
Citation: Rodrigues, F.; Cardeira, C.;

Calado, J.M.F.; Melicio, R. Short-Term

Load Forecasting of Electricity

Demand for the Residential Sector

Based on Modelling Techniques: A

Systematic Review. Energies 2023, 16,

4098. https://doi.org/10.3390/

en16104098

Academic Editor: Lin Wang

Received: 12 April 2023

Revised: 10 May 2023

Accepted: 11 May 2023

Published: 15 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Review

Short-Term Load Forecasting of Electricity Demand for the
Residential Sector Based on Modelling Techniques:
A Systematic Review
Filipe Rodrigues 1,2,* , Carlos Cardeira 2 , João M. F. Calado 1,2 and Rui Melicio 2

1 Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, Rua Conselheiro Emídio Navarro,
1959-007 Lisboa, Portugal; jcalado@dem.isel.ipl.pt

2 IDMEC–Instituto de Engenharia Mecânica, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco
Pais, 1049-001 Lisboa, Portugal; carlos.cardeira@tecnico.ulisboa.pt (C.C.); ruimelicio@gmail.com (R.M.)

* Correspondence: filipe.mrodrigues@isel.pt

Abstract: In this paper, a systematic literature review is presented, through a survey of the main
digital databases, regarding modelling methods for Short-Term Load Forecasting (STLF) for hourly
electricity demand for residential electricity and to realize the performance evolution and impact
of Artificial Intelligence (AI) in STLF. With these specific objectives, a conceptual framework on the
subject was developed, along with a systematic review of the literature based on scientific publications
with high impact and a bibliometric study directed towards the scientific production of AI and STLF.
The review of research articles over a 10-year period, which took place between 2012 and 2022, used
the Preferred Reporting Items for Systematic and Meta-Analyses (PRISMA) method. This research
resulted in more than 300 articles, available in four databases: Web of Science, IEEE Xplore, Scopus, and
Science Direct. The research was organized around three central themes, which were defined through
the following keywords: STLF, Electricity, and Residential, along with their corresponding synonyms.
In total, 334 research articles were analyzed, and the year of publication, journal, author, geography
by continent and country, and the area of application were identified. Of the 335 documents found in
the initial research and after applying the inclusion/exclusion criteria, which allowed delimiting the
subject addressed in the topics of interest for analysis, 38 (thirty-eight) documents were in English
(26 journal articles and 12 conference papers). The results point to a diversity of modelling techniques
and associated algorithms. The corresponding performance was measured with different metrics and,
therefore, cannot be compared directly. Hence, it is desirable to have a unified dataset, together with
a set of benchmarks with well-defined metrics for a clear comparison of all the modelling techniques
and the corresponding algorithms.

Keywords: STLF; electricity; residential (household); artificial intelligence; energy demand; modelling
techniques; hour-ahead load

1. Introduction

The growth and development rate of countries around the world is and has been,
annually and inevitably, increasing significantly [1]. The extraordinary increase in the
global population, related to economic advancement, industrialization, social advances,
and expectations of prosperity, has had a significant impact on energy and environmental
issues [2]. Associated with the growth of the human population in the demand for housing
and well-being, the development of countries and societies will also continue to increase. To
ensure these growths and developments, an increase in energy generation will be needed to
stimulate global demand and, at the same time, the environment should be kept safe [1,2].
The increase in population and consumption patterns have promoted the increase in energy
consumption that, unavoidably, has been growing at an annual high rate. According to the
U.S. Energy Information Administration (EIA), energy consumption is expected to grow by
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more than 50% by 2050 [3]. Energy plays a vital role in the progress and socio-economic
development of a country [4]. One criterion for assessing the rate of development and the
welfare rate of a country is to compute the amount of energy it consumes [4–6].

The world, in particular developing countries, faces a future increase in energy demand
as population growth and the demand for welfare conditions promote a strong pressure and
dependence on fossil fuels in societies and increasing challenges associated with climate
change [1]. This enormous growth is driven by the growing industrial revolution and
urbanization [7]. The introduction of new and advanced technologies increases dependence
on electricity [5]. The increase in population requires a rapid expansion of residential and
commercial areas, which also contributes to an increase in energy consumption. At the
same time, environmental issues should be considered in this development to reduce
pollution, carbon footprints, and greenhouse effects [1].

The latest annual report from the International Energy Agency (IEA) mentions that
developing countries have a faster growth rate demand for electricity compared with
developed countries. It is therefore necessary to provide for such a diversified demand for
electricity using robust and high-performance forecasting methods for adequate power
generation planning [3].

To meet the objectives of the Paris Agreement and reduce Greenhouse Gas (GHG)
emissions, it is essential to move towards a low-carbon energy system [4]. The International
Energy Agency (IEA) has identified energy efficiency as one of the measures to ensure the
long-term decarbonization of the energy sector [2]. One of the main solutions to reduce
emissions is to reduce the intensity of primary energy through energy efficiency [5] and
electrification—based on renewable energy sources (RES)—a solution increasingly adopted
for the industrial, commercial, residential, and transport sectors.

To mitigate the effects of climate change and protect the environment, developed
countries have set themselves the goal of increasing their share of RES in energy produc-
tion [6,8,9]. The increased penetration of renewable energies, such as wind and solar energy,
is characterized by a stochastic nature. Most RES are characterized by variability and
intermittency, making it difficult to predict their power output (i.e., they depend on solar
irradiation or wind speed). These features make the operation and management of energy
systems more challenging because more flexibility is needed to safeguard their normal
operation and stability [9,10].

However, because the production of renewable energy from sources such as wind
or sun is intermittent, accurate forecasts of non-controllable electrical loads are needed
to flexibly manage and achieve the balance between demand and supply. Therefore, in
the ongoing energy transition, significant investments and developments in research are
underway to quickly harness electricity generated from renewable sources [2].

In addition, the 2019 coronavirus disease pandemic (COVID-19) had a notable and
unexpected impact on fluctuating patterns of electricity in several sectors, especially the
residential sector. Following the indications of the World Health Organization (WHO),
the population stayed and spent more time at home, particularly in developed countries,
leading to an increase in electricity consumption in the domestic sector, higher than in
the past [11].

People spend about 90% of their time in buildings, and 80 to 90 % of the overall elec-
tricity consumption throughout the life cycle of a building is intended to fulfil internal tasks
and building operations. Thus, residential buildings have become the largest consumers of
electricity in the world, representing 39% of electricity consumption and 38% of greenhouse
gas emissions [2]. In Europe, energy consumption and total carbon dioxide emissions from
buildings account for 40% and 36%, respectively [5].

The scarcity of energy supply increased global energy demand, pollution, and GHG
emissions, and the lack of studies on sustainable and clean energy systems have led all
research results to conclude that the management of electricity consumption is a key
observation issue [2]. Electricity is a necessity of life and represents a great challenge to all
countries. Increasing electricity consumption at an alarming rate has become a challenge
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for distribution companies [5]. Energy institutions and organizations in each country need
to ensure and adjust the demand for supply at competitive prices, avoid the waste of
resources, and safely provide it to their economy and their citizens [12,13].

These circumstances indicate the essential need for an effective electric load forecasting
system to accommodate several uncertainties associated with changing end-user-related
load consumption behavior and RES intermittency [6,8,10]. In addition, an effective load
forecasting system can help maintain the reliability, efficiency, and sustainability of the
energy system by establishing more effective management, developing future economic
planning, and promoting support systems for the decision-making of emerging generations.
In the context of the impressive digital revolution promoted by Industry 4.0, several
intelligent methods of load forecasting have recently been developed [9].

The forecasting of the demand for resources within a power distribution network has
relevant importance for the management of the limited availability of assets. An accurate
load forecasting system can reduce the high cost of excessive contracts and subcontracts
in balance markets due to load forecasting errors [14]. Electricity demand forecasting has
been decisive in electricity production capacity, transmission planning, and pricing [12].
In addition, it keeps energy markets efficient and provides a better understanding of the
dynamics of the monitored system [14].

STLF allows the power grid industry to manage many operating decisions. To this
end, STLF is often used to improve system operations and provide reliable services [2],
being an active area of research, namely in the residential sector, where high electricity
consumption requires Demand-Side Management (DSM) strategies. As mentioned above,
electricity consumption in the residential sector represents a considerable share of total
energy consumption. Thus, by providing accurate forecasts at the residential level, electric
power service companies can optimize energy production and manage demand [10].

Energy demand forecasting techniques can be grouped into three categories, namely:
correlation, extrapolation, and a combination of both. Extrapolation techniques involve
the adjustment and reproduction of trend curves based on historical data on electricity
demand. In these cases, the future value of the electricity demand is obtained by projecting
the function of the trend curve at the desired future point. It is a simple technique, and its
results are very realistic in some cases. However, correlation techniques seek to relate the
system load demand curve to several economic and demographic factors. Therefore, these
techniques seek the existing association between patterns of increased demand and other
measurable factors. The disadvantage of correlation techniques lies in forecasting economic
and demographic factors, making it harder than demand forecasting itself. Normally,
correlation techniques are used for population data, building permits, heating, ventilation
and cooling, employment, weather data, and the typologies of buildings. However, proper
planning and useful applications of electric load forecasting require a specific forecast
period (lead time) [15].

Electricity consumption varies in short-, medium-, and long-term periods, which cover
three forecast time horizons. They range, respectively, from one hour to a week, one week
to a year, and more than a year [8,9,16]. They are based on several factors, such as climate,
region, and sector (residential, industrial, commercial). Residential loads consume most of
the electricity generated [9,17]. STLF is important for cost reduction, energy savings, fine
scheduling, and safety assurance [18].

To improve the forecasting of electricity demand accuracy, several computational and
statistical methods have been applied [19,20]. Some researchers cluster the forecasting
models into two models. Those that are data-driven are usually applied with artificial intel-
ligence techniques—equal to extrapolation techniques—and engineering methods—equal
to correlation techniques. Even so, no single method is scientifically accepted as being
better than the others in all situations [11].

Over the years, many different forecasting models have been applied in energy sys-
tems, and they can be categorized into three methods: Engineering, Statistics, and AI [1,10].
Among them, the most applied are AI and statistical methods. Engineering methods are
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still applied, but some shortcomings have been identified, such as the complexity that
contributes to the practical difficulties of application and their lack of input information.
However, it was found that statistical methods lack accuracy and are not flexible, which
makes the AI method preferred among researchers [1]. There is no consensus on a spe-
cific forecasting model, and the use of one method over another is associated with the
expert’s preference [19]. Therefore, it is relevant to identify which model is adequate for a
specific situation.

The purpose of this systematic review is to analyze and identify the quality of a
method compared to some of the other potential solutions in a specific forecasting scenario
and to help users in selecting their forecasting method by simply answering questions such
as: “Is there any STLF model capable to forecast electricity demand, between 1 h and 24 h, for a
single residence with acceptable error?”.

In AI, Machine Learning (ML) is the most widely implemented due to its ability to
analyze nonlinear problems and its more accurate results. The several methods used in ML
can also learn from historical patterns while analyzing the data. In addition, it has capabili-
ties in pattern recognition and pattern classification. Although the statistical forecasting
method is simple, for the stability of the original time series it needs many requirements.
It is a method that has difficulty adapting to the increasingly complex characteristics of
energy consumption, which normally leads to lower forecasting accuracy [21].

The following sections of this article are structured as follows: Section 2 presents the
motivation and the review scope. Section 3 presents the methodology used in the paper
for a systematic review. Section 4 presents a literature review of STLF methods. Finally,
concluding remarks are given in Section 5, summarizing the findings and guidelines for
future research.

2. Motivation and Review Scope

Electricity grid infrastructure has had difficulty managing the growing need for en-
ergy [22] and the increased penetration of renewable energy systems [21]. In Europe,
electricity consumption in the residential sector accounts for a considerable share of total
energy consumption, reaching 40% [10]. In recent years, there has been a growing trend
toward implementing electricity generation systems from renewable sources, and their
rapid development has presented important challenges for energy system operators [10].
The smart grid provides an infrastructure for the power management system and facilitates
the smooth integration of RES [4].

The introduction of smart grids also promoted the development of STLF techniques,
along with the implementation of one of the main devices of a smart grid: smart meter-
ing [4]. The capabilities of smart grid technologies and real-time metering can enable
them to forecast individual demand for electricity by residential consumers and aggregate
all of them to forecast total demand at the electric utility. This opportunity motivates
new approaches to the STLF in which the residential sector can forecast the consumption
of electricity per resident, per cluster, and agglomerate. The possibility of the residen-
tial sector demands can be forecast independently, and individually the future demand
for the electricity of a residence can be communicated to the electricity supplier and
the consumer [23].

Electricity forecasting is an essential component of the smart grid and has attracted
academic interest. However, from several models developed, the selection of a model is
difficult to choose for a particular application [19]. The promotion of accurate forecasts
of electricity demand in the residential sector allows electric utilities to optimize energy
production and manage demand, reducing congestion and overloads on the transmission
network [20]. Reducing the STLF error benefits the power generation plan and the manage-
ment of electricity systems [23]. Load forecasting is an important technique to ensure that
the power grid operates safely and reliably [21,24]. STLF solutions in the residential sector
are also essential to contribute to the decarbonization of the economy and the reduction
of GHG emissions, and to balance the demand and supply of electrical systems. These
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contributions have increased the interest and the need for a systematic review to summarize
the algorithms used for the different models applied in the STLF.

Most of the articles analyzed in this systematic review provide valuable contributions.
However, they tend to focus only on the development of the algorithm-specific technique
and application domain. The growing need for solutions in this area reinforces the need
for a comprehensive review that tracks its evolution and acts as a guide to highlight the
most promising STLF solutions used in the residential sector, based on the knowledge so
far reported in existing publications, in its different typologies: individual, cluster, and
agglomerate. The purpose of our analysis is as follows:

1. First, provide a comprehensive overview and a detailed assessment of previous state-
of-the-art STLF solutions applied to electricity demand in the residential sector, a
perspective of their evolution, and possible future research paths.

2. Secondly, present a concise summary of the useful characteristics of STLF comparative
techniques applied to the electrical load.

3. Third, present a systematic analysis of the advantages and disadvantages of using a
specific STLF solution.

This is a comprehensive review of the STLF solutions applied in the residential sector
in electricity demand over the past 10 years. More specifically, it includes 38 studies/articles
(summarized in tables in the Appendix A–C).

3. Methodology

This article presents a relevant literature systematic review on STLF in forecasting
in the residential sector for electricity demand. The protocol Preferred-Reporting Items for
Systematic-Review and Meta-Analysis (PRISMA) was applied due to its ability to increase the
value and quality of systematic reviews compared to other forms of review [11].

The PRISMA protocol is used for extensive research in the existing literature and
meta-analysis of the consultation, reducing the effect of chance and biases. This protocol
has a well-defined procedure that brings clarity, accuracy, and repeatability. In summary,
PRISMA begins with the definition of the research question(s); the search criteria to be
applied to select the correct publications are then defined. After the selection, the data are
analyzed and finally the results are discussed.

The criteria adopted for research were selected according to the research question. To
optimize and limit the search in the online databases adopted, Web of Science, IEEE Xplore,
Scopus, and Science Direct, some assertive keywords that emerged naturally with the survey
of the question to be answered were identified, namely “STLF”, “Electricity”, or “Residen-
tial”. The database was searched as follows: “STLF” AND “Electricity” AND “Residential”.
Synonyms of the keywords “Residential” were also used, such as “domestic”, “house”,
“household”, “dwelling”, or “building”, within the title, abstract, text, or keywords.

The consultation of the databases mentioned made it possible to identify a total of
334 (three hundred and thirty-four) interesting scientific articles for this systematic review,
collected and published in relevant journals and conferences. The articles were downloaded
from the internet, and the titles, abstracts, and keywords were later carefully analyzed
using the free web tool Rayyan. For assistance in systematic review and meta-analysis, the
semi-automatic process of the Rayyan application sped up the initial screening by abstracts,
titles, and keywords [25].

The Rayyan tool allows the automatic detection of articles that are partially or totally
(100%) duplicated. The tool allows erasure or to keep the article seemingly duplicated. Sub-
sequently, the articles were sorted by the year of publication, title, abstract, and keyword.

The date of publication was one of the exclusion criteria. Articles with a date before
2012 were excluded, and those published in the last 10 years were maintained. Figure 1
shows that there is an interesting number of publications on the topic underlying the
question during this period. Another exclusion criterion was “Review” articles. The other
exclusion factors were the articles whose aim was not directly related to the “Residen-
tial” sector or the results of studies that were not aligned with future electricity demand
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forecasting. All articles submitted by the databases consulted had the text in English; for
this reason, there was no exclusion. Thus, there were 38 articles for quantitative anal-
ysis. The PRISMA flow diagram shown in Figure 2 identifies the different phases and
exclusion criteria.
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Therefore, the research in the databases identified 335 (three hundred and thirty-
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stage. In the screening stage, 1 (one) article was removed because the study was not
related to the services of the electrical networks, and 16 (sixteen) articles were published
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before 2012 and removed, reducing the articles eligible for analysis to 294 (two hundred
and ninety-four). Thus, these 293 articles were used for qualitative analysis. Among
these, 26 (twenty-six) articles were removed because they presented reviews of electrical
load forecasting, reducing the number of articles eligible for qualitative analysis to 269
(two hundred and sixty-nine). Of the 269 articles that remained for analysis, 111
(one hundred and eleven) were rejected because the works did not cover the residen-
tial sector, and 120 (one hundred and twenty) were also removed because the results were
not related to future electricity demand. Thirty-eight (38) articles were left for quantitative
analysis, as shown in Figure 2.

3.1. Cases Comparison–Results and Discussion

Studies for electricity consumption in the residential sector have different results
and approaches when they are oriented to the typologies of one residence, cluster, or
agglomerate of residences. The residential or domestic sector refers to a residence or
dwelling where people live on a day-to-day basis alone, with family and friends in a villa,
in a condominium, or on a floor or block of buildings located in a rural or urban zone.
Because it provides relevant results, the literature selected for this approach and electricity
demand forecasting presents works with two main methods: AI methods and statistical
methods. To harness the strength of the different methods, some researchers use hybrid
methods–two or more AI and statistical techniques–to improve the forecasting accuracy
models adopted.

The selected works of forecasting the consumption of electricity seek to identify the
partial or total hourly load, daily, weekly, monthly, seasonally, or annual hourly, or the total
of one residence, cluster, or agglomerate of residences to be provided by an electric power
supply. The STLF models presented by most of the studies use historical data of several
days, weeks, months, or years of the electrical load and exogenous variables to input,
e.g., meteorological data, calendar (weekdays, weekends, holidays), tariff, appliances,
and socio-economic effects, and project the forecasting for the hourly electric load, daily,
weekly, monthly, seasonal, or annual. The techniques used to evaluate the performance
of the studied models are statistical. Most of the selected articles use MAPE, MAE, MSE,
and RSME. The performance results were classified as high, satisfactory, and low. For
performance, the adopted high interval should be among the first 5% of one or more
evaluation methods. For a satisfactory assessment, it should be between 5% and 20%, and
low performance above 20%. It turns out that most of the work that focuses on agglomerates
has a high performance, while those who focus on one residence have satisfactory or low
performance, given the volatility and occupation behavior of the residents.

3.2. Summary of Statistical Analysis

The 38 articles were analyzed to allow the first observation. Table 1 shows the number
of articles published in the last decades on STLF for the residential sector. The largest
number of publications (20 articles, more than 50%) occurred in the last two years. This
evidences the increase of interest by the scientific community on this subject. Figure 3 shows
that more than half of the publications are journal articles (63%), and the rest are articles
published at conferences (37%). Figure 4 shows the countries with the origin of the analyzed
publications. The three main continents with the highest number of publications in STLF
for energy demand in the residential sector come from the northern hemisphere, namely
Europe (43.3%), Asia (26.7%), and North America (26.7%). The main countries with the
most publications are the USA (16.7%) and France (13.3%), followed by the same number
of articles published in Canada, Ireland, and Pakistan (10.0%) and, finally, Bangladesh and
Portugal (6.7 %). Figure 5 shows the cities covered by the published articles. The cities of
Sceaux (France), Lahore (Pakistan), Lisbon (Portugal), New York (USA), and Texas (USA)
stand out.
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Table 1. Articles published in the last decade (for N = 38 papers).

Year No. Articles Percentage

2014 3 7.9%

2015 1 2.6%

2016 5 13.2%

2017 3 7.9%

2019 1 2.6%

2020 5 13.2%

2021 9 23.7%

2022 10 26.3%

2023 1 2.6%

3.3. A highlight of Articles Published in Forecasting Models

The development of robust, effective, and accurate load forecasting models in the
residential sector has been an opportunity to improve the responsiveness related to the
operation of the electricity grid and the electricity demand. For suppliers and residential
customers, the development of load forecasting solutions is very important to support the
management decision-making, cost reduction and anticipation of possible problems with
the operation of electricity grid systems. Thus, the task of forecasting demand for future
energy consumption (load forecasting) has become an important component of any electric
power management system [2].

STLF solutions have become increasingly relevant in the face of the extensive prolifer-
ation of Internet-of-Things (IoT) and Metering Infrastructure (MI) technologies that allow
greater granularity in the aggregation of electricity consumption data of each consumer and
monitoring of relevant exogenous variables, such as the predominant data of the zone’s
climate conditions [2].

The analysis of the 38 articles shows that the input data used in the various models
applied to STLF solutions increase the arbitrariness of the load/energy time series. There
is a correlation with the calendar effects, among them, the numerous holidays, the same
days of previous weeks and between several working days and weekends. They are also
vulnerable to variations in exogenous conditions, such as climate conditions, occupation
and social behaviours.

The methods presented in the 38 articles analyzed can be categorized under two labels,
namely: AI methods and statistical methods. Analyzing the distribution of models through
all articles allows having a reading of the current trend in the use of the forecasting model.

Figure 6 illustrates the distribution of the different forecasting methods analyzed.
It is highlighted that in some articles, there are forecasting methods that apply various
techniques to a specific solution and this systematic review seeks to provide a better reading
of the actual trend.

Table 2 shows a clear trend in the use of STLF forecasting methods for the residential
sector. The Deep Learning methodology is the most applied and is present in 22 of the
38 articles (57.9% of the articles). AI and statistics approaches are present in 9 articles (23.7%
of the articles) in a hybrid algorithm. The statistical methods are present in 18.4% of the
articles, i.e., 7 articles. The other models are singularities.

Table 3 shows the methods used by categories of residences in the articles reviewed.
In recent years, there has been a growing increase in the application of STLF solutions for
individual residences. In 2021 and 2022, 8 articles were presented-4 articles in each of the
mentioned years. Meanwhile, in the category of agglomerates or clusters of residences, the
same number has been maintained every year-between 1 to 2 articles per year.
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Table 2. Most used STLF forecasting methods (for N = 38 papers).

Methods No. Articles Percentage

Statistical 9 23.68%

ML 22 57.89%

Both 7 18.42%

Table 3. Methods applied in the three categories of residences for STLF forecasting. (for N = 38 papers).

Methods No. Articles Percentage

Agglomerate 8 21.05%

Statistical 2 5.26%

ML 3 7.89%

Both 3 7.89%

Clusters 12 31.58%

Statistical 3 7.89%

ML 6 15.79%

Both 3 7.89%

Individual 18 47.37%

Statistical 4 10.53%

ML 13 34.21%

Both 1 2.63%

Tables 4 and 5 show the most used algorithms in the 38 analyzed articles. The al-
gorithms can be applied to various specific forecasting models and the distribution of
the algorithms across the reviewed articles provides a better view of the real trend. The
distribution allows identifying the algorithms used in the applications in the reviewed
articles and not the number of algorithms used in each application presented in the
reviewed article.
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Table 4. Statistical algorithms most used for STLF forecasting (for N = 7 papers).

Algorithms No. Articles Percentage

Statistical 7 100.0%

AR 1 14.3%

ARIMA 1 14.3%

Bayesian 3 42.9%

Calculus 1 14.3%

FFT 1 14.3%

Table 5. AI algorithms most used for STLF forecasting (for N = 30 papers).

Algorithms No. Articles Percentage

ML 22 100.0%

ANFYS 1 4.55%

ANN 4 18.18%

CFNN 1 4.55%

DL 8 36.36%

LSTM 5 22.73%

LSTM 1 4.55%

SVR 2 9.09%

Figure 7 shows the most widely used models of AI and which are DL, LSTM, SVR,
ANN, CFNN and MLP. The models that predominate are DL with 8 articles (year occurrence
2022), LSTM (year occurrence 2021), and ANN (years occurrence 2014 to 2017), with
4 articles each. The prevailing statistical models are the Bayesian and MLR with 3 articles
each, in 14 articles, as shown in Figure 8.
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The efficiency of each forecasting model is partially dependent on the input variables.
The input variables used in the electrical load forecasting were also analyzed. Figure 9
shows the input parameters used by the authors in the forecasting models. The analysis of
the revised articles found that, as was to be expected, everyone applies the energy historical
data. Tables 5 and 6 characterize the type of input variables and the number of articles that
used them. It is observed that a high majority of the electricity demand forecasting in the
residential sector applies to the inputs of the energy historical data (38 articles), the calendar
effect (24 articles) and the weather data (22 articles). However, there is less relevance in the
use of other data, such as energy tariffs, occupants’ lifestyles, household appliances and
socio-economic conditions.
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Table 6. Input parameters used for STLF forecasting (for N = 38 papers).

Parameters No. Articles

Statistical

Historical energy 7

Weather 4

Calendar effects 3

Energy tariff 1

Occupants’ lifestyle 1

Electric appliance 4

Socioeconomics 1

ML

Historical energy 22

Weather 12

Calendar effects 16

Energy tariff 1

Occupants’ lifestyle 0

Electric appliance 4

Socioeconomics 0

Both

Historical energy 9

Weather 6

Calendar effects 5

Energy tariff 1

Occupants’ lifestyle 1

Electric appliance 0

Socioeconomics 2

Table 7 shows that most of the authors of the reviewed articles applied the hourly load
reference period (24 articles), from historical energy data, for the inputs to the forecasting
models proposed for the energy demand of the residential sector.

Table 7. Historical load data used for STLF forecasting (for N = 37 papers).

Historical Energy Data No. Articles

Statistical 7

1 min 1

15 min 2

30 min 2

hourly 2

ML 21

1 min 1

15 min 2

30 min 1

daily 1

hourly 16
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Table 7. Cont.

Historical Energy Data No. Articles

Both 9

15 min 2

30 min 1

hourly 6

3.4. Evaluation Metrics Used

The forecasting performance evaluation is an important part of the development of
load forecasting models, and it allow researchers to evaluate the model developed in the
modelling phase. Over the past few decades, researchers in the forecasting community
have proposed many metrics to assess the performance and accuracy of their forecasting
models. In the articles analyzed, the authors proposed several performance evaluation
metrics for each model. Table 8 shows that the most-used metric by authors was MAPE
(25 articles), mainly due to its simplicity and transparency in understanding, its effective-
ness, and its usefulness for short-term forecasting. The other most-used metrics are RSME,
MSE, and MAE. Table 9 shows the second most used metrics.

Table 8. The 1st evaluation metrics most used for STLF forecasting (for N = 38 papers).

Metrics No. Articles Percentage

Statistical 7 18.42%

MAPE 4 10.53%

MSE 1 2.63%

RSME 2 5.26%

ML 22 57.89%

MAPE 17 44.74%

MSE 1 2.63%

others 3 7.89%

RSME 1 2.63%

Both 9 23.68%

MAPE 4 10.53%

RSME 5 13.16%

Table 9. The 2nd metric most used for STLF forecasting (for N = 25 papers).

Metrics No. Articles Percentage

Statistical 4 16.00%

MAE 3 12.00%

others 1 4.00%

ML 17 68.00%

MAE 7 28.00%

MSE 3 12.00%

RSME 7 28.00%

Both 4 16.00%

MAE 1 4.00%

MSE 1 4.00%
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Table 9. Cont.

Metrics No. Articles Percentage

others 1 4.00%

RSME 1 4.00%

3.5. Data Pre-Processing

In some of the works presented (16 articles), the authors adopted data pre-processing
techniques to increase the accuracy of the forecasting models proposed by them, avoiding or
reducing the noise in the data used in their models. Table 10 shows the three classifications,
high (<5%), satisfactory (5% to 20%), and low (>20%) adopted to assess the performance of
the energy demand forecasting models for the residential sector. In two articles it was not
possible to identify whether pre-processing techniques were used in the input data. At first
sight, it seems that the solution to improve the accuracy of the model proposed involves
the solution of the algorithm used in the modelling rather than the pre-processing of the
input data.

Most of the mentioned methods applied to the residential agglomerate have shown
good performances, both AI and statistical methods. However, when applied to small clus-
ters or individual households, performance in modelling nonlinear consumption patterns
fails. The main reason pointed out is the random behavior of residents throughout the days
of the week or the failure to predict exogenous variables, such as weather data [26,27].

The analyzed articles use short-term load forecasting methods in their studies based
on scenarios with historical load data between 2 weeks and 10 years. Most are sufficient to
be used in the proposed load forecasting models. However, in scenarios where historical
load data are scarce, the accuracy of the forecasting will drop significantly or even make
the study invalid [21,28].

In recent years, data decomposition methods such as empirical mode decomposition
and variational mode decomposition have gained popularity in load forecasting research.
These techniques have been used in various studies to preprocess time-series data, particu-
larly in the energy sector. However, the literature analyzed found that the most used data
processing techniques for load forecasting in households are statistical methods.

The load of the residential sector is a typical time series; many statistical methods have
been and continue to be used for STLF solutions, such as the auto-regressive integrated
moving average (ARIMA) [29], or the Bayesian [12,30] or Gaussian processes (GP) [27].
However, due to the non-linearity of the behavior of residential energy consumption, the
effects of these models are often limited, and the availability of the original time sequences
is mandatory; the statistical models present in the STLF solutions are low-performance.

Machine learning algorithms, such as Support Vector Regression (SVR) [14–16] and
Artificial Neural Networks (ANN) [7,17–20], have been successfully applied to deal with
the nonlinear characteristics of load forecasting. In SVR, inappropriate kernel function
selection or hyperparameter settings have a great impact and compromise the results of
the STLF. The use of ANN to load forecasting has a certain learning and auto-adaptive
ability but easily converges to the optimal local value, resulting in a large error between
the predicted value and the true value. For the models that employ SVRs and ANNs to
predict electricity consumption in the short term, hourly, or daily for cluster or individual
residence typologies, most of them show satisfactory or low results. Machine learning
algorithms, such as SVR [31–33] and ANN [22,29,34,35], have been successfully applied to
deal with the nonlinear characteristics of load forecasting.

However, recently, DLs have been demonstrated as efficient techniques, and most
of the studies analyzed have shown good results. The authors of the studies emphasize
the significant performance improvements for STLF by applying DL models compared
to conventional methods. The solutions with the best results and the most successful are
DL models that incorporate Convolution Neural Networks (CNN) [10,21–25] and Long
Short-Term Memory (LSTM) [24,26,29], with large-scale data from historical data from
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2 weeks to 10 years. DL approaches integrated with CNN models have been studied to
predict daily or hourly energy consumption, while LSTM architectures have been studied
to predict energy consumption in different periods, namely short-term, i.e., 7 days or
1 month, because they can capture long-term dependencies in time series.

The third type of data-driven approach to STLF solutions is called a hybrid method,
which aims to integrate various types of techniques that harness the strength of different
machine learning or statistical techniques, and outperforms the classic or recent models.
The authors of the analyzed studies sought to hybridize two or more ML [8,10,25] and
statistical [28–30] techniques to improve the forecasting accuracy of their models.

Table 10. Data preprocessing used (Yes) or not used (No) for STLF forecasting (for N = 36 papers).

Metrics No. Articles Percentage

Statistical 7 19.44%

No 4 11.11%

High 2 5.56%

Low 1 2.78%

Satisfactory 1 2.78%

Yes 3 8.33%

High 1 2.78%

Satisfactory 2 5.56%

ML 21 58.33%

No 11 30.56%

High 5 13.89%

Low 3 8.33%

Satisfactory 3 8.33%

Yes 10 27.78%

High 2 5.56%

Low 4 11.11%

Satisfactory 4 11.11%

Both 8 22.22%

No 4 11.11%

High 2 5.56%

Low 1 2.78%

Satisfactory 1 2.78%

Yes 4 11.11%

High 4 11.11%

Hybrid forecasting methods combine the advantage of one or more techniques to
decrease forecasting errors in STLF solutions. These models overcome the disadvantages
presented by non-hybrid structures in the search for better forecasting accuracy by in-
creasing the robustness and efficiency of a hybrid model. Most hybrid models presented
combine linear and nonlinear models for effective forecasting. The authors of the analyzed
articles present hybrid models developed mainly by combining (1) traditional statistical
methods and (2) machine learning algorithms.
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4. Literature Review of STLF Methods

Electrical short-term load forecasting usually covers the hourly forecast horizon up to
one week [36]. This period is crucial in the decision-making of the electricity grid utility for
the management of small to large scales electricity grids, where countries and groups of
countries have common energy systems, such as the European Union [36–38].

In the analyzed literature, electricity demand forecasting has received some attention
from many researchers in different countries due to its essential contribution to the planning
and management of the electrical system [12,17]. This attention has been more oriented
to the agglomerate of residences. However, in the last two years, researchers have been
increasing their work on individual residences, a task that induces greater variability in
the results.

Generally, the load profile in the residential sector follows cyclical and seasonal pat-
terns related to the activities of residents and generates a time series of real consump-
tion [39]. The dynamics of this system can vary significantly during the observation period
(calendar effects), depending on the nature of the system and external influences (weather,
occupancy, socioeconomic environment). It promotes variations in the results accuracy of
the forecasting between different samples, even when using the same forecasting model. In
the last decade, STLF solutions for the residential sector have used approaches based on
different models, each characterized by different advantages and disadvantages in terms of
forecasting accuracy, training complexity, sensitivity to parameters, and limitations in the
prospect of expected forecasting [39].

In the analyzed literature, statistical and machine learning models are usually used in
the forecasting of short-term load for residences, although the boundary between the two
is becoming increasingly ambiguous because there is more multidisciplinary collaboration
in the scientific community [40].

4.1. Synthesizing Residential Demand Forecasting

The load forecasting of a single household is less predictable than that of a cluster
or residential agglomerate, as it has a more aggregated load profile [26,41]. Some of the
forecasting studies presented found that the standard forecasting error decreased with
the increase in the number of households in the cluster and agglomerate because the
smoothing effect of the aggregation of the residential load profile arises [26]. Some of
the studies presented proposed an approach to the classification of residences according
to similar load profile patterns, suggesting that they eliminate part of the noise [26]. In
the analyzed articles, historical load data (38 articles), calendar effects (26 articles), and
weather data (22 articles) are the main sources of inputs for load forecasting models. Others
(8 articles) employ simulations of the random use of various appliances to generate the
demand profiles of a residence. In residential clusters, adding sociodemographic factors
(3 articles) contributes to increasing the performance of the forecasting model.

In the analyzed literature, historical load and weather data are at the center of load
forecasting models [26]. The use of all available data was a common approach or, if the
dataset was incomplete, the longest periods with complete information were selected to
build the forecasting model [26]. In the papers analyzed in this systematic review, the
authors proposed forecasting models using datasets of at least 2 weeks and a maximum of
10 years.

The advantages of increasing the use of historical data are analyzed in the forecasting
models developed. This analysis has the greatest importance when used in independent
and dependent variable models [26]. Additional data that does not reinforce the accuracy of
the forecasting model should be avoided because it can create noise, impair its performance,
and require more computational time and power [26]. It turns out that using a larger
historical dataset reduces the error in forecasting. However, it was shown that the approach
of less historical data has a lower forecasting accuracy because the reduction in the amount
of historical data reduces the quality of training of forecasting models. However, multi-year
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data can promote similar errors of accuracy, as families generally have dynamic habits
and lifestyles.

Calendar effects promote variations in the load profile related to the days of the week
and holiday days or calendar periods. The use of calendar effects in load forecasting identi-
fied weekly and seasonal energy consumption patterns, as well as enabled the forecasting
of peak demand [26]. In the analyzed literature, 26 articles addressed the interaction be-
tween residential load and the effects of the calendar on the forecasting models presented.
To recognize the similarities in load variation at different periods of the week, they used
dummy variables, mostly binary, to characterize each hour of the day, day of the week, and
weekend. Other authors have considered seasonal variability (winter–summer). Historical
data were split into subsets to have the same day of the week or by certain hours of the
day. The added calendar effects produced a smaller error in the accuracy of the forecasting
models that used AI, but the statistical methods did not highlight significant differences
between the proposed models.

However, to improve the performance of the proposed statistical models, the authors
added other variables, such as sociodemographic factors [30], energy prices [42], occupancy
behavior [30,42], and home appliances [30,42], which brought some improvements in
agglomerate residences.

Most short-term load forecasting models are typically trained and tested at forecast
intervals of 15, 30, or 60 min. The forecast is usually provided for daily forecasting for
the next day, the next 24 h, hourly, or weekly [31]. For individual residences, the forecast
provided is daily or weekly, while for cluster and agglomerate residential, the periods
are usually monthly and seasonal. The choice of a 24-h horizon may be related to the
operation of the next day’s electricity market [26]. For residents with self-production
systems, the forecast for the next day is equally important in the decision-making process
of the self-production operation [26].

4.2. Forecasting Models Comparative Analysis
4.2.1. Artificial Intelligence Method

The latest developments in the fields of data science and artificial intelligence have
led to research on energy consumption forecasting using the historical data produced
by consumption, behavior, and weather conditions. From this perspective, several AI
approaches applied to STLF were developed, which can be divided into four groups
based on the methodological nature of the algorithms: ML, ANN, DL, and hybrid [2]. A
complete list of recognized articles that used AI in their forecasting methods is presented
in Appendix A.

The most-used AI algorithms are ANN, SVR, and DL models [43]. ANN has very good
results in nonlinear systems and is widely used in STLF solutions in load forecasting [43].
However, ANN suffers from a limitation of settling in the local minima and overfitting
problems [43]. To avoid overfitting, the authors increased the amount of data, dropped
out others, and trained with momentum [12]. Training a neural network consists of
modifying its parameters through gradient descent optimization, which minimizes a given
loss function that quantifies the network’s accuracy in performing the desired task [39],
reducing the training error [44]. SVR is a statistical machine learning approach that has
been successful in electricity load forecasting [43]. SVR can accurately obtain the best
overall solution in the sample by the principle of structural risk minimization. However,
SVR works well with a small sample of data but performs worse when using larger
datasets [32]. DL allows modelling high-level abstractions and recognizing and extracting
hidden invariant structures and intrinsic characteristics of the data [2]. However, this
flexibility has a cost, namely, the DL architecture requires a significant amount of data to
overcome other approaches, training is computationally intensive, and its interpretation is
not easy [12]. It works well on certain types of STLF solutions, and it seems that arbitrarily
increasing the depth of an ANN may not always produce the best results [12].
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ML

The ML approach includes a set of methods that try to learn from historical data [10].
This group of AI techniques involves models that can automatically identify patterns in
the data and then use them to predict and develop techniques that contribute to decision-
making in an uncertain environment [10]. The application of ML models in STLF emerged
to identify the correlation between input and output data and has been used to address the
drawbacks presented by traditional techniques [2].

ANN

The ANN approach is widely used in STLF solutions due to its high accuracy in
forecasting [22]. For this reason, it has gained great popularity to solve forecasting problems
in STLF solutions [5]. ANN is an approach inspired by the behavior of human brain neurons.
ANN is an information processing system inspired by how biological nervous systems are
interconnected with each other [5]. ANN is a model that uses artificial neurons that are
composed of layers within the network. The typical ANN has several input neurons and
typically a single output neuron with several hidden layers and has a connection between
them that is given a specific weight. The ANN model uses several supervised examples
to learn from the input dataset to later be used to label new datasets with similar and
never-before-seen characteristics [5].

The main feature of the neuronal network is its ability to learn, automatically, from the
environment and adjusts its performance through learning [7]. ANNs can converge easily
after training with the appropriate number of samples. ANNs can produce an output with
a very small error (or almost that) with new input data without ever having trained them
before. Another interesting fact is that ANN has a tolerance for noisy data [7].

The use of learning algorithms enables ANNs to approach any continuous function,
to any desired precision, by creating internal ANN representations, avoiding the use of
explicit mathematical models to illustrate the input–output relationships [7].

DL

DL-based models are a class of ML algorithms, and in recent years have been widely
used in STLF [43]. DL systems are based on ANNs, and in time series modelling, the
recurrent neural network (RNN) is the most widely used DL architecture for residence load
forecasting [24,45]. RNNs fall under the unsupervised learning category [10,12,33,46]. In
unsupervised learning methods, only the inputs are given. RNNs put the state values of
the last neurons in the next neurons to perform time series data mining and have provided
new approaches to STLF solutions. RNNs have demonstrated their ability to forecast
medium and long-term electricity consumption at 1-h intervals of residences, and results
have shown that they have relative errors lower than the common multilayer networks.
However, in training, RNNs are prone to gradient problems, limiting their application in
load forecasting systems [43].

Given this limitation and to better deal with long-term dependencies, LSTM networks
were proposed in exchange for a higher computational cost [43]. To prevent the gradient
from disappearing or exploding after multiple iterations of time steps, traditionally hidden
nodes are replaced with memory modules [43]. CNN networks can identify nonlinear
relationships between adjacent samples in local regions. CNN is a supervised learning
algorithm and can be used when sufficient data can be labelled [10]. In supervised learning,
the goal is to learn a mapping between the input vector and the outputs, if there is an
existing labelled set of input–output pairs. CNN is skilled at assembling characteristics and
extracting complex relationships using convolutional operators and nonlinear activation
functions in the hidden layers [22].

LSTM and CNN are two different neural network architectures that can be com-
bined to overcome some of the limitations of each approach. For example, LSTM net-
works are particularly good at handling long-term dependencies in sequences of data
but can be computationally expensive. On the other hand, CNNs are better suited for
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identifying non-linear relationships in local regions of data but require labelled data for
supervised learning [45].

By combining LSTM and CNN architectures, it is possible to take advantage of the
strengths of each approach while mitigating their weaknesses. A CNN, for example, can be
used as a feature extractor for picture data, with the retrieved features subsequently passed
into an LSTM for sequence processing. To better handle long-term dependencies in the
data, the LSTM can take advantage of the rich and sophisticated feature representations
learned by CNN. The combination of the LSTM and CNN architectures enables more
robust and adaptable machine-learning models that can handle a variety of tasks, including
natural language processing and image recognition. The combination of LSTM and CNN
architectures enables higher accuracy and generalization performance in a wide range
of applications [45].

SVM

In machine learning, the SVM is a supervised learning method with associated learning
algorithms that analyze data for classification and regression analysis [34,40]. SVM is one
of the most robust forecasting methods, based on statistical learning structures [1].

The SVM analyzes the data and classifies it into one of two categories. The task of
the SVM is to determine which category a new data point belongs to, making it a non-
binary linear classifier type [3]. It is trained with a series of data already classified into
two categories, building the model as it is initially trained and generating a map of the
data classified. The SVM performs linear sorting and can efficiently perform a nonlinear
classification using the technique called the kernel, implicitly mapping its inputs into
high-dimension resource spaces [29,31,47].

The main benefits of the SVM approach are that it is noise robust and reduces overfit-
ting and underfitting while meeting the overall minimums of the objective function. The
SVM handles excessive and insufficient adjustment of the training samples, minimizing
training error and regularization terms.

Hybrid Algorithms

The purpose of hybrid algorithms is to develop a forecasting model using optimization
algorithms or pre-processing techniques to optimize the model parameters, leading to
methodologies for attenuating or eliminating noise in the pre-processing of the electrical
load and applying relevant characteristics in the time series by decomposing it into the
original series. Most classic and original models have flaws, and the intended level of
precision is not reached, so the researchers propose a hybrid model to take advantage
of each model that composes it and smooth out the forecasting errors from the original
forecasting model [48]. A complete list of recognized articles that use both methods in their
forecasting methods is presented in Appendix B.

In recent years, optimization algorithms have been widely used in load forecasting
research to improve the performance of forecasting models. While particle swarm opti-
mization and differential evolution algorithms have been mentioned as popular algorithms
for this purpose, this systematic review applied to STLF in households has identified that,
in the papers reviewed, authors used other optimization algorithms used in the popular
literature. Proposals for hybrid solutions that combine different techniques to optimize and
improve forecasting results were identified. These approaches have been reported in the
several reviewed papers and have shown promising results in load forecasting.

4.2.2. Statistical Methods

In recent decades, extensive research has been carried out on the development of
models based on statistical methods to define the methodologies applied to the forecasting
of electricity demand in STLF. The models used in the statistical methods correlate energy
consumption or energy index with influence variables [49,50]. These models are developed
from sufficient time series historical data and, like the ML models, are subsequently trained.
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Among these historical data, simplified variables such as weather data are used to correlate
energy consumption to obtain an energy characteristic that stands out [49]. The selection
of the models of the statistical method depends on the variation of the input data and
the expected period. However, the statistical method is unable to deal with the dynamics
system effectively due to nonlinearities induced by nonlinear data, such as calendar effect
(weekday, weekend) or seasonality, which affect the electrical load profile [29,51].

The most used models for the analysis and forecasting of time series are the Au-
toregressive Integrated Moving Average (ARIMA) and SARIMA, which is an ARIMA
where the letter “S” stands for seasonality [29,51]. The autoregressive model (AR) is a
linear regression of the current value based on one or more previous values. Like the AR
model, the Moving Average (MA) is a linear regression [19]. The difference lies in the
regression of current values with noise or errors of one or more past values [19]. While
SARIMA needs only the past value of a non-stationary time series, it is adaptable and can
handle seasonality [19].

ARIMA is the most popular and mature among all other approaches due to the
adaptability of linear patterns and its simplified algorithm. However, the residential
electricity consumption profile is a non-stationary profile [51]. The ARIMA and SARIMA
models use the lagged mean values of STLF time series data to convert non-stationary data
to stationary data.

In the analyzed literature, other statistical models and their variation are also studied,
such as adaptations to Bayesian inference, Gaussian processes, and wavelets. However,
even with the adjustments introduced by the researchers, the statistical algorithms remain
limited in identifying temporal variations and non-linear patterns of residential electrical
load as required by STLF solutions and are inappropriate for an individual residence.
A complete list of recognized articles that used statistical methods in their forecasting
methods is presented in Appendix C.

4.2.3. Time Series Analysis

Statistical models are the simplest and use time series trend analysis to forecast future
energy needs. In the analyzed studies, models are proposed for STLF, which varies from
one hour to one week, and the input variables used are times series of historical data of
electricity consumption, weather, appliances, and socio-economic conditions. Medium-
term forecasts are usually from one week to a year. However, depending on the forecasting
granularity requested, in general, the models developed based on statistical methods for
longer-term periods (>1 year) have uninteresting performances, consume a large amount
of computation time, and require a good understanding of the underlying statistics.

4.2.4. Performance Analysis Metrics

For performance evaluation, the various articles apply multiple metrics of statistical
evaluation methods for error assessment, namely MAPE, RSME, and MAE. However,
several authors express concerns that traditional approaches to error assessment are not
adequate in predicting household load due to a high error in values close to zero or scale
problems due to differences in load profiles between households [27]. MAPE’s limitations,
such as difficulties in handling small and zero denominators, are not very relevant to
traditional load forecasting problems, because the aggregate load is rarely zero or is close
to a very small number.

5. Conclusions

From the large and diversified literature analyzed for STLF solutions in the residential
sector, we have highlighted the modelling approaches for electricity demand that are
fundamental tools of great interest to the energy sector. In the last decade, there has been
an increase in model proposals with a variety of formulations and applications, and a
wide temporal and spatial scale. The models proposed and analyzed have their merits and
advantages in each application case in the evaluation of the best methods, algorithms, and
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metrics of accuracy performance. This systematic review seeks to provide a comprehensive
review of the modelling literature for STLF solutions in the residential sector.

The present systematic review of the analyzed literature sought to identify which of
the modelling methods presents the best performance and accuracy in predicting future
energy demand in the residential sector. A direct comparison of the cases presented is
difficult due to the numerous variables that influence the performance of each model. Most
models are implemented for different locations, in different periods, with more or less good
quality data, and are supported by scripts that are more or less well written. Even the
performance evaluation metrics for determining the accuracy of the models are different
(MAPE, MAE, RSME, MSE, and others), which makes the comparison harder.

Given the number of articles published, it is acceptable to recognize that recurrence in
the use of forecasting models reflects good practices. Some models seem to be favored for
forecasts of electricity consumption and load demand, such as time series and ML models.
It is noteworthy that a large number of different ML models are being used, but it seems
that some techniques are more suitable than others for specific tasks. They are mainly used
in short-term forecasting, where patterns of electricity load and energy consumption are
more complex.

Statistical methods are often used for longer-period forecasting, where periodicity
and changes are less significant. They are often associated with socio-economic variables,
tariffs, and appliances that reflect the correlation between these variables and electricity
consumption over longer periods. Statistical models are relatively easy to implement but
have the disadvantages of lacking precision and flexibility.

AI models are suitable for solving nonlinear problems, which makes them very inter-
esting for applying energy demand forecasting in the residential sector. They provide very
accurate forecasting solutions, as long as the model selection and parameter configuration
are well executed. The disadvantages of AI models are that they require enough historical
data to perform well and can be extremely complex to implement and it is difficult to
interpret results.

The most commonly used models in AI are DLs, RNAs, and SVMs. They are con-
figured primarily with past energy consumption values, weather data, weekdays, and
occupancy levels. The decomposition and classification of days of the week is particularly
useful when the solution depends heavily on occupancy or when the time series has been
decomposed into underlying patterns. Data decomposition and classification allow split-
ting complex series into simpler series and thus providing better forecasting performance.

To avoid noise in the time series used in the forecasting models, the authors also
recommended a pre-analysis and pre-processing of the input data to eliminate absences and
atypical values, by smoothing the time series of errors and interpolating the missing values.

When analyzing the preparation of the academic and scientific papers presented,
the collection of information was a challenge. All authors declare that, when presenting
their work, they explicitly provide the framework for implementing the forecasting model
(period, time resolution, scale, inputs, outputs, pre-processing. etc.). To facilitate direct
comparison between the papers, authors should use a pattern of metrics for measuring
the equivalent result error in all studies. However, this would be impractical and, hence,
it should be desirable to have a unified dataset together with a set of benchmarks with
well-defined metrics for a clear comparison of all the modelling techniques and the corre-
sponding algorithms. It would be useful to have a consistent data collection and a set of
benchmarks with clearly defined metrics to enable a clear comparison of various modelling
strategies and algorithms for STLF. The use of a common dataset and benchmarks would
enable researchers to compare various models, algorithms, and techniques accurately. This
would help to advance the field of STLF and enable researchers to identify the most effective
techniques for specific applications.

The future of modelling for STLF solutions in energy demand for the residential sector
seems to be the use of the AI method based on ML models in conjunction with improved
data patterns and computational advances to estimate the demand for electricity from a
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single home, cluster, or agglomerate using dependent variables such as time series of the
history of electricity load, time series of past weather data, independent variables such as
the effect of the weekly and annual calendar, level of occupancy, and household appliances.
This model would capture the complexity inherent in the daily variability promoted by the
occupant’s behavior during the hours of day and night, weekdays, and weather conditions.
This would allow optimization of the management and operating costs of the electricity
grid. It would also allow for optimization in the use of primary resources and consequently
to the reduction of GHG emissions, thus contributing to the environmental targets assumed
by the international community in relation to the United Nations guidelines.

The forecast modelling of electricity demand in the field of STLF for the residential
sector faces some challenges, including technical obstacles related to the complexity of the
methods and the uncertainty of the models and variables to be used. Growing availability
and opportunity in the methods and technology, including new data sources such as
cloud computing and model-adjusted universal metrics, can contribute to enhancing
forecasting quality.

The forecast modelling of the demand of electric load in STLF systems for the residen-
tial sector undoubtedly has great potential and should face several other new challenges
that are not addressed here. However, this review has attempted to bring together a diverse
body of practices in a recognizable field, which researchers and professionals can contribute
to and develop further.
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Appendix A

Table A1. A complete list of recognized articles that used AI methods in their forecasting methods.
(for N = 22 papers).

Year Articles City Country Region Historical Data Category Forecasting Models

2023 [52] Journal Houston USA North
America >1 year 2016–2020 Individual ML LSTM CNN

2022 [53] Journal Lahore Pakistan Asia >1 year 2010–2019 Agglomerate DL CNN LSTM

2022 [54] Journal Texas USA North
America >1 year 2016–2017 Individual DL KNN Isolation forest

2022 [3] Journal Sceaux France Europe >1 year 2006–2010 Individual DL CNN LSTM
2022 [9] Journal Osaka Japan Asia >1 year 2013–2014 Clusters DL LSTM CNN Others

2022 [21] Journal Los
Angeles USA North

America ≤1 year 2012 Individual DL LSTM BPNN

2022 [17] Journal Mysore India Asia 1 month Feb 2020 Individual CFNN LM
2022 [24] Journal Sceaux France Europe >1 year 2006–2010 Clusters DL

2021 [18] Journal - Canada North
America >1 year 2012–2016 Individual DL CNN SVR

2021 [55] Journal - Ireland Europe >1 year 2011–2013 Individual LSTM

2021 [56] Journal New
York USA North

America ≤1 year 2019 Clusters LSTM SVR

2021 [45] Conference Paris France Europe >1 year 2006–2010 Individual LSTM CNN
2021 [44] Journal Faisalabad Pakistan Asia >1 year 2015–2017 Agglomerate LSTM SVR LM
2021 [56] Journal - Greece Europe ≤1 year Spring 2018 Individual LSTM MLP SVR Others
2020 [57] Conference Yan’na China Asia ≤1 year 2018 Clusters DL LSTM
2017 [58] Journal - - - >1 year 2006–2010 Clusters ANN SVR

2017 [20] Conference - - North
America >1 year 1985–1990 Agglomerate ANFYS KNN

2016 [22] Conference - - - ≤1 year 2012 Individual ANN LM

2016 [32] Conference Surrey Canada North
America ≤1 year 2014 Clusters SVR

2015 [51] Conference BangladeshAsia ≤1 year 2013 Individual ANN
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Table A1. Cont.

Year Articles City Country Region Historical Data Category Forecasting Models

2014 [31] Journal New
York USA North

America ≤1 year 2012 Individual SVR

2014 [35] Conference Lisbon Portugal Europe >1 year 2000–2001 Individual ANN MLP LM

Appendix B

Table A2. A complete list of recognized articles that used both methods in their forecasting methods.
(for N = 9 papers).

Year Articles City Country Region Historical Data Category Forecasting Method

2022 [11] Journal Sceaux France Europe >1 year 2006–2010 Individual DL LSTM SVR
2021 [8] Journal - Germany Europe >1 year 2011–2016 Clusters DL LSTM SVR ARIMA MLR
2021 [59] Journal - Austria Europe >1 year 2016–2017 Individual MLP LR ARIMA
2020 [5] Conference Lahore Pakistan Asia ≤1 year 2018–2019 Clusters ANN SVR MLR

2020 [16] Conference London UK Europe >1 year 2012–2014 Clusters MLP LSTM SVR LR Seq2Seq
network

2019 [34] Journal - - - ≤1 year 2015–2016 Agglomerate DL ANN RF NARX Nestrov

2017 [26] Journal NS
Wales Australia Australia >1 year 2013–2015 Agglomerate ANN RNN SVR MLR RT

2016 [60] Conference - - - >1 year 2011–2014 Individual ANN MLR
2014 [29] Conference - Bangladesh Asia ≤1 year 2013 Individual ANN ARIMA

Appendix C

Table A3. A complete list of recognized articles that used statistical methods in their forecasting
methods. (for N = 7 papers).

Year Articles City Country Region Historical Data Category Forecasting Models

2022 [12] Journal Ontario Canada North
America >1 year 2013–2019 Agglomerate Bayesian NARX ARIMA LR

2022 [28] Journal Quebec Canada North
America ≤1 year 2017–2018 Clusters Bayesian GP

Monte
Carlo
Markov
Chain

2021 [42] Journal - Ireland Europe >1 year 2009–2010 Clusters ARIMA Wavelet Others
2020 [30] Journal - Ireland Europe >1 year 2009–2010 Agglomerate Bayesian
2020 [61] Conference - - - - - Clusters AR ARIMA Hot-Winters
2016 [13] Conference Lisbon Portugal Europe >1 year 2000–2001 Individual FFT GRG
2016 [23] Conference - - - - - Agglomerate Calculus
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