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Abstract: Traditionally, electric power systems are subject to uncertainties related to equipment
availability, topological changes, faults, disturbances, behaviour of load, etc. In particular, the
dissemination of distributed generation (DG), especially those based on renewable sources, has
introduced new challenges to power systems, adding further randomness to the management of
this segment. In this context, stochastic analysis could support planners and operators in a more
appropriate manner than traditional deterministic analysis, since the former is able to properly model
the power system uncertainties. The objective of this work is to present recent achievements of
one of the most important techniques for stochastic analysis, the Monte Carlo Method (MCM), to
study the technical and operational aspects of electric networks with DG. Besides covering the DG
topic itself, this paper also addresses emerging themes related to smart grids and new technologies,
such as electric vehicles, storage, demand response, and electrothermal hybrid systems. This review
encompasses more than 90 recent articles, arranged according to the MCM application and the type
of analysis of power systems. The majority of the papers reviewed apply the MCM within stochastic
optimization, indicating a possible trend.

Keywords: Monte Carlo Method; electric power systems; smart grids; distributed generation

1. Introduction

One of the main objectives of the Electric Power System (EPS) is to provide electricity
at the lowest possible cost to society, ensuring both an acceptable quality and reliability
of the energy supply. However, regardless of how it is designed or operated, an EPS is
subject to non-deterministic events that can compromise the regularity of service and power
quality [1].

In the distribution system segment, operators need to contend with the new challenges
imposed by distributed generation (DG), which changes the traditionally unidirectional
flow, making distribution networks active and causing technical impacts associated with
the occurrence of reverse flow. In addition, the location and size of DG units introduces
uncertainties in distribution networks. Finally, there is also a randomness associated with
electricity demand, especially within the context of new technologies—such as electric
vehicles (EVs) and energy storage devices—and demand-side management [2].

For years, the impacts of DG on the EPS have been widely discussed in the literature.
A review focused on the impacts of protection and regulation of distribution networks
is presented in [3]. Conversely, [4] addresses photovoltaic (PV) DG allocation problems,
including an overview of optimization algorithms and methodologies for assessing PV
potential. References [5,6] present reviews on DG hosting capacity (HC), which is typi-
cally calculated in terms of power quality, protection, overvoltage, equipment overload,
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and losses. Finally, [7] provides a holistic review of how DG can affect the EPS in the fu-
ture, covering several aspects such as environmental, geographical, regulatory, marketing,
technological, infrastructural, and social.

The deterministic analysis of EPSs is limited, as it does not adequately model the
various uncertainties associated with system operation, especially those related to the
stochastic nature of load and generation. For example, extreme scenarios generally investi-
gated by deterministic approaches may represent states that are unlikely to occur, leading
to the rejection of viable proposals or to excessive investments and risks [8]. Alternatively,
planning based on deterministic analysis of scenarios with a high probability of occurrence
but with low severity may not provide the best performance in terms of reliability and
adequacy of the system [1].

Recently, the randomness added by new technologies into the EPS has often been
considered in planning and operation studies, especially in the distribution segment.
Papers [9–14] are examples of recent reviews covering uncertainty modelling techniques
and stochastic analysis of electrical networks. According to [9,12,14], uncertainty modelling
techniques can be classified as probabilistic techniques, stochastic optimization, robust
optimization, possibilistic techniques, hybrid probabilistic-possibilistic techniques, and
information gap decision theory (IGDT). It is worth mentioning that probabilistic techniques
include analytical and numerical methods, and that the Monte Carlo Method (MCM) is
the most used numerical one. In fact, due to its relevance, the MCM is mentioned in the
aforementioned reviews [9–14]. In [11,12,14], some variations of the MCM are discussed,
such as the Sequential Monte Carlo (SMC)—which allows sampling chronological and
temporally dependent data—and the Monte Carlo Markov Chain (MCMC)—used to sample
a probability distribution from the construction of a Markov Chain. In particular, the present
work focuses especially on the MCM, and proposes new categories to classify the reviewed
papers.

Analytical probabilistic methods are statistical techniques that normally require simpli-
fications in the formulation of the problem to allow calculating the moments and probability
functions of the output variables. However, some problems can present such a high degree
of complexity that it may be extremely difficult or even unfeasible to apply analytical
methods [15]. According to [9], analytical methods can be classified as methods based
on linearization (such as convolution, cumulants, Taylor series expansion, and first-order
second moment) or based on the approximation of probability distributions (such as point
estimation method (PEM) and unscented transformation).

The application of MCM is widely addressed in the literature, as it ensures greater flex-
ibility and allows for the consideration of non-linear power flow relationships, operational
strategies, as well as spatial and temporal correlations [2]. However, MCM requires a high
computational effort, which can be improved by applying techniques such as sampling
based variance control and high-performance computing. Furthermore, the current pro-
cessing capacity of personal computers and the availability and accessibility of databases
are no longer crucial restrictions for the application of MCM, unlike the technological
context of past decades. This recent background favours the use of MCM to study emerging
technologies in EPSs, including DG.

The objective of this work is to present the state of the art of MCM applied to electrical
networks with DG, with an emphasis on the technical and operational aspects of the EPS.
This review discusses the main stochastic simulation techniques related to the MCM that
have been used in the literature recently, as well as the analyses conducted by the studies
in question. The topic in question is pertinent, especially given the current context of
transition of the electricity sector towards active and intelligent networks, subject to the
randomness of renewable sources and emerging technologies.

The remainder of this paper is organized as follows: Section 1.1 presents the overall
criteria considered in the literature review. Next, the basic concepts of the MCM are
introduced in Section 2. Then, the proposed literature review is detailed in Sections 3 and 4.
Finally, the conclusions are exposed in Section 5.
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1.1. Criteria Adopted for the Literature Review

The scope of this work includes only papers focusing on technical impact analysis,
operation, and planning of the EPS. In Section 3 the selected works are classified into
different categories based on the type of simulation technique used, while in Section 4 the
works are classified according to the area of analysis of electrical networks, technologies
associated with DG, and the uncertainties observed in these papers.

The literature review has been carried out through the Web of Science database
(Clarivate Analytics main collection), by searching for the conjunction of the keywords
‘Monte Carlo’ AND ‘Distributed Generation’, in the ‘Topic’ field (TS). Although other terms
could have been included in the search process, especially to characterize the DG, the
authors consider that the papers selected through the adopted criteria adequately cover
the proposed theme of the review. The search process was carried out at the end of 2021,
considering only recent papers from 2018 onwards. In all, 94 works have been selected.

2. The Monte Carlo Method

The name ‘Monte Carlo’ refers to the main district of Monaco, well known for its
casino complex. The method was created at the end of the Second World War by physicists
who were working with the atomic bomb. The development of the first digital computer,
ENIAC (1946), allowed Jon Von Neuman to apply the MCM to solve thermonuclear and
fission problems in 1947. The first paper on the method was published by Metropolis and
Ulam in 1949. MCM has evolved over time along with computational advances. Currently,
it has wide application in various areas such as engineering, finance, statistics, physics,
biology, medicine, social sciences, etc. [16].

Figure 1 shows a simplified flowchart of the MCM. It consists of the following main
steps: first, the computational model and the probability distributions of the random
variables are defined. The developed model must be a valid representation of the studied
system so that the computer simulations guarantee reliable results. Next, for each iteration,
the model state is randomly sampled and, after that, the model behaviour is evaluated
numerically. Finally, the results of each iteration are processed to obtain model statistics
and its expected performance (or behaviour).

Through MCM, it is possible to calculate performance indexes to assess the com-
putational model considering uncertainties. Therefore, stochastic simulations allow the
evaluation of several characteristics of these indicators such as mean, variance, probabilities,
confidence intervals, relative error, etc. For instance, suppose one wants to calculate a
generic indicator ` through (1):

` = E[H(X)] =
∫

H(x) f (x)dx (1)

where X is a random variable with probability density function (PDF) f , H(X) is a generic
real function, called performance indicator, and E[H(X)] is the expectation of H(X) with
respect to the random variable X. Then, ` can be estimated using the MCM, by calculating
the sample mean via (2):

ˆ̀ =
1
n

n

∑
i=1

H(Xi) (2)

where X1, X2 . . . Xn is a random sample of X from PDF f , and n is the sample size.
The estimator ˆ̀ is considered unbiased, since E[ ˆ̀] = `. Furthermore, by the law of

large numbers, ˆ̀ tends to ` for a sufficiently large n [15]. Another relevant observation is
that the central limit theorem ensures that for a large n, ˆ̀ has an approximately normal
PDF, even if H(X) does not have a normal PDF [17].
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Another important estimator is the sample variance S2, which tends to the theoretical
variance σ2 for a sufficiently large n, according to the law of large numbers. Equation
(3) presents the calculation of the sample variance, with respect to estimator ˆ̀. Once the
variance is known, it is possible to calculate indicators, such as confidence intervals and
relative error, which allows verifying the convergence of the MCM and the accuracy of the
estimator.

S2 =
1

n − 1

n

∑
i=1

(H(Xi)− ˆ̀)
2

. (3)

Next, in the remainder of this section, a practical example of the MCM is presented
in Section 2.1, while some improvements and variations of the method are discussed in
Section 2.2.

2.1. A Simple Example of MCM Application: π Value Estimation

As an illustrative example, the general MCM algorithm from Figure 1 could be applied
to estimate π. Consider a circle with radius r inside a square with side length 2r. Since the
circle area (Ac) is πr2 and the square area (As) is 4r2, π can be written as a function of the
ratio of these areas, as indicated in (4):

Ac
As

= πr2

4r2 = π
4

∴ π = 4 × Ac
As

.
(4)
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The MCM procedure is described as follows: Define X as the random vector of
coordinates [x1, x2] with uniform PDF in the interval [−1, −1] to [1, 1]. In addition, define
the performance indicator H(X) as in (5):

H(X) = 4 × Ic (5)

where Ic is an indicator function that denotes if a sample of coordinates falls within the
circle, as in (6). Besides, note that the factor 4 in (5) comes from the ratio of areas in (4).
Finally, the π estimated value (π̂) can be computed through (7):

Ic =

{
1, if x2

1 + x2
2 ≤ r2

0, otherwise
(6)

π̂ =
1
n

n

∑
i=1

H(Xi) (7)

Figure 2 exhibits some results of the proposed experiment. Figure 2b shows the
convergence of π value estimation, indicating that the estimated value tends to the true
value of π for a sufficiently large number of iterations.
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2.2. Notable Advancements and Variations of the MCM

The simple approach described previously, represented in Figure 1 and applied in
the example of Section 2.1, is often referred to as the Monte Carlo integration, due to
its applicability on integration problems. This basic algorithm can be structured more
efficiently, aiming to obtain a more reliable estimator and to reduce the computational
effort. Besides this basic application, MCM encompasses a family of simulation-based
algorithms that rely on random sampling. Some of the most well-known advancements or
variations of the MCM are described below:

• Importance Sampling (IS)

IS is one of the most used techniques of variance reduction, and it can be applied to
the simulation of rare events, i.e., the ones with a low probability of occurrence. The idea
is favouring relevant events by changing the PDF used for sampling and then correcting
the sample mean to match the one that would be obtained with the original PDF. Despite
its effectiveness (which can overcome the order of millions in variance reduction when
it comes to rare events [15]), the IS can be difficult to implement in comparison to other
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variance reduction techniques [12]. The process of choosing the importance sampling PDF—
that is, the one that leads to the smallest variance possible, if used to sample instead of the
original distribution—can be formulated as an optimization problem with the objective
of minimizing the variance. A technique widely used to solve this problem is the Cross-
Entropy (CE) method. In [2], for instance, the IS with CE is used to calculate the probability
of line overload and bus undervoltage in IEEE test networks. For more details about IS and
CE, the readers are referred to [15,18]. Besides the CE, the review paper [12] also mentions
Adaptive Importance Sampling (AIS) and Sequential Importance Sampling (SIS) as relevant
IS variations.

• Monte Carlo Markov Chain (MCMC)

MCMC is a sampling method that relies on both MCM and Markov Chain concepts.
The idea is to draw samples from a target distribution based on the sequential process of
a Markov Chain, such that the new generated random sample depends only on its direct
predecessor. MCMC is often related to Bayesian inference, as the former allows for the
predicting of the posterior distribution, which is a difficult task to be done analytically.
According to [12], some of the main MCMC algorithms are Metropolis–Hastings, Gibbs
sampling, and Differential Evolution. Metropolis-Hastings is simple and effective, but
it is not recommended in the event of very strongly correlated parameters. Conversely,
Gibbs sampling is more suitable to represent the correlation of multivariate problems by
sampling from conditional distributions. Nonetheless, the computational efficiency of
Gibbs sampling can be improved by using multiple chains, as in Differential Evolution
algorithm. The advantages and disadvantages of these algorithms are covered in further
details in [12,19]. For more information about MCMC, the readers are referred to [15,16].

• Quasi-Monte Carlo (QMC)

QMC methods are deterministic variations of the MCM. In other words, QMC follows
the same general algorithm proposed by MCM, but uses deterministic low-discrepancy (or
quasi-random) sequences rather than pseudo-random sampling. The reason behind using
low-discrepancy sequences is to more uniformly cover the sampling domain by generating
more equidistant samples, which can lead QMC to outperform MCM in terms of accuracy
and faster rate of convergence [11]. Nevertheless, QMC performance can deteriorate in
high-dimensional cases. Reference [20] discusses the implementation of QMC in high
dimensions and explains why QMC can be superior to MCM and the variance reduction
method Latin Hypercube Sampling (LHS). Some examples of quasi-random sequences are
Halton, Sobol, Faure, and Niederreiter [20]. For more information about QMC, the readers
are referred to [21,22].

• Sequential Monte Carlo (SMC)

SMC—also known as the particle method—allows representing temporal and chrono-
logical dependence of the system states, unlike the traditional Non-Sequential Monte
Carlo (NSMC)—also known as the state sampling approach [9,14]. According to [23],
SMC provides a flexible simulation-based procedure to calculate posterior distributions,
which can handle high-dimensional, non-linear, and non-Gaussian models. This method
is particularly useful to consider EPS component outage, failure, and repair time over
a given period of service in reliability studies [11]. A popular improvement of SMC is
the Pseudo-Sequential Monte Carlo (PSMC), which is easy to implement and faster than
conventional SMC [14]. PSMC relies on the non-sequential sampling of system states and
on the chronological simulation of only the sub-sequences associated with failed states [24].
SMC applications in reliability assessment of EPS are covered in further details in [1]. For
general information about SMC, the readers are referred to [23].

The next section discusses the proposed literature review regarding the type of simu-
lation techniques used. Note that some of the advancements and variations of the MCM
addressed in Section 2.2 are also mentioned in Section 3.
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3. Simulation Techniques

In this section, the reviewed papers are approached regarding the simulation tech-
niques, according to the following classifications: Crude Monte Carlo (CMC), Computational
Efficiency Enhancement (CEE), Advanced Techniques for Uncertainty Modelling (ATUM), Stochas-
tic Optimization (SO), and MCM as Benchmark (MCM-BK). Table 1 exhibits the selected
works, organized according to the aforementioned categories of simulation techniques.
Note that the same reference can be classified in more than one category.

Table 1. Classification of the reviewed papers—simulation techniques.

Simulation Techniques * References No. of References

CMC [25–38] 14
CEE [39–66] 28

ATUM [39,45,47,48,51,53,54,59,61,62,67–79] 23

SO [25,39–41,43–52,54–58,60,64,66–
68,70,72–74,76,77,80–112] 63

MCM-BK [70,71,75,77–79,86,112–118] 14
* Simulation Techniques: Crude Monte Carlo (CMC), Computational Efficiency Enhancement (CEE), Advanced
Techniques for Uncertainty Modelling (ATUM), Stochastic Optimization (SO), and MCM as Benchmark (MCM-
BK).

• Crude Monte Carlo (CMC)

CMC refers to MCM in its simplest form, which commonly requires a high computa-
tional effort. If a reference falls into any of the other categories, it should not be classified
as CMC, since this reference proposes improvements in MCM or it uses the MCM as a
secondary technique for comparison purposes (as for MCM-BK).

There are several works in this category focused on the analysis of power quality
indices. Reference [29] for example, uses the MCM to consider the market influence (via
Bass model) in the random locations of PV DGs, in order to analyse the DG impacts in terms
of losses, voltage, consumption, and cable ampacity. In [37], the control of a Solid-State
Transformer (SST) is implemented to improve the DG HC, in terms of voltage and current
violation. In this sense, MCM is applied to calculate the HC considering uncertainties in
the location and capacity of DG. Paper [26] analyses the magnitude and voltage unbalance
when applying phase-to-ground faults (with random location) in LV networks, considering
uncertainties in load and PV DG.

In terms of reliability analysis in EPSs, [31] proposes the allocation of DG based
on the interruption duration index at the points of common coupling. Note that the
allocation is not performed through an optimization algorithm, but qualitatively, based on
the calculation of the indicator obtained via MCM. In addition, other well-known reliability
indices are evaluated, such as Energy Not Supplied (ENS) and System Average Interruption
Frequency Index (SAIFI). These indices are also calculated in [36], which assesses the impact
of DG on the coordination of the protection system and on the reliability of distribution
networks. This paper considers uncertainties on the failure rate and repair time of the
network components (transformers, voltage regulators, and feeders). Reference [25] adopts
the MCM to evaluate the robustness of the distribution network expansion planning,
considering substation reinforcement as well as the allocation of EV charging stations,
DG, and capacitor banks. That is, the MCM is only used to calculate the substation
capacity failure rate for the solutions found in the planning, and not as a tool to solve the
optimization problem itself—note that, while there is a robust optimization problem (in
which the MCM is not applied), this article was exceptionally classified simultaneously in
the categories SO and CMC, as there are two separate analyses.

• Computational Efficiency Enhancement (CEE)

CEE includes methods that aim to reduce the computational effort or improve the
processing capacity, in order to decrease the MCM simulation time. It comprises techniques
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of variance reduction, scenario reduction, and high-performance computing, as indicated
in Figure 3.
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Most of the works in this category present scenario reduction techniques, which are
widely used in stochastic optimization problems, so that the optimization is performed
on the set of reduced scenarios, reducing the computational effort. The most used tech-
nique is k-means [43–46,51,53,66], but there are also k-medoid [39], k-means++ [49], fuzzy
C-means [48], simultaneous backward reduction [41], Kantorovich distance scenario reduc-
tion [52], and Factor Analysis (FA) method [57]. Clustering techniques as k-means aims
to group the generated scenarios in such a way that the main statistical characteristics of
each group are preserved, while methods such as Kantorovich’s select the reduced set of
scenarios so that it presents a probability distribution close to the one of the original sets.
Reference [42] combines k-means with metaheuristics—genetic algorithm (GA), particle
swarm optimization (PSO), differential evolutionary (DE), harmony search (HS), and artifi-
cial bee colony (ABC)—to minimize the sum of the distances between each scenario and the
centre of its respective cluster. Finally, there are also works that propose scenario reduction
methods, but that do not have a well-defined name, as in [50,54].

Variance reduction techniques aim to reduce the variance of the samples, allowing it
possible to increase the precision of the estimator without changing the number of sam-
ples. The variance reduction technique most found in this review is the LHS [46,53,55,64],
which is a Stratified Sampling (SS), i.e., a sampling method applied independently in
each population stratum. References [47,48] apply the QMC, which adopts a deterministic
sequence of low discrepancy instead of the random or pseudo-random sampling used in
the traditional MCM. Alternatively, [59,65] implement variations of the IS method called
Latin Hypercube-Important Sampling Method (LHISM) and AIS, respectively. IS is one of
the most effective methods of variance reduction, especially when estimating rare events
(with a very small probability of occurrence) [15]. Nevertheless, choosing the appropriate
importance sampling distribution can be an arduous task, making the implementation of
IS much more complex than LHS and QMC, for example. The review paper [12] presents
other examples of variance reduction techniques, such as Common Random Numbers
(CRN), Antithetic Variates (AV), Control Variates (CV), and Dagger Sampling (DS).

There are also works that use advanced hardware and software resources to improve
computational processing. Papers [56,60] implement Aris High Performance Computing
to solve stochastic optimization problems using MCM as an optimization tool. Mean-
while, [63] applies the MCM with parallel processing as a tool for optimal allocation of
DG, in order to reduce losses and improve the voltage profile. However, note that this
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last paper does not consider uncertainties in the optimization and, therefore, it is not
classified in the SO category. Reference [58] implements high-performance computing—via
OpenCL language—together with a metaheuristic to solve a multi-objective problem of
DG allocation, using MCM for the dealing with load and renewable DG uncertainties. In
general, the computational resources used in the works cited in this paragraph are hardly
detailed, seeming that there is low complexity in the implementation of these tools.

Finally, there are also methods of CEE that have not been included in the categories
of Figure 3. Paper [40], for example, uses a polynomial neural network (PNN) to con-
sider uncertainties with a faster convergence than the traditional MCM, but the MCM
is still considered in the initial part of the algorithm for training the neural network. In
contrast, [61,62] propose the Accelerated Monte Carlo Method (AMCM) and the MCM
with adaptive variable-step search, respectively, to improve the efficiency of the MCM
algorithm.

• Advanced Techniques for Uncertainty Modelling (ATUM)

In basic applications of the MCM, well-known probability distributions are usually
used to represent the uncertainties. Therefore, on the contrary, this category only comprises
works that present more advanced modelling techniques. The idea is to use models that
allow a more realistic representation of the analysed systems.

Instead of adopting simpler distributions, several works model the uncertainties
through stochastic processes such as Brownian Motion [62] and Markov Chain [47,61,75,77],
including MCMC [45]; autoregressive models such as autoregressive-moving-average
(ARMA) [62,76] and autoregressive-integrated-moving-average (ARIMA) [68]; as well as
through mixture models such as Gaussian Mixture Model [62,69] and Weibull Mixture
Model [71]. For instance, [75] evaluates the contribution of storage systems in the reliability
of distribution networks, using Markov Chain to model the operation of network compo-
nents such as transformers, lines, DG, and storage system. Reference [76] adopts ARMA
and the autoregressive process (AR) to model wind speed and irradiance, respectively.

Some works implement techniques for estimating probability distribution functions of
the considered random variables, such as through Kernel density estimation (KDE) [39,51,73].
For example, [39] uses KDE to model irradiance uncertainties. In contrast, [67] proposes
a new synthetic model for the generation of daily load profiles, which are validated from
metrics such as the occupied bandwidth (OBW). Still in terms of modelling probability distri-
butions, Copula is used in [51,73,77] to obtain joint distributions, allowing the consideration
of the correlation of random variables. Reference [73] models the various uncertainties of
residential load (use of computer, lighting, air conditioning, and EV charging) based on
historical data, Gaussian Kernel, and Gaussian Copula. Furthermore, the representation of
the correlation itself has been assumed in this review as an advanced uncertainty modelling.
For example, [48,74,78] consider the correlations of random variables associated with wind,
PV generation, and load.

• Stochastic Optimization (SO)

SO refers to optimization works that consider uncertainties in the formulation of the
problem. In Table 1, this category presents the highest number of papers, with almost 70%
of the total, indicating a possible trend in the theme of the review. Optimization problems
can be solved through metaheuristics, mathematical programming, or by using the MCM
itself as an optimization tool.

The most used metaheuristics are the Genetic Algorithm (GA) [47,51,98] and Particle
Swarm Optimization (PSO) [43,76,91], including variations such as the Evolutionary Par-
ticle Swarm Optimization (EPSO) [40], Quantum-Behaved Particle Swarm Optimization
(QPSO) [77], Multiobjective Particle Swarm Optimization (MOPSO) [89,104], and Nondom-
inated Sorting Genetic Algorithm (NSGA-II [39,41,92] e NSGA-III [80]). Other examples
of recently used metaheuristics are: Improved Bee Algorithm (IBA) [74], Biogeography
Based Optimisation (BBO) [97], Backtracking Search Optimization (BSO) [103], Hybrid
Whale Optimization Algorithm and Pattern Search (HWOA-PS) [106], β-Chaotic Sequence
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Spotted Hyena Optimizer (β-SHO) [107], Algorithm of the Innovative Gunner (AIG) [108],
Improved Sunflower Optimization Algorithm (ISFOA) [109], and Improved Bat Algorithm
(MOIBA) [110].

Conversely, mathematical programming includes models such as mixed integer nonlin-
ear programming (MINLP) [45,52,86], mixed integer linear programming (MILP), [55,73,96]
and mixed-integer second-order cone programming (MISOCP) [46,72]. Some works im-
plement techniques to simplify or decompose the optimization problem into simpler
sub-problems. For example, this can be done through Bender’s Decomposition [50,99] or as
in [54], by applying a set of linearizations to transform a MINLP model into a MILP, so that
it can be solved directly through commercial solvers. Some of the main computing environ-
ments for modelling optimization problems are GAMS [45,52,64,86], AMPL [72,112], and
MATLAB [55,101], which support optimization packages such as CPLEX [46,54,73,96]—for
integer, linear, and quadratic programming—and Artelys Knitro [52]—for non-linear pro-
gramming. In addition, there has been found a recent paper that adopts the Interior Point
(IP) optimization technique [102] and another that uses a hybrid optimization method,
which includes Normal Boundary Intersection (NBI), Dynamic Niche Differential Evolution
Algorithm (DNDEA), and Primal–dual Interior Point Method (PDIPM) [48].

Although it is more common to solve optimization problems through mathematical
programming or heuristic techniques, this review also includes works that use MCM as
an optimization tool. Due to its high computational cost, MCM as an optimization tool
is usually applied in conjunction with some CEE technique, such as high-performance
computing [56,60,63] or variance reduction techniques, such as LHS [55]. However, there
are works that only employ the MCM for solving the optimization [95]. Furthermore, [100]
proposes a variation of Monte Carlo Tree Search (MCTS), which is a heuristic search
algorithm based on the MCM.

SO can be further classified according to the number of objectives to be optimized,
such that the optimization can present a single objective or several conflicting ones. Ref-
erence [77] formulates a capacitor planning optimization problem (regarding capacitor
capacity and location), with the single objective of minimizing losses in the network. Pa-
per [108] aims to optimize a given voltage indicator, considering flexible loads with green
hydrogen technology, which is capable of absorbing energy surplus from renewable sources
to reduce voltage problems. Then again, [49,50,55,94] are examples of works with multilevel
optimizations, all of them with a single objective. As for multi-objective optimization, [107]
proposes a problem of optimal allocation and sizing of wind DG with the objectives of
minimizing losses, maximizing the voltage profile, and maximizing the voltage stability
index. Reference [80] solves a daily scheduling problem of an active distribution network
(containing renewable and controllable DG; storage; switches; and demand response man-
agement) with three conflicting objectives: minimize operational costs, maximize the usage
rate of renewable resources, and maximize user satisfaction. Unlike [107], which trans-
forms the three objectives into one through the weight coefficient method, [80] employs the
NSGA-III algorithm to calculate the set of solutions from Pareto front and applies a fuzzy
decision-making method to filter this set. In [104], a clustering algorithm is implemented to
reduce the size of a four-dimensional Pareto front.

SO also includes robust optimization, which is characterized by representing uncertain-
ties through parametric bounds [9]. Papers [25,72,99] are examples of robust optimization.
For instance, [99] proposes a problem of optimal allocation and sizing of storage devices
and capacitor banks in a microgrid (MG), in order to minimize costs associated with DG,
storage device, and reactive losses in the grid. The robust optimization is solved using
PSO and GAMS, and the uncertainties of PV and wind DG are considered. Reference [25]
formulates a chance-constraint programming, which is a type of robust optimization that
contains stochastic constraints. In this work, the chance constraint considers the stochastic
behaviour of the load (conventional demand and EV) and ensures that the substation
capacity is satisfied within a certain confidence level.

• MCM as Benchmark (MCM-BK)
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When searching for ‘Monte Carlo’ in the literature, it is possible to find several works
focused on stochastic techniques not related to the MCM (such as analytical methods), but
that use the MCM only as a reference for validating the results obtained. In general, the
idea is to propose a method that presents a lower computational effort than the MCM, but
without significantly compromising the accuracy of the results. The MCM-BK category has
been created to cover this type of papers.

One of the analytical techniques most found in this review is the Point Estimate
Method (PEM), which aims to obtain statistics of the output variable through point values
of the input variable samples. Variations of the PEM include the Adaptive PEM [86], Hong’s
2m + 1 PEM [115], Fast-specialized PEM [112] and Three PEM [78].

The methods based on cumulants—which are alternative quantities to the moments of
the probability distributions—also stand out in the literature review. The Gram-Charlier
Series [70] and Cornish-Fisher expansion [78,115] allow to approximate probability distri-
butions in terms of their cumulants, while [79] proposes a non-linear method for recon-
structing the PDF that maximizes Shannon entropy, based on cumulant arithmetic.

Other examples of stochastic techniques from works that fall into the MCM-BK
category are Stochastic Response Surface Method (SRSM) [77], Convolution [118], In-
terval Arithmetic [116], Affine Arithmetic [114], Generalized Polynomial Chaos (gPC)
method [117], State Enumeration Method (SEM) [113], and Taguchi’s Ortogonal Arrays [71].

As an example of comparison with the MCM, [75] introduces a new analytical method
(without a specific name) for reliability studies of distribution networks with storage
devices, achieving values of indices such as SAIFI with a difference of about 2% compared to
MCM, but with a simulation time up to 50 times faster. In [70], the proposed method based
on cumulants is validated via MCM, such that the voltage averages present a deviation of
less than 0.01% in relation to the MCM, however, requiring less than 0.04% of the MCM
simulation time.

4. Areas of Analysis, Technologies, and Uncertainties

This section discusses the works selected according to the area of analysis of electrical
networks, technologies associated with DG, and uncertainty modelling.

4.1. Areas of Analysis of Electrical Networks

The selected papers are divided into the following categories in terms of areas of
analysis of electrical networks: Power Quality, Reliability, Economic, and Energy Losses and
Thermal Overload. Figure 4 represents in a simplified way the main characteristics of the
referred areas of analysis, while Table 2 shows the classification of the reviewed papers on
this topic. Note that the same reference can be classified in more than one category.

Table 2. Classification of the reviewed papers—areas of analysis of electrical networks.

Areas of Analysis * References No. of References

PQ
[26,28,29,32–35,37–40,49,52,53,56,59,60,63,65–

67,69–71,74,76–82,84,85,89,90,92–
94,97,99,102,107–109,112–117]

51

REL
[25,27,30,31,36,42,43,47,48,51,57,61,62,68,72,75,

76,84,87–
89,92,96,98,100,101,104,105,110,111,118]

31

ECO
[25,29,34,38,40,41,44–46,48–

52,54,55,57,58,64,66,70,72,73,75,76,80,82,83,85–
89,91,92,94,95,98–100,103–106,109,110]

46

ELTO
[25,28,29,32,34,35,37–

41,46,48,49,53,56,58,63,67,70,72,74,76,77,80,82,
84,85,90,93–95,97–99,107–109,112,115,117]

41

* Areas of Analysis: Power Quality (PQ), Reliability (REL), Economic (ECO), and Energy Losses and Thermal
Overload (ELTO).
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• Power Quality

Power Quality comprehends voltage indices—such as dips or sags [26,65,81,84,113], volt-
age unbalance [26,34,71,117], voltage magnitude [29,32,52,53], and voltage stability index [66,
74,78,107] (note that voltage stability is also related to reliability or security in the literature)—
frequency [33,69,70], power factor [74,79,90], and total harmonic distortion [90,102]. In [90]
for example, a C-type harmonic filter is designed to maximize the probabilistic HC of PV
DG, subject to constraints of total and individual harmonic distortion, power factor, voltage,
and thermal capacity of the lines. Reference [67] analyses indices associated with voltage
(deviation, fluctuation, flicker, and voltage violation), reverse power flow, and losses. In [69],
the impact of renewable energy (wind and solar) on the dynamic stability of an islanded MG
is evaluated in terms of power and frequency. Paper [65] estimates voltage dips through the
Bayesian Inference, based on the pre-fault and fault conditions of the network.

• Reliability

Reliability usually refers to the continuity of energy supply, measured through indices
such as Energy Not Supplied (ENS) [27,36,87,89,104], Expected Energy Not Supplied
(EENS) [43,88,92,98,118], System Average Interruption Duration Index (SAIDI) [30,31,76,
100,110], System Average Interruption Frequency Index (SAIFI) [36,75,92,98,104], Average
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Service Availability Index (ASAI) [36,47,76], Customer Average Interruption Duration
Index (CAIDI) [31,36,98], Loss of Load Expectation (LOLE) [30,42,62], and Loss of Load
Probability (LOLP) [30,42]. For instance, [92] formulates a multi-period and multi-objective
expansion planning problem, aiming to minimize costs and maximize system reliability (in
terms of SAIDI, LOLC, and EENS), considering the allocation of DG, capacitors, switches,
and branches (including self-healing branches). Reference [96] determines the optimal
tripping characteristics for overcurrent relays in radial distribution systems in order to
minimize the expected value of load and generation disconnected by relay operation.
Papers [42,118] evaluate ‘well-being’ indices, which indicate how ‘healthy’ the system is in
terms of energy reserve availability concerning the demand.

• Economic

The third area of analysis is the economic one, characterized by the calculation of
economic indices and the consideration of costs associated with investment, maintenance,
and operation of electrical networks—note that the costs associated with indices of power
quality or reliability in optimization problems have not been considered as economic val-
ues. Almost every paper in this category contends with optimization problems, including
economic dispatch, daily scheduling, component allocation, islanding, and restoration
of MGs with the objective of minimizing costs. For example, [83,88] define optimal con-
figurations of AC-DC hybrid networks, aiming to minimize the costs associated with
the installation of lines, Voltage Source Converters (VSCs) and generators (AC and DC).
Papers [25,64,104,109,110] investigate allocation problems of DG, capacitors, charging sta-
tions, and other technologies, considering economic objectives. For instance, [110] analyses
the allocation problem of a Cascaded H bridge short-circuit limiter, including among the
objectives the minimization of the limiter capital cost. This work economically evaluates
the limiter technology through Life Cycle Cost (LCC) and Net Present Value (NPV) indices.
Alternatively, [64] is a long-term planning study of an isolated MG for the optimal sizing of
a battery and the definition of its ideal year of installation, with the objective of minimizing
the NPV of battery costs (installation and operation) and network costs (dispatchable DG
operational cost and load shedding) in the considered horizon.

In addition to cost minimization, some studies such as [45,46,49,95] aim to maximize
the distributor’s revenue or profit. In [46], profit is defined as the difference between
revenue and costs, including the cost of purchasing electricity from the upstream grid, cost
of energy losses, cost of demand response, and cost due to DG reduction.

There are also a few works included in the economic category that do not carry out
any type of optimization, such as [29,34,38,75]. For example, [29] builds different PV
penetration scenarios through an economic analysis, using the Bass diffusion model, which
allows predicting the dissemination of new technologies from a marketing perspective.
Reference [38] calculates the expected NPV from the monetization of impacts (voltage, peak
demand, and losses) due to the integration of battery storage systems associated with PV
DG.

• Energy Losses and Thermal Overload

The category of energy losses and thermal overload covers the indices of losses,
overload (in feeders, transformers and conductors), and reverse power flow, with losses
being the most addressed topic—note that energy losses refer to the amount of heat
dissipated by the Joule effect and not to the loss of load due to the disconnection of
sections of the network as in [62,92]. An adequate allocation of DG, for example, can supply
the local demand, reducing losses and overload in the equipment, while the excessive
installation of DG can cause reverse power flow and worsen the mentioned indices. In [32],
the integration of PV DG in a real distribution network of almost 500 feeders is analysed
in terms of voltage magnitude, losses, peak demand, and reverse power flow. Paper [34]
estimates the PV HC based on technical constraints of voltage magnitude/unbalance,
conductor ampacity, and transformer overload, as well as through an economic limit,
defined by the cost of losses. Reference [28] investigates the impact of PV DG on voltage



Energies 2023, 16, 394 14 of 24

stability and uses losses (active and reactive) to define the maximum PV penetration in the
network.

Moreover, several optimization works include loss minimization among their objec-
tives, as in [39,58,77,97,107]. Reference [109] proposes a problem of capacitor allocation
in distribution networks with DG, aiming to minimize the costs of losses and the costs
associated with capacitors. In [41], a multi-objective optimization model is formulated to
minimize the demand and energy losses of the network via Conservation Voltage Reduction
(CVR), as well as to reduce the number of operations of the following voltage regulator
devices: On-Load Tap Changer (OLTC), Step Voltage Regulator (SVR), and Switched Shunt
Capacitor (SC).

4.2. Technologies Associated with DG

Figure 5 represents the main technologies covered within the topic of smart grids.
Besides, in the literature review there have been found different terms related to smart grids,
such as Smart Residential Community [73], Energy Clusters [30], Virtual Power Plants [94],
District Energy Systems [91], Smart Buildings [101], Residential Energy Hubs [44], and
Hybrid-Energy Microgrid [51]. In particular, [44,51,55,91,101] analyse electrothermal hy-
brid smart grids, as shown in Figure 6. Thermal technologies cover equipment such as
boilers, heat pumps, heat storage systems, chillers, and cogeneration units—combined heat
and power (CHP). Note that the CHP unit is represented in Figure 6 as a common link
between the electrical and thermal (heating) grids, since it can generate electricity and heat
simultaneously.
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The most common types of DG addressed in the literature are PV and wind. For exam-
ple, [48,58,97,98,107] propose PV and/or wind DG allocation problems. However, in the
review there have been found other DG technologies such as microturbines [103,106], fuel
cells [103,106], CHPs [51,55,101], synchronous distributed generators [81,84], biomass [87],
and tidal energy [76]. Reference [27] studies a reconfiguration problem of a MG with the
ability to operate in islanding mode, including generation sources such as geothermal,
waste-to-energy (W2E), and mobile generation/storage—transported in trucks.

Smart grids are generally related to concepts of sustainable development and the
reduction of environmental impacts. For instance, [49,51] proposes optimization problems
that include objectives of maximizing renewable generation and reducing emissions of
polluting gases. However, although several works prioritize renewable sources, fossil DG
is often used to meet the grid demand in problems of economic dispatch, daily operation
scheduling, and reliability, due to the ease of dispatching this type of generation, as
in [43,52,118].

In addition to DG, smart grids can use other resources to assist in energy management,
in order to meet the electrical demand within the appropriate standards of quality and
energy supply. Storage systems and demand response, for example, provide greater
flexibility to network operation, assisting in the adjustment of generation and load profiles.
Reference [57] introduces the concept of Storage-to-Storage (S2S), which occurs when a
‘generation source with memory’ (such as a battery bank) feeds a ‘load with memory’ (such
as a plug-in EV), providing even greater flexibility for the network. Paper [38] analyses the
technical and financial impacts of the integration of individual storage systems associated
with PV DG in a distribution network, considering different strategies for controlling
energy prices. In addition to this type of control, other examples of demand response
measures include load shedding, curtailment, and shifting [42,52,54,73,87]; energy supply
via Vehicle-to-Grid (V2G) technology [44,45,93]; and flexible loads with Power-to-Gas (P2G)
technology [108].
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4.3. Uncertainty Modelling

One of the key elements of stochastic analysis is uncertainty modelling. Figure 7 illus-
trates the main uncertainties observed in this review, in which the size of each circumference
represents the frequency of occurrence of the respective type of randomness.
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According to [119], the two most relevant types of uncertainties associated with
DG are due to the variation of the primary energy source and the unavailability of the
generation unit. Most of the selected papers consider uncertainties related to renewable
generation, especially wind and PV. Typically, uncertainties related to the PV and wind
generation profile are modelled via probability distributions such as Beta [42,43,78,118]
and Weibull [107,109,112,118], respectively, but they can also be represented by other
distributions as normal [64,82], by sampling based on real data [40,87], or by advanced
modelling techniques such as MCMC [45] and KDE [39] (see ATUM in Section 3). Besides
the uncertainties of the generation profile, the selected papers often consider uncertainties
in the DG installed power [113,116], in the DG location [32,37,38] and in the phases of the
electrical network connected to DG [29,34].

The second most observed type of uncertainty refers to the load. Load profiles are
frequently modelled through normal distribution [41,65,79,107,112], but similar to DG, they
can also be sampled from real data [29,38,40,87] or by using more advanced modelling
techniques such as copula [73] and the ARIMA model [68] (see ATUM in Section 3). In
special, works such as [35,49,103,118] model uncertainties related to plug-in EVs in terms of
charging start time, charging duration, distance travelled, state of charge (SOC), charging
station location, etc. Some studies still consider uncertainties associated with consumer
behaviour in demand response programs, such as [62,80].

Reliability studies usually consider uncertainties associated with faults, failure, and/or
repair of network components to evaluate the quality of power supply. In [89], the analysed
grid is divided into two zones, each with different failure rates and times. In [81], random
variables with normal and uniform distributions represent the duration of voltage dip and
the fault characteristics—including fault location, type (three-phase, two-phase, two-phase-
to-ground, or phase-to-ground), and impedance. Reference [98] considers failure rates of
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network equipment, including the following protection devices: circuit breakers, fuses, and
sectionalizers. Papers [101,105] model the randomness of natural disasters—characterized
as catastrophic events of low probability, but with extremely high impact—in order to
analyse the reliability and resilience of the electric grid.

Storage uncertainties are often modelled in terms of capacity, location, SOC, and
availability or equipment failure, as in papers such as [38,40,61,75,87]. For instance, [61]
proposes a two-dimensional multistage storage model to stochastically represent the SOC
and the maximum storage capacity, using the Markov Chain. In [87], SOC is randomly
sampled from historical data.

Studies such as [44,50,52,85] model electric energy price uncertainties, which can
influence the behaviour of demand response strategies, daily operation scheduling and the
calculation of economic indices. In [44,85], these uncertainties follow a normal distribution,
while in [50,52] they are represented by several scenarios with different price curves.

4.4. Detailed Classification of the Reviewed Papers from 2021

Table 3 shows a detailed classification of the most recent papers in the review, from
2021, totalling 22 references. Each work is categorized according to the simulation tech-
niques and areas of analysis of electrical networks, discussed in Sections 3 and 4.1, respec-
tively. Besides, this table addresses key features on the following topics: uncertainties, DG
type, and other relevant technologies considered in these studies.

Table 3. Detailed classification of the reviewed papers from 2021.

Reference Title Simulation
Techniques a

Areas of
Analysis b Uncertainties DG Type Other

Technologies

[39]

Stochastic investigation for
solid-state transformer

integration in distributed energy
resources integrated active

distribution network

-CEE
-ATUM

-SO

-PQ
-ELTO

-PV and wind
DG

-Load

-PV
-Wind

-Battery
-Solid-State
Transformer

[33]

Robust Controller Synthesis and
Analysis in Inverter-Dominant

Droop-Controlled Islanded
Microgrids

-CMC -PQ

-Voltage
fluctuation

-Phase
difference

among DGs

-Undefined
type

-MI-synthesis
robust controller

for inverters

[106]

Hybrid whale optimization and
pattern search algorithm for

day-ahead operation of a
microgrid in the presence of

electric vehicles and renewable
energies

-SO -ECO

-PV and wind
DG

-Load
-EV

-Electric
energy price

-PV
-Wind

-Microturbine
-Fuel cell

-EV
-Battery

[34]

Comparison of Economical and
Technical Photovoltaic Hosting
Capacity Limits in Distribution

Network

-CMC
-PQ

-ELTO
-ECO

-PV DG
-Load -PV -

[35]
Simulating the Impacts of

Uncontrolled Electric Vehicle
Charging in Low Voltage Grids

-CMC -PQ
-ELTO

-PV DG
-Load
-EV

-PV -EV

[40]

Mixed-integer stochastic
evaluation of battery energy
storage system integration
strategies in distribution

systems

-CEE
-SO

-PQ
-ELTO
-ECO

-PV and wind
DG

-Load
-EV

-Battery
-Electric

energy price

-PV
-Wind

-EV
-Battery

[36]
Evaluation of service quality of

distribution systems with
critically located generators

-CMC -REL

-Fault
-Equipment
failure rate
and repair

time

-Wind

-Recloser
-Fuse

-Overcurrent
relay
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Table 3. Cont.

Reference Title Simulation
Techniques a

Areas of
Analysis b Uncertainties DG Type Other

Technologies

[107]

Deterministic and probabilistic
multi-objective placement and

sizing of wind renewable energy
sources using improved spotted

hyena optimizer

-SO -PQ
-ELTO

-Wind DG
-Load -Wind -

[108]

Voltage Optimization in MV
Network with Distributed
Generation Using Power
Consumption Control in
Electrolysis Installations

-SO -PQ
-ELTO

-DG
(undefined

type)
-Load

-Undefined
type

-OLTC
-DG reactive

control
-Power-to-Gas

(P2G) technology
for green
hydrogen

production

[37]
Hosting Capacity Improvement

Method Using MV–MV
Solid-State-Transformer

-CMC -PQ
-ELTO -PV DG -PV -Solid-State

Transformer

[41]

Operation planning and
decision-making approaches for

Volt/Var multiobjective
optimization in power
distribution systems

-CEE
-SO

-ELTO
-ECO

-PV DG
-Load -PV

-OLTC
-SVR

-Capacitor

[38]

Technical and Financial Impacts
on Distribution Systems of

Integrating Batteries Controlled
by Uncoordinated Strategies

-CMC
-PQ

-ELTO
-ECO

-PV DG
-Load

-Battery
-PV -Battery

[109]

An Improved Sunflower
Optimization Algorithm-Based

Monte Carlo Simulation for
Efficiency Improvement of

Radial Distribution Systems
Considering Wind Power

Uncertainty

-SO
-PQ

-ELTO
-ECO

-Wind DG -Wind -Capacitors

[110]

Pareto Optimal Allocation of
Flexible Fault Current Limiter

Based on Multi-Objective
Improved Bat Algorithm

-SO -REL
-ECO -Fault -PV

-Cascaded H
bridge fault

current limiter

[111]

A Novel Method for Islanding
in Active Distribution Network

Considering Distributed
Generation

-SO -REL -Wind DG -Wind
-Controllable

loads
-Circuit breaker

[112]

A fast-specialized point estimate
method for the probabilistic

optimal power flow in
distribution systems with

renewable distributed
generation

-SO
-MCM-BK

-PQ
-ELTO

-PV and wind
DG

-Load

-PV
-Wind

-Dispatchable
DG

-

[118]

Investigation of impacts of
plug-in hybrid electric vehicles’

stochastic characteristics
modeling on smart grid

reliability under different
charging scenarios

-MCM-BK -REL

-PV and wind
DG
-EV

-Failure in
network
segments

-PV
-Wind
-Diesel

-Capacitor
-Protection

devices
-Circuit breaker

-EV
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Table 3. Cont.

Reference Title Simulation
Techniques a

Areas of
Analysis b Uncertainties DG Type Other

Technologies

[42]

Reliability evaluation of smart
grid using various classic and

metaheuristic clustering
algorithms considering system

uncertainties

-CEE -REL

-PV and wind
DG

-Load
-Equipment
failure rate
and repair

time

-PV
-Wind
-Diesel

-Consider load
curtailment
-Recloser

-Circuit breaker
-Load break

switch
-Fuse

-Capacitor

[43]

Optimal stochastic
scenario-based allocation of
smart grids’ renewable and
non-renewable distributed

generation units and protective
devices

-CEE
-SO -REL

-PV and wind
DG

-Failure in
network

segments,
load points

and
protection

devices

-PV
-Wind
-Diesel

-Consider load
curtailment

-Circuit breaker
-Protection

devices
-Capacitor

[78]

Probabilistic Steady State
Voltage Stability Assessment
Method for Correlated Wind

Energy and Solar Photovoltaic
Integrated Power Systems

-ATUM
-MCM-BK -PQ

-PV and wind
DG

-Load

-PV
-Wind -

[44]

Optimal Scenario-based
Operation and Scheduling of

Residential Energy Hubs
Including Plug-in Hybrid
Electric Vehicle and Heat

Storage System Considering the
Uncertainties of Electricity Price

and Renewable Distributed
Generations

-CEE
-SO -ECO

-PV DG
-Electric

energy price
-PV

-Heat storage
system

-EV with V2G
-Micro-combined
heat and power
-Thermal load

[45]

An optimal resource allocation
for future parking lots with

charger assignment considering
uncertainties

-CEE
-ATUM

-SO
-ECO -PV DG

-Load -PV -EV withV2G

a Simulation Techniques: Crude Monte Carlo (CMC), Computational Efficiency Enhancement (CEE), Advanced
Techniques for Uncertainty Modelling (ATUM), Stochastic Optimization (SO), and MCM as Benchmark (MCM-
BK). b Areas of Analysis: Power Quality (PQ), Reliability (REL), Economic (ECO), and Energy Losses and Thermal
Overload (ELTO).

5. Conclusions

This work presents the state of the art of MCM applied to electrical networks with DG.
The proposed literature review comprises over 90 recent papers from pertinent journals
and conferences, with emphasis on the technical, operational, and planning aspects of the
EPS. The search process has been performed using transparent criteria, such that it can be
easily replicated. The works have been approached according to the simulation techniques,
area of analysis of electrical networks, technologies associated with DG, and uncertainty
modelling.

MCM allows for considering with flexibility the various uncertainties associated
with load, renewable generation, and random events such as equipment failures and
power grid faults. Therefore, given the current context of increasing dissemination of
renewable generation sources, and other related technologies; personal computers with
high processing capacity; and huge availability of data; the area of stochastic simulations
applied to EPS is expected to remain relevant in the coming years.

Regarding the simulation techniques, the works have been divided into five categories:
CMC, CEE, ATUM, SO, and MCM-BK. The literature review reveals a preponderance of
SO papers, indicating a possible trend. Alternatively, since MCM has been widely applied
as the benchmark to validate other stochastic techniques, the MCM-BK category has been
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created specifically to include this type of work in the review. As a secondary benefit, this
allows the reader to learn about other alternative techniques to the MCM, which can be
used for the same type of stochastic analysis.

The areas of analysis of electrical networks have been divided into four categories:
Power Quality, Reliability, Economic, and Energy Losses and Thermal Overload. In partic-
ular, reliability works often consider uncertainties associated with faults, failure, and/or
repair of network components. However, in general, the uncertainties most found in the re-
view refer to DG (PV or wind power) and loads. Given the ability of the MCM to represent
randomness with relative ease and versatility, this method is expected to be further applied
in EPS analysis, increasingly modelling the uncertainties of emerging technologies such as
storage, EV, demand response, and electrothermal hybrid systems.

Author Contributions: Conceptualization: T.P.A., A.A.A. and M.Z.F.; investigation: T.P.A.; writing—
original draft preparation: T.P.A.; writing—review and editing: A.A.A., M.Z.F., R.S.M. and B.S.M.C.B.;
visualization: T.P.A.; supervision: R.S.M. and B.S.M.C.B.; funding acquisition: B.S.M.C.B. All authors
have read and agreed to the published version of the manuscript.

Funding: This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de
Nível Superior—Brasil (CAPES)—Finance Code 001.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Billinton, R.; Li, W. Reliability Assessment of Electric Power Systems Using Monte Carlo Methods; Springer: Boston, MA, USA, 1994;

ISBN 978-1-4899-1348-7.
2. Leite da Silva, A.M.; de Castro, A.M. Risk Assessment in Probabilistic Load Flow via Monte Carlo Simulation and Cross-Entropy

Method. IEEE Trans. Power Syst. 2019, 34, 1193–1202. [CrossRef]
3. Razavi, S.-E.; Rahimi, E.; Javadi, M.S.; Nezhad, A.E.; Lotfi, M.; Shafie-khah, M.; Catalão, J.P.S. Impact of Distributed Generation on

Protection and Voltage Regulation of Distribution Systems: A Review. Renew. Sustain. Energy Rev. 2019, 105, 157–167. [CrossRef]
4. Bawazir, R.O.; Cetin, N.S. Comprehensive Overview of Optimizing PV-DG Allocation in Power System and Solar Energy Resource

Potential Assessments. Energy Rep. 2020, 6, 173–208. [CrossRef]
5. Mulenga, E.; Bollen, M.H.J.; Etherden, N. A Review of Hosting Capacity Quantification Methods for Photovoltaics in Low-Voltage

Distribution Grids. Int. J. Electr. Power Energy Syst. 2020, 115, 105445. [CrossRef]
6. Ismael, S.M.; Abdel Aleem, S.H.E.; Abdelaziz, A.Y.; Zobaa, A.F. State-of-the-Art of Hosting Capacity in Modern Power Systems

with Distributed Generation. Renew. Energy 2019, 130, 1002–1020. [CrossRef]
7. Mehigan, L.; Deane, J.P.; Gallachóir, B.P.Ó.; Bertsch, V. A Review of the Role of Distributed Generation (DG) in Future Electricity

Systems. Energy 2018, 163, 822–836. [CrossRef]
8. Lopes, J.A.P.; Hatziargyriou, N.; Mutale, J.; Djapic, P.; Jenkins, N. Integrating Distributed Generation into Electric Power Systems:

A Review of Drivers, Challenges and Opportunities. Electr. Power Syst. Res. 2007, 77, 1189–1203. [CrossRef]
9. Ehsan, A.; Yang, Q. State-of-the-Art Techniques for Modelling of Uncertainties in Active Distribution Network Planning: A

Review. Appl. Energy 2019, 239, 1509–1523. [CrossRef]
10. Tan, W.; Shaaban, M.; Ab Kadir, M.Z.A. Stochastic Generation Scheduling with Variable Renewable Generation: Methods,

Applications, and Future Trends. IET Gener. Transm. Distrib. 2019, 13, 1467–1480. [CrossRef]
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