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Abstract: In this study, we investigate a robust H∞ controller for a quarter-car model of an active
inerter-based suspension system under parameter uncertainties and road disturbance. Its main
objective is to improve the inherent compromises between ride quality, handling performance,
suspension stroke, and energy consumption. Inerters have been extensively used to suppress
unwanted vibrations from various kinds of mechanical structures. The advantage of inerter is that
the realized ratio of equivalent mass (inertance relative to the mass of the primary structure) is
greater than its actual mass ratio, resulting in higher performance for the same effective mass. First,
the dynamics and state space of the active inerter-based suspension system were achieved for the
quarter-car model with parameter uncertainties. In order to attain the defined objectives, and ensure
that the closed-loop system achieves the prescribed disturbance attenuation level, the Lyapunov
stability function, and linear matrix inequality (LMI) techniques have been utilized to satisfy the
robust H∞ criterion. Furthermore, to limit the gain of the controller, some LMIs have been added.
In the case of feasibility, sufficient LMI conditions by solving a convex optimization problem afford
the stabilizing gain of the robust state-feedback controller. According to numerical simulations,
the active inerter-based suspension system in the presence of parameter uncertainties and external
disturbance performs much better than both a passive suspension with inerter and active suspension
without inerter.

Keywords: robust H∞ control; active inerter-based suspension system; quarter-car model; linear
matrix inequality

1. Introduction

The main objective in the development of vehicle suspension systems is not only
to reduce the acceleration of the vehicle’s body and its passengers but also to preserve
good tire-road contact. The suspension travel must also be restricted within the permitted
working space [1]. These purposes (ride comfort, suspension stroke, and road holding) can
conflict with each other, thus the design problem is to find a compromise between them [1,2].
There are three major categories of the control structure for suspension systems that have
been developed to acquire the desired performance of the vehicle: passive, semi-active,
and active suspension systems [1]. Numerous investigations have demonstrated that the
active suspension system is a useful method for enhancing the suspension performance [3].
Nowadays, research to improve suspension performance is mostly concerned with two
areas: first, the exact and logical design of advanced vehicle suspension, and second,
the look for the best control strategies.

In order to mitigate the effects of vibration, numerous methods have been developed,
including isolating systems from vibration, controlling systems, redesigning systems to
adjust their natural frequencies, employing tuning mass dampers/absorbers, and more [4,5].
Tuned mass dampers (TMDs) are widely employed to suppress unwanted vibrations of
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various mechanical structures, e.g., buildings, bridges, motorcycle steering systems, vehicle
and train suspensions, landing gear suspensions, etc. [4,5]. The classical TMD is a mass
on a linear spring, and it is well-known that the classical TMD is particularly efficient at
reducing the response of the main structure in principal resonance, but at other frequencies
(even ones that are close to the resonance frequency) it enhances the system’s motion
amplitude [4,5]. Therefore, we must always consider whether we want to most effectively
damp vibrations at a particular frequency or whether we want to achieve tolerable damping
characteristics over a wide range of vibration frequencies. This problem is capable to be
minimized by novel TMDs containing inerters or magnetorheological dampers, which
are increasingly being developed nowadays [6]. An inerter is a device with two free-
moving terminals whose generated force is proportional to the relative acceleration of
its terminals. The proportional constant is called inertance with the unit kilogram [7].
The inerter possesses the effect of mass amplification and would provide much greater
inertia compared to its own mass, thus increasing the inertia of the entire dynamic system
rather than increasing the mass [5,7]. Because of its mechanical properties, it is therefore
an efficient structure for damping vibrations. On the other hand, the primary driving
reason for the proposal of inerter lies in the fact that the force-current analogy between
mechanical and electrical systems is not complete. Introducing the inerter has completed the
analogy between the mechanical network spring-damper-inerter and the electrical network
inductor-resistor-capacitor. As a result, the systematic approaches for the synthesis of
electrical networks can be employed for the development of inerter-based mechanical
networks directly [4].

The rack-and-pinion, ball-screw, and hydraulic (or fluid) inerters are the three most
commonly used inerters. Depending on whether a flywheel is used in the realization,
they can be divided into two categories, namely flywheel-based inerters and non-flywheel
inerters. When the inertance is fixed, the inerter is passive; when the inertance can be
adjusted, the inerter is semi-active [4,6].

The inerter is employed as a passive element in the majority of applications, in the
sense that online control activities cannot adjust the inertance. Then the performance of the
system has been evaluated passively or actively using the controller [4]. In [8], analytical
solutions for some inerter-based suspension structures were established for a quarter-car
model, and the performance advantages of utilizing inerters in vehicle suspensions were
analytically presented. In [9], several performance requirements for passive suspensions
with inerters, including ride comfort, suspension stroke, and tire deflection, were analyti-
cally studied. Consequently, the analytical solutions for six suspension configurations were
taken, revealing that the performance indices of complex networks are superior to those of
simpler networks. In [10], the nonlinearities of inerter and their influence on suspension
performance have been investigated. A mechatronic network structure that combines a
permanent magnet electric machine and a ball-screw inerter was suggested in [11]. One of
the main advantages of this mechatronic structure is the ability to combine mechanical and
electrical networks to actualize the system impedance. As a result, it is simple and takes
up little space to realize the higher-order system impedance. In [12], eight inerter-based
networks have been combined with sky-hook controlled and ground-hook controlled actu-
ators to demonstrate the performance advantages of inerter. In [13], the active inerter-based
suspension has employed a controllable actuator to generate the required force. Although it
uses the most energy, it offers higher dynamic performance as compared to passive and
semi-active suspensions.

Active suspensions provide the best performance but require more energy due to the
force-generating actuators. To solve this problem, an inerter-based electromagnetic device
was presented in [14] and implemented in the vehicle suspension system. The proposed
device not only improves the performance of the suspension, but also generates an amount
of electrical energy that can be used by other parts of the vehicle, especially the energy
required to operate the actuator.
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To find a compromise between the conflicting performances of the vehicle suspension
system, many approaches have been proposed based on various control techniques, such as
sliding mode control [15,16], fuzzy logic and neural network control [1,17], model predictive
control [18], adaptive control [15,17], H∞ control [2,19–21], etc. In particular, the application
of robust H∞ control of the active vehicle suspension system in the context of robustness
and damping of road disturbances has been intensively investigated. Additionally, it
has been recognized that it is not only an effective way to trade-off between conflicting
performance requirements, but also to optimize either a weighted single objective function
with hard constraints or a multi-objective function [1,19].

The majority of problems that engineers face in practical applications contain some
degree of uncertainty, including model and parameter uncertainties. Accordingly, while
developing a control system for stability and performance, system uncertainties should
always be taken into account [22]. Changes in the inertial properties of the vehicle, such
as vehicle’s sprung mass (due to the number of passengers in the vehicle, the load it is
carrying, or the aerodynamic forces), have a direct impact on the ride comfort, handling,
and braking performance of the vehicle. Additionally, uncertainty with regard to stiffness
may be caused by a variety of factors, including variability in manufacturing processes and
quality control, uncertainty in material properties and element dimensions, etc. It can be
challenging to select a fixed inerter that will satisfy vehicle performance requirements at
the sprung mass natural frequency without considerably deteriorating at the unsprung
mass natural frequency [23]. Therefore, when evaluating the performance of the inerter-
based vehicle suspension system, uncertainty in the inertance of inerter should be taken
into account.

To resolve the problems mentioned earlier, a parameter-dependent control approach
could be devoted to realizing robust control of vehicle suspension systems independent of
changes in vehicle parameters. The linear matrix inequality (LMI) approach is a practical
and effective method for handling system uncertainties [22]. In [20], a robust sampled-
data control for uncertain active vehicle suspension systems with input time-delay was
presented. In [24], by employing a quadratic Lyapunov function, adequate conditions for a
state feedback-based H∞ controller and an observer-based H∞ controller were presented
in the form of non-convex matrix inequalities that take actuator saturation into account.
In [2], a delay-dependent memory state-feedback H∞ controller for active quarter-car
suspension system with input time-delay in the presence of external disturbance were
investigated. In [21], for a class of nonlinear systems under parametric uncertainties and
external disturbances, a nonlinear state feedback controller based on linear matrix inequality
was presented. Considering all these works, we intend to investigate the active inerter-
based suspension system for a quarter-car model by considering all factors, including
external disturbance, parametric uncertainty, and input constraint. It is worth noting that
this work is not a simple application of an existing method on active suspension systems,
but that the theoretical findings are also novel and nontrivial.

In this paper, the active inerter-based quarter-car suspension system is investigated
based on the parallel-connected configuration, since this configuration is simple and space-
saving [7]. The H∞ control (energy-to-energy) is used to optimize the performance re-
quirements of the active inerter-based suspension system in the presence of parameter
uncertainties and external disturbance. Employing the direct Lyapunov method, sufficient
stability requirements and performance criteria are taken in the form of LMIs. Moreover,
to reduce the controller gain, additional LMIs are also added to the original condition,
which results in avoiding the amplification of the measurement noise and saturation of the
actuator [3].

The main contributions of this work can be summarized as follows:

• In this paper, we purpose to design a multi-objective robust H∞ controller for the active
inerter-based quarter-car suspension system that provides a compromise between the
basic performance requirements for vehicle suspension system including ride comfort,
suspension deflection, road holding, and energy consumption.
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• We have presented the state space of the active vehicle suspension system for the
quarter-car model with the presence of inerter in its dynamics and evaluate the
performance of this system using the robust H∞ controller.

• In the actual implementation of the active suspension system, a high gain controller
might cause major problems including noise amplification and actuator saturation.
In order to prevent such problems, some additional LMIs are introduced to reduce the
gain of the controller.

• The stability conditions are derived as linear matrix inequalities (LMIs) and therefore
the stabilization gain of the system is obtained by solving the convex optimization
problem.

The subsequent parts of this paper are structured into four sections. The description of
the active inerter-based quarter-car suspension system is provided in Section 2. The problem
formulation for robust H∞ control based on the solvability of LMIs for the uncertain system
is given in Section 3. In Section 4, the proposed controller is applied to the inerter-based
quarter-car model for performance evaluation. Finally, the conclusion of our findings is
presented in Section 5.

Notation: The following nomenclature will be utilized throughout this paper. In a
symmetric block matrix or complex matrix expressions, an asterisk (∗) indicates a term
that is induced by symmetry. The notation P > 0 (≥ 0) is utilized to denote that P is a real
symmetric and positive definite (semi-definite) matrix. Rn stands for the n-dimensional
Euclidean space and the superscript T denotes matrix transposition. I and 0 are utilized
to indicate the identity and zero matrices with appropriate dimensions, and diag{· · · }
stands for a block-diagonal matrix. Let ‖•‖ symbolize the induced norm for matrices
and the Euclidean norm for vectors. ‖•‖L2

represents the L2 norm of a signal defined as

‖v(t)‖2
L2

=
∫ ∞

0 ‖v(s)‖
2 ds.

2. Active Inerter-Based Quarter-Car Suspension System Modelling

Since the force generated by the spring relies on the displacement, and the force
produced by the damper depends on the velocity, the idea of the inerter is to act against
accelerations. Accordingly, the inerter is connected in parallel to the spring and damper
between the wheel and the chassis. The main function of the inerter is to dampen the
vibrations coming from the tire, which enhance the contact between the wheel and the
ground [23]. The quarter-car model of the active suspension system equipped with inerter,
as shown in Figure 1, can be reduced to 2DOF system considering the vertical dynamics.
The model is assembled by one sprung mass (car body) that is connected to one unsprung
mass. The unsprung masses is free to move vertically and are confronted with the road
disturbance input.

Figure 1. Quarter-car model of active Inerter-based suspension system.
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In Figure 1, ms represents the mass of the car body, and mu is the unsprung mass.
bs denotes the inertance of the inerter, cs represents the damping coefficient of suspension
element, and ks represents the stiffness of the suspension. Likewise, kt is the tire stiffness,
and ct is damping of the pneumatic tire; u(t) denotes actuator force input. zs(t) represents
the vertical displacements of the body, zu(t) denotes the vertical displacements of the
unsprung mass, and zr(t) denotes the road disturbance input. It is assumed that the tire
is always in contact with the ground, and the characteristics of the suspension elements
are linear.

We assume that the exact value of the sprung mass ms(t) and inertance of the inerter
bs(t) are not known, but their maximum and minimum values are available. The differential
equations of motion can be calculated with the help of Newton’s second law as follows

ms(t)z̈s(t) + bs(t)[z̈s(t)− z̈u(t)] + cs[żs(t)− żu(t)] + ks[zs(t)− zu(t)] = u(t) (1)

mu z̈u(t) + bs(t)[z̈u(t)− z̈s(t)] + cs[żu(t)− żs(t)] + ks[zu(t)− zs(t)]
+ct[żu(t)− żr(t)] + kt[zu(t)− zr(t)] = −u(t)

(2)

It is noteworthy that the equations of motion for the passive suspension system can be
received by letting u(t) = 0. Defining four state variables as follow

x1(t) = zs(t)− zu(t) , x2(t) = zu(t)− zr(t)

x3(t) = żs(t) , x4(t) = żu(t)
(3)

where x1(t) represents the suspension deflection, x2(t) is the tire deflection, x3(t) denotes
the vertical velocity of the car body, x4(t) represents the vertical velocity of the wheel.
Accordingly, by defining x(t) = [ x1(t) x2(t) x3(t) x4(t) ]T , the active inerter-based
suspension system can be represented by the following state-space equation

ẋ(t) = A(t)x(t) + B(t)u(t) + D(t)v(t) (4)

where

A(t) =


0 0 1 −1

0 0 0 1

−muks/ f (t) −bs(t)kt/ f (t) −mucs/ f (t) (mucs − bs(t)ct)/ f (t)

ms(t)ks/ f (t) −(ms(t) + bs(t))kt/ f (t) ms(t)cs/ f (t) −(ms(t)cs + (ms(t) + bs(t))ct)/ f (t)



B(t) =
[

0 0 mu/ f (t) −ms(t)/ f (t)
]T

D(t) =
[

0 −1 bs(t)ct/ f (t) (ms(t) + bs(t))ct/ f (t)
]T

f (t) = ms(t)mu + (ms(t) + mu)bs(t)

v(t) = żr(t)

As mentioned earlier, ride comfort, suspension deflection, and road-holding ability
are the three most important performance criteria to consider when developing controllers
for vehicle suspension systems.

• Ride comfort: Indeed, minimization of the vertical acceleration sensed by the rider is
the paramount assignment of the suspension system, leading to ride comfort and less
depreciation. In other words, ride comfort is the general sensation of noise, vibration
and motion inside a driven vehicle and it impacts the comfort, safety and health of
the passengers. Therefore, the sprung mass acceleration z̈s(t) is selected as the first
control output vector.

• Suspension deflection limitation: Vehicle suspension must be capable of support
the vehicle’s static weight. Accordingly, in order to prevent mechanical structural
damage and ride comfort deterioration, the active suspension controllers should be
qualified to preclude the suspension from hitting its travel limit.

• Road holding ability: In practical vehicle systems, during maneuvers such as
deaccelerating, accelerating, or cornering, there are numerous forces acting on the
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wheel that can raise it off the ground and leads to losing control of the car, in either
steering senses or driving. Hence, the dynamic tire load should not exceed the static
tire load to guarantee firm uninterrupted contact of the wheel to the road [2].

Therefore, the controlled output of the active inerter-based suspension system can be
presented by the following state space equation:

z(t) = C1(t) x(t) + D12(t) u(t) + F(t) v(t) (5)

where

C1(t) =


−ρ(muks/ f (t))

α

0

−ρ(bs(t)kt/ f (t))

0

β

−ρ(mucs/ f (t))

0

0

ρ((mucs − bs(t)ct)/ f (t))

0

0



D12(t) =


ρ(mu/ f (t))

0

0

 , F(t) =


ρ(bs(t)ct/ f (t))

0

0


where ρ > 0 is a scalar weighting for the ride comfort, α > 0 is a scalar weighting for the
suspension deflection, and β > 0 is a scalar weighting for the tire deflection. They have
been utilized to manage the compromise between control objectives [2].

It is worth noting that with the new sensor configuration for intelligent vehicles,
vehicle states such as vertical speed and attitude can be accurately estimated. Some of these
states are important inputs for vehicle suspension system control [25]. We suppose the case
that all the state variables x(t) can be measured, leading to the design of a state-feedback
H∞ controller.

y(t) = C2 x(t) , C2 = I (6)

For the design of the robust H∞ controller, the following state-feedback controller is
considered

u(t) = Ky(t) = Kx(t) (7)

where K is the state-feedback gain matrix that must be designed in such a way that, first,
the closed-loop system in the absence of external disturbance is asymptotically stable,
and second, under zero initial conditions the L2 gain (i.e., H∞ norm) of the closed-loop
system guarantees ‖z(t)‖2

L2
< γ2‖v(t)‖2

L2
for all nonzero v(t) ∈ L2

[
0 ∞

)
, and some

scalar γ > 0.

3. Robust H∞ Controller Design

The active inerter-based suspension system can be defined by the following state-space
equations

ẋ(t) = A(t)x(t) + B(t)u(t) + D(t)v(t)

z(t) = C1(t)x(t) + D12(t)u(t) + F(t)v(t)

y(t) = C2x(t)

x(t) = φ(t)

(8)

where x(t) ∈ Rn is the state, u(t) ∈ Rm is the input vector, y(t) ∈ Rp is the measured
output, z(t) ∈ Rd is the controlled output, φ(t) is a real-valued initial function, v(t) ∈ Rq

denotes the external disturbance vector, matrices A(t), B(t), D(t), C1(t), D12(t), and F(t),
are all uncertain matrices with appropriate dimensions.

Define f = {A(t), B(t), D(t), C1(t), D12(t), F(t)}. Then for Θ(t) ∈ f we have

Θ(t) = Θ + ∆Θ(t) (9)

where ∆Θ(t) represents the uncertainties. In addition, the uncertainties are assumed to be
structurally bounded, i.e.,

∆Θ(t) = MΘE(t)NΘ (10)

where E(t)TE(t) ≤ I; moreover, MΘ and NΘ are appropriately dimensioned matrices.
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In this section, we will solve the problem of the robust state-feedback H∞ controller
for active inerter-based suspension systems with parameter uncertainties and external
disturbance. The equivalent structure for this controller is shown in Figure 2. Theorem 1
presents the conditions that without external disturbance, the uncertain closed-loop system
becomes asymptotically stable, and in the presence of external disturbance, the desired
amount of disturbance attenuation is reached. This can be accomplished by minimizing the
H∞ norm of the closed-loop system under the external disturbance v(t) to the controlled
outputs z(t) via a suitable quadratic Lyapunov function.

Figure 2. Equivalent structure of the robust H∞ controller with parameter uncertainty and exter-
nal disturbance.

Assumption 1. In this paper, the external disturbance signal v(t) is considered to be square-
integrable, that is

‖v(t)‖2
L2

=
∫ ∞

0
‖v(s)‖2ds < vmax < ∞

Lemma 1 ([26]). Let Q, Φ and w be real matrices of appropriate dimensions with w satisfying
wTw ≤ I. Then, for any scalar ε > 0

QwΦ + (QwΦ)T ≤ ε−1QTQ + ε ΦTΦ (11)

Lemma 2 (Schur Complement [27]). Given constant matrices Ω1 , Ω2 and Ω3 satisfying
Ω1 = ΩT

1 and Ω2 > 0 , then Ω1 + ΩT
3 Ω−1

2 Ω3 < 0, if and only if[
Ω1 ΩT

3
Ω3 −Ω2

]
< 0 (12)

Theorem 1. Supposing positive constants γ, δ1, LR, and LS, the linear uncertain active inerter-
based suspension system (Equation (8)) with state-feedback controller in Equation (7) is asymp-
totically stable without external disturbance, and in the presence of external disturbance fulfills
‖z(t)‖2

L2
< γ2‖v(t)‖2

L2
for v(t) ∈ L2

[
0 ∞

)
, if there exist symmetric positive definite matrix

X > 0, matrix Y with appropriate dimensions, and εi > 0 for i = 1, . . . , 9, such that the following
LMIs hold [

Ξ̄ Ψ

∗ Γ

]
< 0 (13)

[
LRI YT

Y I

]
> 0 (14)

[
LSI I

I X

]
> 0 (15)
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where

Ξ̄ =



Ξ̄11 D XC1
T + YTD12

T 0 XC1
T + YTD12

T 0
∗ −γ2I 0 FT 0 FT

∗ ∗ Ξ̄33 0 0 0
∗ ∗ ∗ Ξ̄44 0 0
∗ ∗ ∗ ∗ Ξ̄55 0
∗ ∗ ∗ ∗ ∗ Ξ̄66


Ξ̄11 = AX + XAT + YTBT + BY + ε1MAMT

A + ε2MBMT
B + ε3MDMT

D

Ξ̄33 = −I + ε4Mc1 MT
c1
+ ε5MD12 MT

D12

Ξ̄44 = −δ1I + ε6MFMT
F

Ξ̄55 = −δ−1
1 I + ε7Mc1 MT

c1
+ ε8MD12 MT

D12

Ξ̄66 = −I + ε9MFMT
F

Ψ =



XNT
A

0

0

0

0

0

YTNT
B

0

0

0

0

0

0

NT
D

0

0

0

0

XNT
c1

0

0

0

0

0

YTNT
D12

0

0

0

0

0

0

NT
F

0

0

0

0

XNT
c1

0

0

0

0

0

YTNT
D12

0

0

0

0

0

0

NT
F

0

0

0

0


Γ = diag(−ε1I,−ε2I,−ε3I,−ε4I,−ε5I,−ε6I,−ε7I,−ε8I,−ε9I)

In this case, if inequalities Equations (13)–(15) have a feasible solution, the stabilizing gain of
the state-feedback controller (Equation (7)) is given by K = YX−1.

Proof. The Lyapunov function is chosen as follows:

V(t) = xT(t) p x(t) > 0 (16)

and p = pT > 0 is the matrix to be chosen. The derivative of V(t) is taken as

V̇(t) = ẋT(t) p x(t) + xT(t) p ẋ(t)

= xT(t)(A(t) + B(t)K)Tp x(t) + vT(t)D(t)Tp x(t)

+ xT(t) p(A(t) + B(t)K)x(t) + xT(t) p D(t)v(t) < 0

(17)

Supposing zero initial condition (x(t) = φ(t) = 0), we have V(t)|t=0 = 0. Now, we can
suppose the following index

J∞ =
∫ ∞

0

[
z1(t)

Tz1(t)− γ2v(t)Tv(t)
]
dt (18)

Then, for any nonzero v(t) ∈ L2
[

0 ∞
)
, there holds,

J∞ ≤
∫ ∞

0

[
z1(t)

Tz1(t)− γ2v(t)Tv(t)
]
dt + V(t)|t=∞ −V(t)|t=0

=
∫ ∞

0

[
z1(t)

Tz1(t)− γ2v(t)Tv(t) + V̇(t)
]
dt =

∫ ∞
0 ζTΠ1ζ dt

(19)

It is supposed that ζ =
[

x(t)T v(t)T
]T

, and

Π1 =

[
Γ11 (C1(t) + D12(t)K)TF(t) + p D(t)T

∗ F(t)TF(t)− γ2I

]
(20)

where

Γ11 = (A(t) + B(t)K)Tp + p(A(t) + B(t)K) + (C1(t) + D12(t)K)T(C1(t) + D12(t)K)

Considering the zero-disturbance input (v(t) = 0); if Equation (20) is negative-definite
(Π1 < 0), then it can be concluded that V̇(t) < 0 and the asymptotic stability of the system
in Equation (8) is fulfilled. When v(t) ∈ L2

[
0 ∞

)
, and Π1 < 0, this indicates that

J∞ < 0 and therefore ‖z(t)‖2
L2

< γ2‖v(t)‖2
L2

.
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Π1 < 0 can be written as follows

Π1 =

 (A(t) + B(t)K)Tp + p(A(t) + B(t)K) (C1(t) + D12(t)K)TF(t) + p D(t)

∗ F(t)TF(t)− γ2I


+

 (C1(t) + D12(t)K)T

0

I
[

(C1(t) + D12(t)K) 0
]
< 0

(21)

By utilizing Lemma 2 (Schur complement), Π1 < 0 is equivalent to

Π2 =


(A(t) + B(t)K)Tp + p(A(t) + B(t)K) (C1(t) + D12(t)K)TF(t) + p D(t) (C1(t) + D12(t)K)T

∗ F(t)TF(t)− γ2I 0

∗ ∗ −I

 < 0 (22)

As a result of Lemma 1, we can write the upper bound for Π2 in Equation (22) as follows

Π2 =


(A(t) + B(t)K)Tp + p(A(t) + B(t)K) p D(t) (C1(t) + D12(t)K)T

∗ F(t)TF(t)− γ2I 0

∗ ∗ −I



+


(C1(t) + D12(t)K)T

0

0

I
[

0 F(t) 0
]
+


0

F(t)T

0

I
[

(C1(t) + D12(t)K) 0 0
]

≤


(A(t) + B(t)K)Tp + p(A(t) + B(t)K) p D(t) (C1(t) + D12(t)K)T

∗ F(t)TF(t)− γ2I 0

∗ ∗ −I



+


0

F(t)T

0

δ−1
1

[
0 F(t) 0

]
+


(C1(t) + D12(t)K)T

0

0

δ1

[
(C1(t) + D12(t)K) 0 0

]

(23)

Applying Schur complement to Equation (23), we get

Π3 =



Π̂11 p D(t) Π̂13 0 Π̂15

∗ F(t)TF(t)− γ2I 0 F(t)T 0

∗ ∗ −I 0 0

∗ ∗ ∗ −δ1I 0

∗ ∗ ∗ ∗ −δ−1
1 I


< 0 (24)

where
Π̂11 = (A(t) + B(t)K)Tp + p(A(t) + B(t)K)

Π̂13 = Π̂15 = (C1(t) + D12(t)K)T

Π3 < 0 can be expressed as follows

Π3 =



Π̂11 p D(t) Π̂13 0 Π̂15

∗ −γ2I 0 F(t)T 0

∗ ∗ −I 0 0

∗ ∗ ∗ −δ1I 0

∗ ∗ ∗ ∗ −δ−1
1 I


+



0

F(t)T

0

0

0


I
[

0 F(t) 0 0 0
]
< 0 (25)

By using Lemma 2, Π3 < 0 is equivalent to

Π4 =



Π̂11 p D(t) Π̂13 0 Π̂15 0

∗ −γ2I 0 F(t)T 0 F(t)T

∗ ∗ −I 0 0 0

∗ ∗ ∗ −δ1I 0 0

∗ ∗ ∗ ∗ −δ−1
1 I 0

∗ ∗ ∗ ∗ ∗ −I


< 0 (26)

Pre- and post-multiplying Equation (26) by diag
(
p−1, I, I, I, I, I

)
and its transpose (Congru-

ent transformation), respectively, we obtain
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Π5 =



Θ̂11 D(t) Θ̂13 0 Θ̂15 0

∗ −γ2I 0 F(t)T 0 F(t)T

∗ ∗ −I 0 0 0

∗ ∗ ∗ −δ1I 0 0

∗ ∗ ∗ ∗ −δ−1
1 I 0

∗ ∗ ∗ ∗ ∗ −I


< 0 (27)

where
Θ̂11 = A(t)p−1 + p−1A(t)T + p−1KTB(t)T + B(t)Kp−1

Θ̂13 = Θ̂15 = p−1C1(t)T + p−1KTD12(t)T

After substituting X = p−1, Y = Kp−1 into Equation (27), we acquire

Π5 =



Γ̂11 D(t) Γ̂13 0 Γ̂15 0

∗ −γ2I 0 F(t)T 0 F(t)T

∗ ∗ −I 0 0 0

∗ ∗ ∗ −δ1I 0 0

∗ ∗ ∗ ∗ −δ−1
1 I 0

∗ ∗ ∗ ∗ ∗ −I


< 0 (28)

where
Γ̂11 = A(t)X + XA(t)T + YTB(t)T + B(t)Y

Γ̂13 = Γ̂15 = XC1(t)T + YTD12(t)T

Noting Equation (9), we can separate Equation (28) to the certain and uncertain parts,
that is

Π5 =



Ω̂11 D Ω̂13 0 Ω̂13 0

∗ −γ2I 0 FT 0 FT

∗ ∗ −I 0 0 0

∗ ∗ ∗ −δ1I 0 0

∗ ∗ ∗ ∗ −δ−1
1 I 0

∗ ∗ ∗ ∗ ∗ −I


+



Ψ̂11 ∆D(t) Ψ̂13 0 Ψ̂15 0

∗ 0 0 ∆F(t)T 0 ∆F(t)T

∗ ∗ 0 0 0 0

∗ ∗ ∗ 0 0 0

∗ ∗ ∗ ∗ 0 0

∗ ∗ ∗ ∗ ∗ 0


< 0 (29)

where
Ω̂11 = AX + XAT + YTBT + BY

Ω̂13 = Ω̂15 = XC1
T + YTD12

T

Ψ̂11 = ∆A(t)X + X∆A(t)T + YT∆B(t)T + ∆B(t)Y

Ψ̂13 = Ψ̂15 = X∆C1(t)T + YT∆D12(t)T

By using Equation (10), it is easily obtained that

∆A(t) = MAE(t)NA

∆B(t) = MBE(t)NB

∆D(t) = MDE(t)ND

∆C1(t) = MC1 E(t)NC1

∆D12(t) = MD12 E(t)ND12

∆F(t) = MFE(t)NF

(30)

If we substitute Equation (30) into the uncertain part of Equation (29) and then use Lemma 1,
we can find the upper bound for each element as follows
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Ξ1 =



∆A(t)X + X∆A(t)T 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


=



MA

0
0
0
0
0


E(t)

[
NAX 0 0 0 0 0

]
+



XNT
A

0
0
0
0
0


E(t)

[
MT

A 0 0 0 0 0
]

≤



MA

0
0
0
0
0


ε1

[
MT

A 0 0 0 0 0
]

︸ ︷︷ ︸
LMI

+



XNT
A

0
0
0
0
0


ε−1

1

[
NAX 0 0 0 0 0

]

︸ ︷︷ ︸
Ω1

(31)

You can find others in Appendix A from Equation (A1) to Equation (A8). By adding LMI
parts of Equations (31) and (A1)–(A8) to the constant part of Equation (29), we have

Π5 = Ξ̄ +
9

∑
1

Ωi < 0 (32)

where Ξ̄ is the same in Equation (13). Eventually, by applying Lemma 2 to each Ωi with
i = 1, . . . , 9, we can construct an LMI in the form of Equation (13). Conditions X > 0, εi > 0
with i = 1, . . . , 9, and Equation (13) guarantee Π1 < 0, which further implies that J∞ < 0
in Equation (15), and therefore ‖z(t)‖2

L2
< γ2‖v(t)‖2

L2
. In the actual implementation of

the control systems (including active suspension systems), the direct effects of high gain
control can lead to some major problems such as actuator saturation and noise amplification.
Therefore, the gain matrix K should be limited. In this study, we use the same approach
that was employed to solve this problem in [2]. Accordingly, conforming to expression
K = YX−1, restriction of the size of the gain matrix K is possible by constraining the two
matrices Y and X−1. We assigned

YTY < LRI , LR > 0 (33)

X−1 < LSI , LS > 0 (34)

Utilizing Lemma 2 (Schur complement), LMIs in Equations (33) and (34) lead to the LMIs in
Equations (14) and (15), respectively. Therefore, the proof of Theorem 1 is completed.

The active vehicle suspension system without inerter and uncertainty can be defined
by the following state-space equations [2]:

ẋ(t) = Āx(t) + B̄u(t) + D̄v(t)

z(t) = C̄1x(t) + D̄12u(t)

y(t) = C̄2x(t)

(35)

Corollary 1 introduces a robust H∞ controller, where without external disturbance,
the closed-loop system evolves asymptotically stable, and in the existence of external
disturbance, the desired amount of disturbance attenuation is acquired.

Corollary 1. Supposing positive constants γ̄, L̄R, and L̄S, the linear active suspension system in
Equation (35) with state-feedback controller (u(t) = KI Ix(t)), is asymptotically stable without
external disturbance, and in the existence of external disturbance fulfills ‖z(t)‖2

L2
< γ̄2‖v(t)‖2

L2

for v(t) ∈ L2
[

0 ∞
)
, if there exist symmetric positive definite matrix X̄ > 0 and matrix Ȳ with

appropriate dimensions such that the following LMIs hold

 ĀX̄ + X̄ĀT + ȲTB̄T + B̄Ȳ D̄ X̄C̄T
1 + ȲTD̄T

12
∗ −γ̄2I 0
∗ ∗ −I

 < 0 (36)

[
L̄RI ȲT

Ȳ I

]
> 0 (37)
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[
L̄SI I

I X̄

]
> 0 (38)

4. Application to Active Inerter-Based Quarter-Car Suspension System

In this section, we will apply the proposed method to the active inerter-based quarter-
car suspension system described in Section 2 to illustrate the effectiveness of the proposed
robust H∞ controller method. The parameters of the active inerter-based suspension system
for the quarter-car model are listed in Table 1.

Table 1. System parameter values of the active inerter-based quarter-car suspension system.

Parameter Value

ms(t) 972.2± 145.83 kg
mu 113.6 kg
ks 42,719.6 N/m
cs 1095 Ns/m

bs(t) 52.5± 2.5 kg
kt 101,115 N/m
ct 14.6 Ns/m

Note that in our simulations we assume that ms and bs are uncertain. We use a variable
mass profile (15% sprung mass uncertainty) and a continuous uniform random distribution
for the inertance of inerter (10% inertance uncertainty) to generate them, as shown in Figure 3.

Figure 3. The variable mass and interance of active inerter-based suspension system.

By setting γ = 9 , δ1 = 0.01 , LR = 106 , Ls = 103 , α = 15 , β = 22 , ρ = 0.6, and solving
the convex optimization problem formulated in Theorem 1 using the YALMIP toolbox [28],
the gain matrix of controller is acquired as follows

K =
[
−4989 12076 −9141.9 −209

]
And for brevity, we will indicate the proposed controller as Controller I hereafter.
To assess the performance of the proposed Controller I, the acquired results are com-

pared with those obtained with a robust H∞ control for the active vehicle suspension
without inerter, which is marked as Controller II for brevity. By using Corollary 1, and ac-
cording to these design parameters γ̄ = 9 , L̄R = 106 , L̄s = 104 , ᾱ = 21 , β̄ = 42 , ρ̄ = 1.1,
Controller II gain achieved as follows

KI I =
[
−2422.5 −11368 −12865 171.71

]
According to ISO 2361, reducing the vertical acceleration of a vehicle system in the

frequency range of 4 to 8 Hz is equivalent to improving ride comfort. Therefore, we first
concentrate on the frequency responses from ground velocity to vertical body acceleration
for the passive and active suspension systems employing the robust H∞ state-feedback
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controllers. From Figure 4, we can see that the desired controller I and the controller II can
provide the lower value of the H∞ norm over the frequency range of 4–8Hz.

Figure 4. Frequency responses for the open- and closed-loop systems.

Performance of the quarter-car suspension system is capable to be assessed by ex-
amining three response quantities, that is, the sprung mass acceleration ẋ3(t), suspension
deflection x1(t), and tire deflection x2(t). In the following subsections, we will utilize Shock
(Bump) and Vibration (Rough Road) road profiles to investigate the performance of the
quarter-car suspension system in regard to the ride comfort, vehicle handling, and energy
consumption of the suspension.

4.1. Bump Response

Here, a bump or pothole with a relatively short duration and high intensity confronted
on a flat surface characterizes the transient response, which is given by

zr f (t) =

{
a
2

(
1− cos( 2πv0

l t)
)

, 0 ≤ t ≤ l
v0

0 , t > l
v0

(39)

where a and l denote the height and length of the bump profile. We select a = 0.1 m,
l = 2 m, and the forward velocity of the vehicle chosen as v0 = 18 km/h .

The response of the quarter-car suspension system with inerter by using Controller I
and without inerter by using Controller II, and passive suspension are compared in Figure 5.
Figure 5 displays the sprung mass acceleration, suspension deflection, and tire deflection.
The control effort of the active controllers is also plotted in Figure 6. It can be seen from
Figure 5 that the Controllers I and II compared to the passive suspension system acquire
better responses. The simulation results confirm that the active suspension system with
inerter is better than the active suspension without inerter with respect to all performance
criteria for the bump disturbance. On the other hand, compared to Controller I, more
control effort is required for Controller II, which is shown in Figure 6.
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Figure 5. Sprung mass acceleration, suspension deflection, and tire deflection for the bump road profile.

Figure 6. Control effort required for the Controllers I and II.

In order to qualitatively assess the control effort, the following L2 norm value is
employed to determine the energy consumption of two active control methods:

‖u(t)‖L2
=

√∫ T̄

0
u(t)T u(t)dt (40)

where T̄ = 2 s denotes the simulation time. Energy consumption of two controllers is shown
in Table 2. This table shows that the control effort of the active inerter-based suspension
system with Controller I is lower than that of the active suspension system without inerter.
Consequently, the low gain of the Controller I results in lower energy consumption.

Table 2. Assessment of energy consumption for active controllers.

Controller I Controller II

Energy consumption 1051.3 1424.2

4.2. Random Response

Generally, it is capable to assume random vibrations as road disturbances, which are
consistent and frequently described as a random process. The ground displacement power
spectral density (PSD) is defined as follows

Sg(Ω) =

{
Sg(Ω0)(

Ω
Ω0

)−n1 i f Ω ≤ Ω0

Sg(Ω0)(
Ω
Ω0

)−n2 i f Ω > Ω0
(41)

where Ω0 = 1/2π stands for reference spatial frequency and Ω is a spatial frequency.
The value of Sg(Ω0) denotes a measure for the roughness coefficient of the road. n1 and n2
represent the road roughness constants.
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In particular, if the vehicle is presumed to be moving at a constant horizontal speed v0
over a given road, it is capable to simulate the force caused by the road irregularities using
the following series

zr f (t) =
N

∑
n=1

sn sin(nω0t + ϕn) (42)

where sn =
√

2sg(n∆Ω)∆Ω, ∆Ω = 2π/L, and L is the length of the road segment consid-
ered. The amplitudes sn of the excitation harmonics are assessed from the road spectra
selected. Additionally, the value of the fundamental temporal frequency ω0 is calculated
from ω0 = 2π

L v0. Whereas the phases ϕn are considered as random variables with a uniform
distribution in the range [0, 2π).

According to ISO2631 standards, road class D (poor quality)
(

Sg(Ω0) = 256× 10−6 m3
)

,

and road class E (very poor quality)
(

Sg(Ω0) = 1024× 10−6 m3
)

, are chosen as a standard
road profile. In this paper, n1 = 2, n2 = 1.5, L = 100, N f = 200 and the horizontal speed
v0 = 36 m/s, are utilized to generate the random road profiles as shown in Figure 7.

Figure 7. A case in point of random road profiles (class D (poor quality), class E (very poor quality)).

The random response of the active inerter-based quarter-car suspension system for two
road class profiles are compared in Figures 8 and 9. These figures display the sprung mass
acceleration, suspension deflection, and tire deflection. It can be seen from Figures 8 and 9
that the Controllers I and II compared to the passive suspension system acquire better
responses. It is confirmed by the simulation results that random response quantities for all
performance requirements of active inerter-based suspension system are better than active
suspension without inerter.

Figure 8. Sprung mass acceleration, suspension deflection, and tire deflection with the class D (poor
quality) road profile.
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Figure 9. Sprung mass acceleration, suspension deflection, and tire deflection with the class E (very
poor quality) road profile.

To assess the probabilistic properties of the random response, the Monte Carlo sim-
ulation is utilized. Therefore, taking into consideration the random variable ϕn of the
excitation applied, the performance index of the Root Mean Square (RMS) is determined by
the expected values:

J1 = E
[

1
T̄

∫ T̄

0
[ẋ3(t)]

2dt
]

(43)

J2 = E
[

1
T̄

∫ T̄

0
[x1(t)]

2dt
]

(44)

J3 = E
[

1
T̄

∫ T̄

0
[x2(t)]

2dt
]

(45)

J1 for the sprung mass acceleration, J2 for suspension deflection, and J3 for tire de-
flection have been considered; where T̄ = L/v0 is the temporal measurement period.
For calculating RMS values, we have considered T̄ = 5 in Equations (43)–(45) and the
simulation has been run randomly 100 times.

To validate the effectiveness of controller I in dealing with the active suspension
system based on inerter, the RMS ratios JI Ii (t)/JIi (t), JPi (t)/JIi (t), i = 1, 2, 3, are calculated,
where JIi (t) represents the RMS value of the active suspension system with inerter by using
Controller I, JI Ii (t) denotes the RMS value of the active suspension system without inerter
by using Controller II, and JPi (t) is the RMS value of the passive suspension system.

Tables 3 and 4 represent the results of RMS ratios for Controller I, Controller II,
and passive suspension system for the poor (class D) and very poor (class E) quality road
profile. Tables 3 and 4 additionally display the control efforts of the active controllers.

It can be seen from Tables 3 and 4 that the RMS ratios of the active inerter-based
suspension system with Controllers I for all performance requirements (sprung mass
acceleration, suspension deflection, and tire deflection) acquire better response compared
to both Controller II and passive suspension system (the response ratio is more than 1).
In addition, the required control effort for Controller I is less than for Controller II.
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Table 3. Energy consumption and RMS values of random road profile (Class D).

Performance Criteria JI Ii(t)/JIi(t) JPi(t)/JIi(t)

Sprung mass
acceleration 2.7985 3.6151

Suspension deflection 1.1586 2.1501
Tire deflection 1.7552 3.7421

Pasive Controller I Controller II
Energy consumption — 478.55 627.91

Table 4. Energy consumption and RMS values of random road profile (Class E).

Performance Criteria JI Ii(t)/JIi(t) JPi(t)/JIi(t)

Sprung mass
acceleration 2.8693 4.734

Suspension deflection 1.0827 2.7508
Tire deflection 1.7615 3.9997

Pasive Controller I Controller II
Energy consumption — 677.2 917.7

5. Conclusions

In this paper, the performance of the active inerter-based quarter-car suspension
system in the present of parameter uncertainties and external disturbance is investigated.
A robust H∞ controller is developed to optimize the H∞ norm of the active suspension
system to enhance the ride comfort, suspension deflections and tire loads. Furthermore,
two more LMIs are added to the established sufficient conditions in order to limit the
gain of the controller. Finally, to validate the effectiveness of the proposed approach, it is
applied to the quarter-car model to minimize the influence of parameter uncertainty and
road disturbance on the suspension system performance. It was observed that the active
inerter-based suspension system for all performance requirements achieve better response
compared to both active suspension without inerter and passive suspension with inerter.
Therefore, the presence of inerter in the dynamics of the vehicle suspension system not only
improves the performance requirements, but also reduces the control effort of the actuator.
It is noteworthy that by employing advanced inerter, it is possible to supply some of the
energy required to operate the actuator. The proposed approach is expected to pave the
way for the application of theoretical discoveries to practical vehicle suspension systems.
Furthermore, an adaptive inerter can attenuate the amplitude of vibration of the damped
body over a much wider range of excitation frequency. In future work, a non-fixed inerter
will be employed as a variable element in the semi-active suspension system that can be
adjusted in real-time.
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