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Abstract: Quantifying the climatic effect on residential electricity consumption (REC) can provide
valuable insights for improving climate–energy damage functions. Our study quantifies the effect
of climate on the REC in Tibet using machine learning algorithm models and model-agnostic inter-
pretation tools of feature importance scores and partial dependence plots. Results show that the
climate contributes about 16.46% to total Tibet REC while socioeconomic factors contribute about
83.55%. Precipitation (particularly snowfall) boosts electricity consumption during the cold season.
The effect of the climate is stronger in urban Tibet (~25.06%) than rural Tibet (~14.79%), particularly
in September when electricity-aided heating is considered optional, as higher incomes amplified
the REC response to the climate. With urbanization and income growth, the climate is expected to
contribute more to Tibet REC. Hence, precipitation should be incorporated in climate–REC functions
for the social cost of carbon (SCC) estimation, particularly for regions vulnerable to snowfall and
blizzards. Herein, we developed a model-agnostic method that can quantify the total effect of the
climate while differentiating between contributions from temperature and precipitation, which can
be used to facilitate interdisciplinary and cross-section analysis in earth system science. Moreover,
this data-driven model can be adapted to warn against extreme weather induced power outages.

Keywords: climate; residential electricity consumption; rural and urban difference; machine learning;
heating; multicollinearity; Tibet

1. Introduction

The recent Intergovernmental Panel on Climate Change (IPCC) report [1] highlights
the need for stringent and consistent policies on the reduction of greenhouse gas emissions.
The social cost of carbon (SCC), that is, the economic cost of an additional ton of carbon
dioxide emissions or its equivalent, is used to assess climate change-related policies and
their implementation [2]. The current SCC estimates are greatly challenged owing to the
limited knowledge regarding damage functions, which define how changes in climate
variables impact human life [3,4]. A key knowledge gap in building damage functions
lies in the intrinsic economic perspective of SCC estimation, which largely discounts the
physical mechanism of the earth system [4]. An earth-system perspective that integrates
the physical sciences and social sciences would facilitate the understanding of the damage
functions [5].

The climate–electricity damage function is of particular importance for both curtailing,
and adapting to, climate change. In fact, the power sector accounts for 41% of carbon emis-
sions globally; thus, replacing fossil fuels with green electricity, and generating electricity
using renewable energy sources, can effectively reduce carbon emissions [6]. The climate
impacts electricity markets on both the demand and supply ends [7]. On the supply end,
efforts have been made to inform green electricity generation [8] with measures boosting
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incentives [9]. On the demand side, the end-use electricity analysis is of particular impor-
tance to climate and energy management [10].Among the types of energy consumption,
residential electricity is particularly significant as it affects, and is affected by, the climate.
Residential energy consumption (REC) is a major contributor to carbon emissions glob-
ally [6], with space heating and air conditioning representing the largest contributors [11].
Given that heating and cooling demand is related to climate variables [12–15], quantifying
the effect of climate on residential electricity consumption (REC) can help inform climate
change-related policymaking as well as climate–energy research methodologies.

Previous literature estimates climate–REC functions primarily with econometric mod-
els designed for economic analysis [13,14,16,17], which risk dwarfing the complexity of
physical processes in the earth system with model presumptions. “Neutral” models that
treat the physical and social aspects equally are needed to reach common understanding
across different disciplines under the earth-system perspective. More specifically, data-
driven models that make few subjective presumptions would be ideal. Since data-driven
techniques such as clustering and neural networks have already been adopted by recent
energy [18] and physical science studies [19,20], respectively, data-driven methods can also
be used to examine climate–energy interactions for better interdisciplinary insights.

Previous literature on the climate–REC function has largely overlooked precipita-
tion [21], meanwhile, the effect of temperature on the REC has been extensively ana-
lyzed [11,13,15,22,23]. Most of these studies have focused on the cooling demand in
temperate, subtropical, or tropical regions in which the potential effect of the climate
is likely related to higher summer temperatures and higher air conditioning adoption
rates [12,14,16,24–26]. The general conclusion of studies that have focused on the heating
demand, was that global warming reduces the heating-related energy demand [27,28].
Moreover, precipitation, in the few cases where it is been considered, has consistently been
considered to a lesser extent than temperature [12,29]. However, climate is the abstraction
of temperature, precipitation, and their seasonal variations [21]. In fact, climate change
reflects changes in the earth system, and has a more significant impact than direct warm-
ing [30]. For example, global warming intensifies the water cycle and increases the amount
of precipitation [31]. Furthermore, precipitation was implicated in multiple recent power
crises, including the 2021 power crisis in Texas, United States [32], the 2020 power shortage
in Hunan province, China [33], and the most recent power outage in Northeastern US in
2022 [34], all of which occurred under heavy snow conditions. Thus, heating-oriented
studies are needed to examine the effect of precipitation on the REC.

In addition to overlooking precipitation as an essential climate variable, previous
climate–REC damage functions have not sufficiently focused on rural–urban disparities,
which is highly relevant for policy implementation. Nevertheless, the REC in urban areas
has been reported as higher than in rural areas [35]. Common drivers of both rural and
urban REC have been identified as climate, income, population, and urbanization, with
income being the most influential [36]. However, the influence of rural–urban disparities
on the effect elicited by climate on the REC has not yet been clarified.

To address this gap in knowledge, we selected Tibet as a subject area as its alpine
climate is ideal for heating-oriented analysis, and its demographic structure featuring more
rural than urban population provides a distinctive socioeconomic context compared to other
studies that have been conducted in more developed and urbanized areas. As a natural
laboratory for research on multi-sphere interactions and the human–nature relationship [37],
the Tibetan Plateau is experiencing fast climate and environmental changes, and is expected
to become warmer and wetter with an increasingly unsteady water cycle [38], making it an
ideal region for characterizing the role of precipitation on REC.

The aim of our study was to quantify the effect of climate on the REC in rural and
urban Tibet, focusing on the effect of precipitation on the heating-related REC and the effect
of rural–urban disparity during the cold season, or months, in which the temperature is
below 0 ◦C. We hypothesized that precipitation in the form of snowfall boosts the heating-
related REC in Tibet and that the effect of the climate on the REC is more conspicuous in the
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more affluent urban regions of Tibet. To test this hypothesis, we constructed data-driven
models using eight algorithms.

We argue that precipitation, as a key indicator of climate in earth system science,
should be incorporated in climate–REC functions for SCC estimation and treated equally
as temperature. Our results, based on investigating and comparing climate–REC func-
tions of total, rural, and urban data for Tibet, provide new insights regarding the role of
precipitation in affecting REC, as well as the rural–urban difference in climatic impact on
REC. Collectively, we have developed a new model-agnostic method that can quantify
the total effect of the climate, i.e., the combined effect of temperature, precipitation, and
their seasonal variations, which can be used to improve damage functions for different
sectors, thus enhancing the accuracy of SCC estimation to better inform climate-related
policymaking and policy assessment.

2. Materials and Methods
2.1. Research Design

Previous studies indicate that temperature, precipitation, income, population, and
urbanization are major factors influencing the REC [13,14,16,25,26,39–41]. Accordingly, we
chose temperature, precipitation, income, and population as explanatory variables, and
REC as the response variable to model. Urbanization was reflected through rural and
urban comparison.

In contrast to previous studies based on the distributional approach and data modeling,
we adopted a randomized [42] or data-driven approach based on algorithm modeling [43].
We built models that can estimate the total, rural, and urban REC in Tibet by testing the
datasets with eight algorithms and select the one with best baseline performance to tune.
We compared the results of these models using a new model-agnostic interpretation method
to reveal the individual effects of temperature and precipitation on the REC and how the
urban–rural disparity influences the effect of climate on the REC in Tibet (Figure 1).

More specifically, we first built a pool of candidate algorithms including seven non-
parametric machine learning algorithms and one parametric algorithm. The non-parametric
machine learning algorithms are used to build randomized data-driven models while the
parametric algorithm is used to build a distributional model. Their difference will be
discussed further in Section 2.3.1. The parametric distributional algorithm is included as a
parallel for comparison with non-parametric data-driven algorithms. Detailed descriptions
of the algorithms will be provided in Section 2.3.2. We tested the datasets with each
algorithm in the candidate pool to select the algorithm with best baseline performance
to build models. The modeling process will be described in detail in Section 2.3.2. If
the best-performing algorithm is randomized, we will interpret the model results with
the tools of feature importance score (FIS) and partial dependence plot (PDP), both of
which will be explained in detail in Section 2.3.3. If the best-performing algorithm is not
randomized, we will interpret the model results both in the traditional way with coefficients
and innovatively with PDPs. We will compare performance and interpretability of the
data-driven models and the distributional model to show the strength of the data-driven
approach. Interpretations of the models trained with datasets at different scales will be
compared quantitatively using FIS and qualitatively using PDP for insights into climatic
effect on REC.

2.2. Data

We used total, rural, and urban panel data from 2014 to 2017 comprising REC, temper-
ature, precipitation, income, and population information for Tibet. We used the monthly
REC for total, rural, and urban Tibet from the Tibet State Grid Tibet Electric Power Company.
The monthly mean temperature and monthly precipitation were extracted based on the
administrative boundary of Tibet from the temperature [44] and precipitation data [45] for
China, which has a spatial resolution of 1 km × 1 km and a temporal resolution of month
and year, from the National Tibetan Plateau/Third Pole Environment Data Center. For the
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socioeconomic indicators of income and population, we used the yearly total, rural and
urban per capita disposable income, and annual total, rural, and yearly urban population
for Tibet from the National Bureau of Statistics of China.
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To examine the climate–REC relationships at different scales, we further divided the
Tibet data into warm- and cold-season datasets. We divided the cold and warm seasons
using the monthly temperature, with months with a mean temperature below and above
zero representing the cold and warm season, respectively.

2.3. Methods
2.3.1. Distributional vs. Randomized Approach

Modeling involves associating explanatory variables with response variables [43].
Computer scientists developed two approaches for this purpose [43]: distributional and
randomized. In the distributional approach, a certain distribution of the inputs is assumed
by visualizing the raw data, and the most efficient algorithm based on this assumption is
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identified. In the randomized approach, no assumption regarding the input distribution is
made and the data shapes the algorithm based on stochastic moves in the computation [42].
Modeling practices under these two approaches are known as data modeling and algorithm
modeling, respectively [43]. Data modeling [43] features a pure algorithm, the computa-
tional analog of a mathematical function [42], which always produces the same results
with the same inputs without mutation. In contrast, algorithm modeling [43] features a
randomized algorithm [42], which effectively randomizes the inputs and produces results
based on probability; that is, the same inputs do not always return the same result. Most
machine learning algorithms are randomized by default.

The randomized approach has unique advantages in that it can define the complex
relationship between climate and human life. First, the randomized approach provides data
to decide which algorithm fits best, thereby avoiding potential distortions created by the
subjective judgement on how the function should be shaped to best fit the data. Second, the
data-driven nature of this approach enables the models to renew themselves with new data
inputs automatically and in real-time, which accommodates uncertainties caused by climate
change. Finally, as we discuss in Sections 2.3.2 and 2.3.3, model-agnostic interpretation
tools developed under the earth-system perspective can enable interpretations to be readily
compared quantitatively and qualitatively across different algorithm models, which can
effectively facilitate interdisciplinary and cross-section analysis.

2.3.2. Modeling the Climate–REC Functions

Most climate–REC studies have been based on econometric models built using the
distribution approach, which assume that real-world REC, climate, and socioeconomic data
conform to a mathematical function comprising parameters and random errors. Such a
“too-good-to-be-true” assumption can lead to unintended side effects, such as overlooking
the key driver of precipitation, as discussed later. Meanwhile, for algorithm modeling with
minimal presumptions, it is difficult to determine whether the algorithm works well with
the data before testing. We created a pool of eight mainstream candidate algorithms [46].
They are k-nearest neighbors (KNN), support vector regression (SVR), and classification
and regression tree (CART), adaptive boosting (AB), random forest (RF), extra trees (ET),
and the gradient boosting machine (GBM) and multivariate parameter-based ordinary least
squares (OLS).

The KNN algorithm, based on distances between instances in the dataset, assumes that
similar elements are close to each other. It selects a specified number of instances (K) that
are closest to the one concerned, and then chooses the most frequent label for classification
or averages the labels for regression [47]. In the SVR algorithm, one or more hyperplanes
are constructed to separate data. Good separation is achieved by the hyperplane that
has the longest distance from all data points nearby, as it minimizes the generalization
error [48]. The CART algorithm is commonly referred to as the decision tree since it is
constructed by splitting nodes into two child nodes, repeatedly. The split occurs on the
input variable that minimizes the Gini index, a performance measure that measures how
likely a randomly selected instance is wrongly classified [49]. The structure of CART makes
it innately immune to correlation among input variables [50].

The algorithms of AB, RF, ET, and GBM are ensembles of CART. An ensemble combines
several base algorithms (in this case, CART) into one, so as to achieve better performance.
RF and ET are bagging ensembles, where individual trees are independently trained, and
predictions are averaged across trees. The RF and ET differ regarding the splitting of
individual trees and data sampling. Splits occurs where the performance measure is the
best for RF but randomly for ET. Additionally, the RF sub-samples the data by replacement
or bootstrapping, whereas ET uses the original samples [51,52]. AB and GBM are boosting
ensembles that grow one tree at a time, with each new tree correcting errors of the previous
tree. However, the two differ regarding the identification and correction of previous errors.
AB finds errors with high-weight data points by up-weighting previously misclassified
observations in each new tree. GBM, on the other hand, finds errors with the gradient
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loss function derived from previous trees. AB makes corrections by assigning weights to
the trees according to their performances. GBM, however, weights each tree equally but
restricts their predictive capacities using the learning rate, which controls the speed of
correction from one tree to the next [53–55].

In addition to the above-mentioned algorithms, which are all non-parametric, we
also included simple linear regression as a representative pure algorithm in our candidate
pool—a simple OLS model shown in Equation (1):

RECi = β0Tempi + β1Precii + β2 Incomei + β3Popi + ωi (1)

where i denotes the time frame of the sample instance, with RECi denoting REC, Tempi the
mean temperature, Precii the mean precipitation, Incomei the income level, and Popi the
population during the period i. The coefficients β0, β1, β2, β3 indicate effects of temperature,
precipitation, income, and population, respectively, and ωi represents the error. Unlike
the nonparametric algorithms, we have to presume the shape of the climate-REC function
for Tibet. Previous studies found U-shaped temperature-REC relationships [13], i.e., REC
increases both as cold temperature falls and warm temperature increases. However, since
Mexico, with minimal heating infrastructure, does not show an REC increase with tem-
perature falling on the lower end [25], we presume for alpine Tibet, with minimal cooling
infrastructure, that the REC increase with increased temperature at the higher end will also
be absent. With the presumption that REC increases as cold temperature falls in Tibet, we
assume the climate-REC function in Tibet to be linear for OLS modeling. However, we
did not make the OLS scale logarithmic to avoid over-representing the impact of humans
compared to other algorithms, thus providing a fairer data-driven comparison.

To accommodate the stochastic nature of non-parametric algorithms, we ran each
candidate algorithm 100 times using the total, rural, and urban data with their default
hyperparameters in a Python 3.7 environment with the utility of scikit-learn [56]. Data are
standardized to evaluate all candidate algorithms. In the workflow, 80% of the data are
used for algorithm testing and modeling, while 20% are reserved for validation. We split the
training and reserved validation datasets randomly. We used 10-fold cross validation and
the mean squared error (MSE) to estimate the performance of the algorithms. We averaged
the performances of the 100 runs based on the MSE, as shown in Figure 2 (cf., results in
Table S1). Linear regression yields the best fit for rural data, whereas GBM is preferable
for the urban and total data of Tibet. We tuned the hyperparameters of the algorithms
with corresponding data using GridSearchCV in the scikit-learn implementation [56] and
constructed the models. Default hyperparameters were applied for the linear regression
when building the rural model.

That different algorithms were used for rural and urban data for the same location
highlights the advantage of algorithm modeling over data modeling. Since algorithm
modeling does not make assumptions, it provides insights regarding the rural–urban
disparity. The same algorithm was used for the total and urban data, suggesting that the
urban mechanism plays a dominant role in Tibet’s total REC.

2.3.3. Model Interpretation

Models built based on the distribution approach are straightforward. The signs and
absolute values of the coefficients indicate how the corresponding variable affects the result
and by how much. Although models built based on the randomized approach are known
for being “black boxes” that are hard to interpret [57,58], they have been proven to be
interpretable using tools such as FIS [57,59,60] and PDP [59,61–63].
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Figure 2. Algorithm baseline performance using the rural (a), urban (b), and total (c) Tibet datasets.
Negative MSEs of different algorithms for different data are shown in pink and their average rank-
ing for the 100 runs is shown in blue. The shorter the combination of the two bars, the better
the performance of a given algorithm. GBM, gradient boosting machine; ET, extra trees; KNN,
k-nearest neighbors; AB, adaptive boosting; RF, random forest; CART, classification and regres-
sion tree; SVR, support vector regression; LR-simple linear regression model, i.e., ordinary least
squares (OLS) model.

The FIS addresses the “how much” problem as it reflects how useful each feature—the
equivalent of the explanatory variable in machine learning—is at predicting the response
variable (REC in our case) [59]. We used the FIS to interpret the GBM-based urban and total
models. GBM is a tree-based ensemble and the FIS of a GBM is calculated by averaging the
FISs of the features across all individual trees [60]. More specifically, the FIS of a decision
tree is calculated as Equation (2) [64] in the scikit-learn [56]:

f ii =
∑j: node j splits on feature i nij

∑k∈all nodes nij
, (2)

where fii denotes the FIS of feature i, nij the importance of node j where feature i is used to
split the tree; nij is calculated using Equation (3) [64]:

nij = wjCj − wleft(j)Cleft(j) − wright(j)Cright(j) (3)
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where wj denotes the weighted samples reaching node j, Cj the Gini index of node j, left(j)
the child node from the left split on node j, and right(j) the child node from the right split
on node j.

The scikit-learn enables FIS comparison across models by normalizing each feature
importance value to percentages by dividing it by the sum of all feature importance values,
as shown in Equation (4) [56,64]:

norm f ii =
f ii

∑j∈all features f ij
(4)

For tree-based ensembles, FIS for each feature is calculated by averaging FISs of all
trees involved, as shown in Equation (5) [56,64]:

TreeEnsemble f ii =
∑j∈all trees norm f lij

T
(5)

where T denotes the number of trees in the ensemble.
The higher the FIS is, the more important is the corresponding feature for the model.

We used FIS to determine how important temperature, precipitation, income, and popula-
tion are for REC estimation and compared across models.

Regarding the “how”, the contribution of a feature to the results of an algorithm model
cannot be generalized as the signs of the coefficients because randomized algorithms are
multidimensional. However, several methods can reveal the data mechanisms behind, such
as PDPs [59,63]. The PDP function is a model-agnostic interpretation tool that is defined in
Equation (6) [56]:

pdXS(xS)
de f
= EXC [ f (xS, XC)]

=
∫

f (xS, xC)p(xC)dxC,
(6)

where XS represents the feature to be analyzed, XC represents all other input features, and
f is the model function. The PDP function is used to marginalize the model output over
the distribution of XC such that the function reveals the correlation between XS and the
model outcome [50,59,61].

However, the prerequisite of the PDP function is that XS and XC are not corre-
lated [59,61–63]. Table 1 shows that the temperature and precipitation as well as the
income and population in the Tibet data are correlated, thus the PDP cannot be applied for
individual features.

Table 1. Results of Correlation Tests for the Tibet Datasets.

Pair of Variables Season Type Spearman’s Correlation Coefficients Highly Correlated (>0.5)

Temperature-
Precipitation

Year-round - 0.89 Yes
Cold season - 0.5 No

Warm season - 0.81 Yes

Income-Population
- Total 1 Yes
- Rural −0.95 Yes
- Urban 1 Yes

2.3.4. Addressing the Challenge of Multicollinearity

Multicollinearity represents a challenge for both data and algorithm models and
may account, in part, for precipitation being overlooked in previous literature. Since the
precision of the estimated coefficients can be comprised by multicollinearity, it is common
practice to remove or lessen the weight of one of the highly correlated variables (in this case,
precipitation) [65]. However, in our linear rural model, we did not remove a basic climate
indicator, such as precipitation. Instead, we addressed the multicollinearity by dividing
the data into subsets in which temperature and precipitation were not strongly correlated
and by using a tree-based rural model for verification. More specifically, we divided the
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rural data into cold and warm seasons based on whether the monthly temperature was
below or above 0 ◦C, respectively, yielding a cold-season dataset in which the temperature
and precipitation were not strongly correlated (Table 1). In addition, we used the best-
performing tree-based algorithm for the rural Tibet dataset (RF) to construct a tree-based
rural model.

The urban and total models are tree-based GBM ensembles that are innately immune
to multicollinearity, as discussed in Section 2.3.2. Based on the calculation of the FIS for
GBM, as discussed in Section 2.3.3, the FIS is also immune to multicollinearity. Therefore,
we used the FIS to interpret how important each input feature is for the REC estimation
with a special interest in the effect of precipitation. We divided the total data into cold
and warm seasons for the modeling depending on whether the monthly temperature was
below or above 0 ◦C to test our hypothesis regarding the boosting effect of snowfall.

The FIS did not reveal how the features affect the REC; therefore, PDP interpretation
was used. However, tree-based models were also challenged by multicollinearity regarding
the PDP interpretation. The strong correlation between the temperature and precipitation
prevented the quantification of their individual impacts using PDP. Thus, we quantified
their joint effect—combined effect of temperature and precipitation or climate effect—
by inserting tuples into XS and XC in Equation (1). More specifically, we divided the
input features in two groups; namely, a climate group Cl comprising temperature and
precipitation, and a socioeconomic group (Sc) comprising income and population, to
accommodate the assumption for PDP that XS and XC in Equation (6) are not correlated:

Cl = {ci|c i = (Tempi, Precii)} (7)

Sc = {sci|sc i = (Incomei, Popi)} (8)

pdCl(ci) =
de f
= EXC [ f (ci, Sc)] =

∫
f (ci, sci)p(sci)dsci (9)

where Cl and Sc groups do not correlate, thus facilitating quantification of the total contri-
bution of the climate inputs and that of the socioeconomic inputs using PDP functions. As
PDP is a model-agnostic tool, it can also be used for linear models. We thus quantified the
climate and socioeconomic effects on the REC by applying the PDP function to the total,
rural, and urban models of the Tibet REC. We used the PDP tool in scikit-learn [56] for the
PDP computation and visualization.

The existence of climate patterns indicates that the combination of temperature and
precipitation is not random. We thus obtained the mean climate pattern for Tibet with
calendar-month mean temperature TMEANm (Equation (10)) and calendar-month mean
precipitation PMEANm (Equation (11)). We then determined the potential variations of the
mean climate pattern by calculating standard deviations of the monthly mean temperature
TMEANm and monthly mean precipitation PMEANm for the calendar months to obtain the
climate pattern for Tibet Cm (Equation (12)):

TMEANm =
1

nyear

n

∑
i=1

Tim (10)

PMEANm =
1

nyear

n

∑
i=1

Pim (11)

Cm = [(TMEANm ± STD(Tm)), (PMEANm ± STD(Pm))] (12)

Finally, we averaged the marginal effects of all climate instances within the variation
range for each month to obtain the average effect of climate for each calendar month in
Tibet as follows:

Rm = Cm ∩ Cl′ (13)

pdcl′(rm) ≈
1

nRm
∑n

j=1 f
(

rm, sc(j)
i

)
(14)



Energies 2022, 15, 3355 10 of 20

where Rm is the intersection between the climate pattern of Tibet Cm and all the climate
combinations simulated during the PDP calculation Cl′. nRm denotes the number of
instances rm in Rm and pdCl′(rm) denotes the averaged climatic impact on REC in month m.
However, this method cannot be applied to the socioeconomic inputs as a socioeconomic
pattern governed by physical laws is not available for reference.

3. Results
3.1. Effect of Precipitation

Robust interpretation can be achieved only with models with a high predictive ac-
curacy. As Figure 2 indicated, non-parametric machine learning algorithms show better
baseline performances than linear regression for urban and total Tibet datasets, but not for
the rural Tibet dataset. We thus first examined the linear regression-based rural models,
using R2 to measure its performance. Based on the results of the rural model in Table 2,
80.8% of the rural data can be explained with the model, which can be considered as a good
performance. However, the performance of the model based on regrouped data notably de-
creased to 74.5% for cold-season data and significantly increased to 92.7% for warm-season
data. Hence, the OLS explains warm-season data better than cold-season data.

Table 2. Results of the rural model for Tibet.

Data Response Variable R2 Coefficient Predictor Variables p

Tibet Rural 2014–2017
(year-round) REC 80.8%

−38.7626 Temperature 0.698
−71.6497 Precipitation 0.462
600.9989 Income 0.000
−207.8950 Population 0.175

Tibet Rural 2014–2017
(cold season) REC 74.5%

121.7221 Temperature 0.479
−404.0049 Precipitation 0.285
689.3523 Income 0.001

1.0650 Population 0.996

Tibet Rural 2014–2017
(warm season) REC 92.7%

−80.0322 Temperature 0.757
26.1458 Precipitation 0.809

462.7637 Income 0.002
−507.2098 Population 0.007

The coefficients obtained for the temperature and precipitation in the year-round
and warm-season linear rural models may not be accurate owing to the strong correlation
between temperature and precipitation. However, the cold-season linear model, with a
weaker correlation between temperature and precipitation, performed poorer compared
with the year-round and warm season. This shows the limitation of the distributional
approach in differentiating the effects of correlated variables. Therefore, we analyzed the
coefficients only for inference. The coefficients suggest that precipitation plays a more
significant role than temperature throughout the year, particularly in the cold season,
and precipitation and temperature may have opposite effects on REC in the cold season.
The opposite effects suggest the climate-REC relation in the cold-season in rural Tibet is
probably nonlinear.

The p-value of the income, which is statistically significant across all scales, indicates
that the income is the most decisive factor, which is consistent with the finding of previous
studies [16,66]. However, neither temperature nor precipitation is found to be statistically
significant by the linear model, which contradicts previous studies [13,16]. This indicates
that the distributional model, even with a better baseline performance, cannot provide
satisfactory interpretations without transforming the datasets to suit additional human
assumptions as previous studies did [13,14].

Given the multicollinearity of year-round and warm-season data, as well as the weak
linear model performance for the cold season, we verified this interpretation by building
an alternative rural model using the best-performing tree-based algorithm RF for the rural
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dataset. As discussed in Section 2.3, this tree-based rural model is innately immune to
multicollinearity and its FIS results can differentiate contributions from correlated variables
such as temperature and precipitation.

The performance of urban and total models based on the ensemble algorithm was
validated using the MSE of the data set before modeling. We also validated the linear and
tree-based rural models for comparison (Figure 3). The validation results were good for all
four models, suggesting that the models were not over-fitted. After tuning, the RF-based
rural model outperformed the linear rural model, although the linear model had a higher
baseline performance. We thus used both models as valid rural models in our discussion.
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We extracted the FISs from the tree-based year-round rural model as well as the urban
and total year-round models (Figure 4). The FIS results indicate that climate contributes
about 16.46% and socioeconomic factors contribute about 83.55% to total Tibet REC es-
timation. The tree-based rural year-round model validated our inferences based on the
linear rural model that the income with highest FIS (FIS ~44.52%) is the most important
for Tibet’s rural REC estimation, while precipitation with a slightly higher FIS (~7.43%)
than temperature (FIS ~7.36%) is the more important climatic factor throughout the year.
For the urban Tibet REC, the population (FIS ~43.55%) was the most important factor, and
precipitation was the more important climatic factor (FIS ~13.72%) than temperature (FIS
~11.34%). For the total Tibet REC, precipitation (FIS ~8.98%) remained the more important
climatic factor than temperature (FIS ~7.48%); population (FIS ~44.02%) was identified as
the most important factor overall. The total data cancelled out the effect of urbanization on
the REC as it generalized the rural–urban disparity. Given that the FISs of different models
were comparable, precipitation was more influential in urban Tibet (FIS ~13.72%) than in
rural Tibet (FIS ~7.43%).

To be sure of the importance of precipitation, we also estimated Tibet’s total REC based
on biased datasets, which included only the temperature or the precipitation as climate
input (Figure 3e,f, respectively). The validation is considerably better with precipitation
(Figure 3f) than without (Figure 3e). The model trained without temperature (Figure 3f),
however, performs almost as well as the model trained with both the temperature and
precipitation (Figure 3d). This confirms the FIS results that precipitation is the more
important climatic factor for estimating Tibet REC.

Considering that the correlation between the temperature and precipitation was weak
in the cold season (Table 1), we consider precipitation became the stronger driver of the
REC at temperatures below 0 ◦C. We infer that the climate pattern in the Tibetan Plateau
region may be the key for explaining the significant effect of precipitation. Precipitation in
months with below-zero temperatures likely occurred as snowfall, suggesting that the effect
of precipitation was most likely based on snowfall. The steep and high topography of the
Tibetan Plateau led to colder weather; thus, precipitation more likely occurs as snow. Snowy
weather can increase the electricity consumption by both generating a high energy demand
for heating and keeping residents indoors. To test this theory, we modeled cold-season and
warm-season total, rural and urban data, and assessed the validation and FISs.

We considered the performance of cold-season and warm-season total, rural and urban
models (cf., results in Figure S1) to be acceptable for FIS interpretation. All the models
suggest that precipitation is the more important climatic factor in the cold season (Figure 4),
whereas the temperature is more important for estimation in the warm season (Figure 4).
This supports our hypothesis that precipitation impacts REC through snowfall events
during the cold season.

It is noteworthy that the rural cold-season model registered the highest FIS across
the board with income contributing ~57.68% to its estimation, suggesting rural Tibet
REC during the cold season is highly sensitive to income. While income is the more
important socioeconomic factor than population across all the rural models (Figure 4), pop-
ulation is found to be more important (FIS~43.55%, FIS~49.82%) than income (FIS~31.39%,
FIS~28.82%) for urban year-round and cold-season models (Figure 4).

3.2. Climate and Socioeconomic Effects

We used PDPs to quantify the climatic and socioeconomic effects on the REC for the
total, rural, and urban data of Tibet (Figure 5). In contrast to the FISs, PDPs are model-
specific and thus cannot be compared across models quantitatively. We compared the
quantification of the climatic effects using graphs. Both the linear rural model (Figure 5a)
and tree-based rural model (Figure 5c) were interpreted. Based on the PDP definition, the
PDP of linear models will also be linear, which explains the smoother PDP of the linear rural
model compared with the rugged PDP of the nonlinear tree-based rural model. Although
the tree-based rural model provides more detailed information, it is consistent with the
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linear rural model. Both suggest that the effect of the climate on the REC is heating-driven
as the effect of the climate increases with decreasing temperature. The same is true for the
urban (Figure 5e) and total (Figure 5g) models. Interpreting precipitation, as discussed in
Section 3.1, cannot be isolated from the temperature. We thus used the climate pattern to
interpret the effect of the precipitation, which will be discussed in Section 3.3.
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Figure 5. Climatic and socioeconomic effects on Tibet’s REC. All plots are partial dependence plots
(PDPs), with the color panel indicating how much the respective feature contributes to the REC
estimation of the respective model. Plots (a,c,e,g) are PDPs of climate features and plots (b,d,f,h) are
PDPs of socioeconomic features. Plots (a,b), (c,d), (e,f), and (g,h) present the results of the linear rural
model, tree-based rural model, urban model, and total model, respectively.
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Socioeconomic factors differently affected Tibet’s rural REC (Figure 5b,d) and Tibet’s
urban and total REC (Figure 5f,h). Income growth increased the REC in all models. The
main difference can be observed for the population. Rural population growth decreased the
REC, whereas urban population growth increased the REC. One of the defining features of
urbanization is that the rural population decreased whereas the urban population increased.
Based on placing the different roles of the rural and urban population in urbanization, the
rural, urban, and total models yielded the same conclusion that urbanization increased the
REC. The combination of temperature and precipitation is governed by physical laws—the
climate pattern—whereas the combination of income and population does not follow
a specific pattern. It is, therefore, difficult to differentiate their precise contributions.
Accordingly, we conclude that the effect of the climate on Tibet’s rural, urban, and total
REC is driven by heating-related demands. Income and urbanization boost the REC in
rural, urban, and total Tibet.

3.3. Different Climatic Effects Due to Urban–Rural Disparity

We further interpreted the PDPs of the climate features based on the climate pattern
using the method expressed in Equation (14), which resulted in Figure 6. The general
shapes of the curves of the climate feature PDPs of all models were consistent. The effect
of the climate was stronger during the cold season than during the warm season. This
confirms our previous conclusion that the effect of climate on the REC in Tibet is driven by
the heating-related demand. However, the curves also exhibited differences.
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Figure 6. Effect of the climate on the REC in rural, urban, and total Tibet. All plots show the
marginal effect of the climate feature in the respective model (purple curve). The temperature and
precipitation averaged by the calendar month are represented by blue and green curves, respectively.
Plots (a–d) show the results of the linear rural model, tree-based rural model, urban model, and total
model, respectively.
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Similar to the PDPs, the curve of the linear rural model was smoother (Figure 6a) than
the tree-based rural model (Figure 6b). The curve representing the rural climatic effect on
the REC was V-shaped, whereas that of the tree-based rural model was U-shaped, except
for the significant increase in April. Given that the tree-based rural model outperformed
the linear rural model after tuning, the April peak as well as other smaller fluctuations were
likely smoothed out by the linearity in the linear rural model. This highlights the advantage
of the machine learning algorithm in capturing smaller changes in the data mechanism.

The shapes of the curves for the urban and total climate features were similar, with the
climatic effect being the strongest during the winter months (November, December, and
January), as well as peaks in April and September. This indicates that the data mechanism
underlying the urban model is dominant in Tibet.

Both the tree-based rural model and urban model exhibited the April peak when the
mean temperature was below zero, and the precipitation was the highest for the below-
freezing months. Combined with our earlier conclusion regarding the role of precipitation,
this peak was caused by the effect of snowfall. The April peaks suggest that the precipitation
(snowfall) in the cold season boosts the REC in Tibet.

However, the September peak visible in the urban model was absent in the rural
model. September is characterized by a mean temperature above zero and the highest
precipitation after the summer months of June, July, and August. Because the temperature
drops below zero in October, the potential of snowfall or freezing rain during the latter part
of September is high. Our earlier conclusion that the effect of precipitation is stronger in
urban Tibet than in rural Tibet may explain the absence of the September peak in the curve
of the rural model.

We further investigated the factors that contribute to the stronger effect of precipitation
in urban Tibet. Considering that the climatic inputs of the rural and urban models are the
same, the different magnitudes of the effect of the climate in September on the rural and
urban REC can only be caused by the contribution of different socioeconomic factors. The
difference between the rural–urban population, as discussed in Section 3.2, is related to the
urbanization effect, based on which the REC in both communities increases. Therefore, the
only factor that might lead to this difference in the effect of the climate is the income. Thus,
the difference in the sensitivity to electricity costs due to the rural–urban income disparity
has contributed to the differing effect induced by the climate on the REC in September. It
is likely that electricity-sensitive rural residents respond to an ever-colder September by
wearing more clothes, whereas their urban peers who are less sensitive to electricity costs
likely employed electricity-aided heating for comfort.

Therefore, we conclude that the snowfall increases the REC in Tibet. The rural–urban
income disparity leads to the stronger effect induced by climate on urban Tibet than on
rural Tibet, particularly in September when electricity-aided heating is considered optional.

4. Discussion

Our results provide insights into the contribution of precipitation and socioeconomic
disparity to the effect of climate on the REC in alpine regions, as well as elsewhere, during
cold seasons. Our results highlight that precipitation plays a major role in shaping climatic
impact, which has been largely overlooked in previous studies. Our study highlights that
climate-related energy studies should treat climate as a whole rather than focusing on the
temperature alone, particularly for studies concerning cold winters and extreme weathers
such as blizzards.

This study is useful for policymaking regarding climate change adaptation, for exam-
ple, based on the climate projection that Tibet is becoming warmer and wetter, we suggest
that the climate-related REC in Tibet may not just fall with warming. If more precipita-
tion in the region leads to more snowfall events, then climate-related REC will increase
considerably in the region. With urbanization and income growth, climate is expected
to contribute more to Tibet REC since income growth can lead to a higher adoption rate
of AC and a lower sensitivity of energy cost. As the region is experiencing fast climate
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change as well as economic growth, monitoring systems should be built for the continuous
observation of climate-REC dynamics to inform adaptation efforts of grid planning and
power distribution in the region.

This study can also benefit early warning projects aimed at protecting against power
outages induced by extreme weather, since the model developed in this study is purely
data-driven and can be easily replicated using high-frequency meteorological and REC
data for short-term REC prediction. The proven predictive power of machine learning
models can enable REC prediction based on meteorological forecast, thus helping warn
against extreme weather-induced power surges and prepare the power transmission system
in advance.

Moreover, this study emphasizes the advantage of the nonparametric machine learning
algorithms based on their better predictive accuracy and interpretability necessary for
building data-driven interdisciplinary models. While the distributional models with readily
available coefficients are easier to interpret, their interpretations are severely challenged
by multicollinearity. Compared with previous studies using a distribution approach,
our method facilitates interpretation of the importance of temperature and precipitation
separately, as well as their combined effect. By addressing the multicollinearity, our model-
agnostic interpretation method has the potential to be used to improve damage functions
of different sectors and better inform climate-related policymaking and policy assessment.
Our method can be easily replicated for other interdisciplinary and cross-section analysis
in earth system science, as human presumptions have been minimized throughout the
modeling process.

A limitation of our study is the qualitative analysis of the contribution made by
socioeconomic factors. Thus, additional investigation into the correlations among income,
population, and urbanization are needed to more accurately determine the role of income
and population.

Besides, the quality of data-driven models depends on the data. For REC data, monthly
is the highest frequency available in Tibet for now. Our study is thus kept from investigating
linkages between snowfall events and corresponding real-time REC due to data resolution.
However, the model validation results of our study have proven the strength of machine
learning algorithms with limited data. We would expect more insights when our study is
replicated using future penal data of a higher frequency.

Also, while the FIS tool has enabled individual contributions of temperature and
precipitation to be compared quantitatively across models, the PDP-enabled climatic im-
pact quantification remains model-specific and can only be compared qualitatively across
models. We would expect future advances in interpretable machine learning to help shed
light on this.

5. Conclusions

Our study found that the climate contributes about 16.46% and socioeconomic factors
contribute about 83.55% to total Tibet REC. Climatic effects on REC are stronger in urban
Tibet (FIS ~25.06%) than rural Tibet (FIS ~14.79%). For total, rural, and urban Tibet’s REC
estimation, precipitation is more important (FIS ~8.98%, FIS ~7.43%, FIS ~13.72%) than
temperature (FIS ~7.48%, FIS ~7.36%, FIS ~11.34%). The effect of precipitation is largely
based on snowfall during the cold season when the monthly mean temperature is below
0 ◦C. Rural Tibet REC is more sensitive to income, especially during the cold season (FIS
~57.68%). Urban Tibet REC is generally more responsive to population (FIS ~43.55%) except
for during the warm season when income becomes more important (FIS ~52.72%). The
rural–urban income disparity has resulted in a stronger climate-based effect on urban Tibet
than on rural Tibet, particularly in September when electricity-aided heating is considered
optional. The results of our study can help improve the climate–energy damage function
for SCC estimation and inform climate change adaptation efforts in the region. Our method
can be easily replicated with meteorological forecast data to warn against extreme weather
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induced power outages. With few presumptions, the method is also readily available for
other interdisciplinary and cross-section studies.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/en15093355/s1, Table S1. Results for the Tibet 2014–2017 data at
different scales; Figure S1. Model validation results.
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