−net = PVMG4(1,2) + PMG4(w) − LMG4 (20)

LMG5−net = PVMG5 + PMG5(w) − LMG5 (21)

LMG6−net = PVMG6 + PMG6(w) − LMG6 (22)

where LMG−net is the net load of MGs and PVMG is the PV generation in the MG′s, PMG(GT)
is gas turbine generation in the MG′s, PMG(w) is the wind generation in the MGs, and LMG

is the load of the MG′s. In Equation (17), if the net load is positive, the generated power
exceeds the demand; hence the extra power is used to charge the battery in MG1. However,
if the generated power is less than the required demand, the battery will be discharged
to meet the load demand. The charging and discharging of the battery are represented in
mathematical form as:

i f PMG(g)(t) > PMG−L(t) & SOCb < Eb−max then;

PBC(t) =
[

PMG(g)(t)− PMG−L

]
·ηBC battery charging process

(23)

i f PMG(g)(t) > PMG−L & SOCb ≥ Eb−max then;
PBC(t) = 0

PDL(t) = PMG(g)(t)− PMG−L

(24)

where, in Equation (24), PDL(t) is the power supplied to a dummy load.

i f PMG(g)(t)< PMG−L & SOCb >Eb−min then;

PBD(t) =
[

PMG−L(t)− PMG(g)(t)]/ηBD Battery discharging
i f PMG(g)(t) < PMG−L & SOCb < Eb−min then ;

PBD(t) = 0

(25)

For all of Equations (17)–(22), the power flow constraints are as follows:

0 ≤ PGen ≤ Pmax(Gen) conventional generation (26)

0 ≤ Ppv(Gen) ≤ Pmax(pv) PV generation (27)

PB.min ≤ PB ≤ PB.max battery power (28)

SOCB.min ≤ SOCB ≤ SOCB·max battery state of charge (29)

0 ≤ Pwt(Gen) ≤ Pmax(wt) wind generation (30)

In Case 1, the cost function is:

Costs = ∑6
i=1 CPVi solar cost (31)

Costwt = ∑6
i=3 CWTi wind turbine cost (32)

Costnet = ∑6
i=1 NCi network cost (33)

CostBC = ∑6
i=1 BSCi i 6= 3, 5 battery cost (34)

GTC = GT·GTP gas turbine cost (35)

Costtotal = ∑6
i=1 CPVi + ∑6

i=3 CWTi + ∑6
i=1 NCi+GTC+

(
∑6

i=1 BSCi i 6= 3, 5
)

(36)

CPV = PVGen·PVp cost of PV (37)

CWT = Pwg·WTp cost of WT (38)

BSC = BESS·BC battery storage cost (39)
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The power loss function is:

Ploss(i, i + 1) = [(P2
i + Q2

i )/|Vi|2]·Ri real power loss between buses (40)

Ptotal(loss) = ∑33
i=1 Ploss(i, i + 1) total loss (41)

7. Results and Discussion

Mathematical modeling for demand response and power-sharing in microgrids for
different loads and generation sources produced the following results for different cases.

7.1. For Case 1, the Simulations for Cost

The details of Case 1 regarding the network cost, generation cost, total cost, and
curtailed energy are shown in Figures 6 and 7.
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7.2. Case 2: Power-Sharing but Not Demand Response

We calculated the cost and loss with energy sharing but not demand response.
Simulations and discussion for case 2:
In Microgrid 1, there is a PV source and battery storage, and the load is residential.

The PV source is available from 6.00 a.m. to 6.00 p.m. The generation during this time
is represented in Figure 8. From 1.00 a.m. to 5.00 a.m., and from 7.00 p.m. to 12.00 a.m.,
Microgrid 1 meets its demand either from the Disco network or battery storage. When the
light intensity is high and the PV source produces more energy than the required demand,
the extra energy is used to store energy in the battery storage system or sold to the external
microgrids or Disco. All of these explanations are shown in Figure 8.
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For microgrids to share energy, the following equations must be used:

0 < MGexp < +LMG−net MG export energy (42)

− LMG−net < MGimp < 0 MG import energy (43)

CR = +LMG−net −MGexp Curtailed Energy (44)

In Microgrid 2, again we have a PV source and a battery energy storage system, but
the load here is an academic load, which will be maximum from 7.00 a.m. to 7.00 p.m.,
during which maximum energy will be required, and the extra energy required beyond the
generation range will be provided either by the storage system or by the Disco network.
The load curve of Microgrid 2 is shown in Figure 9.
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In Microgrid 3, there are three generation sources: PV, WT, and a gas turbine, and the
load is a commercial load. The commercial load will be high from 8.00 a.m. to 10.00 p.m. If
the generation sources are capable of meeting the load demand, then no external energy
needs to be imported from Disco or other microgrids. If the generation source cannot
meet the load demand of the microgrid, it will either import energy from Disco or other
microgrids. If the generated energy in the microgrid exceeds the required load demand,
then the extra energy will be sold to other microgrids or Disco. The discussion above is
illustrated in Figure 10.
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Microgrid4 has same load curve as Microgrid 1 but has two PV sources, a wind turbine,
and battery energy storage. If the demand is fulfilled by the generation source, then there is
no need to import energy. If the generation sources are not producing a sufficient amount,
then extra energy required will be imported from external microgrids or Disco. The load
generation curve for Microgrid 4 is shown in Figure 11.
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Microgrid 5 has PV and wind sources and a residential load, as shown in Table 2.
Residential load always remains high from 12.00 a.m. to 6.00 a.m. and from 6.00 p.m. to
11.00 p.m. During high load demand, energy is either imported from other microgrids or
from Disco. During the daytime, the load demand is low and generation is high, as the
PV and wind systems will both generate energy. The extra energy will be sold to other
microgrids or Disco, as shown in Figure 12.
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In Microgrid 6, the generation sources are PV and wind generation, and a BESS is also used
in the microgrid for extra energy to be stored or so stored energy can be used in the microgrid.
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If the generated energy is less than the required demand, then energy will be imported
from the external network (Disco) or from other microgrids. The load profile of Microgrid 6
is shown in Figure 13.
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The cost convergence curve for power-sharing using the ABC algorithm is shown in
Figure 14. The cost is gradually reduced with the number of iterations. The optimal cost
was achieved using an iterative ABC algorithm.
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Figure 15. Case 2: total cost and energy-sharing.
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7.3. Case 3: Cost and Loss Calculations with DR but Not Power-Sharing

In Case 3, the impact of demand response on the cost and power losses was calculated.
Demand response was used to reduce the cost and power in each microgrid, as there
are different types of load, as mentioned in Table 2. For the demand response, the TOU
price-based demand response was used here. The TOU rate allows consumers to better
manage their electricity bills by moving consumption from the peak to mid-peak and
off-peak times. Reducing the quantity of electricity required at peak load times allows
the power system to meet consumers’ needs without developing more expensive backup
equipment and reducing GHG (greenhouse gas) emissions. The simulation results are
shown and discussed here. A clear difference in losses and cost is observed in the figures.
In Case 3, there is no power-sharing among the microgrids. The simulations are shown
with no power-sharing.

For demand response (time of use), the following equation must be used:

NC = TOU·EN Network energy cos t (45)

where TOU is the time of use demand response and EN is the network’s energy.
In Microgrid 1, the load is residential and the impact of demand response is shown in

Figure 16. Initially, the losses increased due to the load shifting from on-peak to off-peak
hours. During on-peak hours, the losses are reduced, as shown in Figure 16. There is no
sharing of energy among the microgrids, as shown below in Figure 16.

Energies 2022, 15, x FOR PEER REVIEW 15 of 23 
 

 

 

Figure 15. Case 2: total cost and energy-sharing. 

7.3. Case 3: Cost and Loss Calculations with DR but Not Power-Sharing 

In Case 3, the impact of demand response on the cost and power losses was 

calculated. Demand response was used to reduce the cost and power in each microgrid, 

as there are different types of load, as mentioned in Table 2. For the demand response, the 

TOU price-based demand response was used here. The TOU rate allows consumers to 

better manage their electricity bills by moving consumption from the peak to mid-peak 

and off-peak times. Reducing the quantity of electricity required at peak load times allows 

the power system to meet consumers’ needs without developing more expensive backup 

equipment and reducing GHG (greenhouse gas) emissions. The simulation results are 

shown and discussed here. A clear difference in losses and cost is observed in the figures. 

In Case 3, there is no power-sharing among the microgrids. The simulations are shown 

with no power-sharing. 

For demand response (time of use), the following equation must be used: 

𝑁𝐶 = 𝑇𝑂𝑈. 𝐸𝑁        Network energy cost (45) 

where TOU is the time of use demand response and 𝐸𝑁 is the network’s energy. 

In Microgrid 1, the load is residential and the impact of demand response is shown 

in Figure 16. Initially, the losses increased due to the load shifting from on-peak to off-

peak hours. During on-peak hours, the losses are reduced, as shown in Figure 16. There 

is no sharing of energy among the microgrids, as shown below in Figure 16. 

  

Figure 16. Impact of demand response on Microgrid 1. 

0

500

1000

1500

2000

1 2 3 4 5 6 7

Cost and sharing Energy

 Network Cost ($):  Generation Cost ($):

 MG Sharing Cost ($): Total Cost ($):

 Export Energy (Kwh):  Import Energy (Kwh):

 Curtiled Energy (Kwh):

Figure 16. Impact of demand response on Microgrid 1.

Microgrid 2 has an academic load, and the impact of demand response is shown in
Figure 17. The losses are reduced during on-peak hours and are increased slightly during
off-peak hours, as the load is shifted from on to off-peak hours.
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The impact of demand response on Microgrid 3 is shown in Figure 18. The load in
Microgrid 3 is commercial, as shown in Table 2. The losses are reduced during on-peak
hours and are slightly increased in off-peak hours as the load is shifted to off-peak hours.
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The losses in Microgrids 4 and 5 are reduced using a demand response program. Both
the grids have residential loads. The impact on losses is shown in Figure 19.
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Figure 19. Impact of DR on MGs 4 and 5.

Microgrid 6 has an industrial load. There is no impact of the TOU demand response
on power losses, as there is almost a constant load and the system has no possibility to
shift the load inside the microgrid, as shown in Figure 20. Due to DR being used in other
microgrids, the cost is reduced substantially. A real-time pricing demand response is used
in industrial loads.
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Figure 20. Load curve of MG 6.

The overall impact of demand response on the cost and power losses for Case 3 is
presented in Figure 21.
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7.4. Case 4: Cost and Loss Calculations with DR and Power-Sharing

In the last case, demand response and power-sharing are considered. In this case, the
network is considered to be more flexible, as the extra amount of energy in microgrids
using demand response is shared on an optimal basis with other microgrids or Disco; as a
result, losses and cost will be reduced. The impact of both DR and power-sharing is visible
in the simulations. In Microgrid 1, the impact of DR and power-sharing on the cost and
losses is presented in Figure 22.
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In Case 4, Microgrid 2’s response to both power-sharing and DR is shown in Figure 23.
Power-sharing and DR have a nominal role in reducing the cost and power losses.
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MG 3, having a commercial load, has a nominal change in power losses and the cost
due to the implementation of DR and power-sharing. The impact is shown in Figure 24.
Power-sharing has the advantage of sharing extra energy among the microgrids and the
main grid, and wastage of energy is prevented.
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MGs 4 and 5 have residential loads, and the impact of both demand response and
power-sharing is shown in Figure 25. The sharing of power among microgrids helps them
to share energy on an optimal basis for cost optimization, and demand response is used in
the microgrids to control power losses and to utilize energy properly.

In MG6, the RTP demand response is used and hence there is no impact of TOU,
although power-sharing will take place in MG 6 with other microgrids and the main grid
using power-sharing constraints. The impact of power-sharing is shown in Figure 26.

The overall impact of DR (TOU) and power-sharing in Case 4 are presented in
Figure 27.

The impact of all the cases on the cost and losses is represented in Figure 28. The figure
clearly shows the impact of both demand response and power-sharing on losses and the
cost. Case 4, which is our proposed idea, has the lowest cost and minimum power losses,
which shows the effectiveness of our proposed idea.
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Figure 27. Case 4’s impact on the cost and losses.
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8. Conclusions

The impact of demand response and optimal power-sharing in microgrids for cost
and power loss optimization using the ABC algorithm in a smart distribution system were
analyzed in this work. Residential, industrial, commercial, and academic load profiles were
all taken into account. Power-sharing and demand response programs (TOU) for each type
of load were adopted. The key aspect of the microgrid-based smart distribution network
is fragmentation. Two essential objectives were discussed separately in this article: mini-
mizing the total system’s operational cost and losses. The operation cost is lowered when
all microgrids are directly linked to the main grid or indirectly through other microgrids.
When certain microgrids are linked to the main grid and others are not, the network’s
minimal loss is available. The second method used in this article was DR programming. As
can be observed, DR programs have a favorable impact on distribution network variables
such as load factors, and they are important for lowering peak loads and flattening the
24-h load profile. To examine the effects of power-sharing and demand response programs,
a power-sharing and DR (TOU) program was implemented for each objective function,
and its impact was investigated. It was demonstrated that implementing power-sharing
and demand response plans effectively lowered operational costs and network losses. The
cost and losses of network operation were investigated due to uncertainties in generation,
consumption, and customer engagement in the DR program and power-sharing in micro-
grids. The simulation results show that our proposed idea, namely, the impact of DR and
power-sharing in microgrids using the ABC algorithm, had the lowest cost and minimum
losses (8.4% and 4%, respectively). Future research should concentrate on power losses and
cost optimization in microgrids using new algorithms such as the Jellyfish algorithm, the
Golden Eagle algorithm, HHO, and WCO, etc. Additionally, flexible switching strategies for
real-time scheduling in microgrids that take other constraints into account are an exciting
future study path.
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