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Abstract: A dynamic fuzzy neural network for short-term load forecasting of the Greek power sys-
tem is proposed, and an hourly based prediction for the whole year is performed. A DBD-FELF 
(Dynamic Block-Diagonal Fuzzy Electric Load Forecaster) consists of fuzzy rules with consequent 
parts that are neural networks with internal recurrence. These networks have a hidden layer, which 
consists of pairs of neurons with feedback connections between them. The overall fuzzy model par-
titions the input space in partially overlapping fuzzy regions, where the recurrent neural networks 
of the respective rules operate. The partition of the input space and determination of the fuzzy rule 
base is performed via the use of the Fuzzy C-Means clustering algorithm, and the RENNCOM con-
strained optimization method is applied for consequent parameter tuning. The performance of 
DBD-FELF is tested via extensive experimental analysis, and the results are promising, since an av-
erage percentage error of 1.18% is attained, along with an average yearly absolute error of 76.2 MW. 
Moreover, DBD-FELF is compared with Deep Learning, fuzzy and neurofuzzy rivals, such that its 
particular attributes are highlighted. 

Keywords: Greek power system; electric load forecasting; block-diagonal neurons;  
fuzzy neural network; internal feedback 
 

1. Introduction 
In the third decade of the 21st century, the issues of green energy and renewable 

energy sources are pivotal worldwide. Power generation and the coordination of power 
plants have been gaining considerable attention in the economic policies of developed 
countries. Moreover, the impact of the recent war in the European continent and the fear 
for energy poverty exacerbate the need for effective operation of energy management sys-
tems [1–4]. Therefore, accurate forecasts in relation to power demands are a necessity for 
national operators and the power market. 

Nowadays, Machine Learning and Computational Intelligence are two pillars of non-
linear identification and prediction. As far as electric load forecasting is concerned, the 
first intelligent tools were proposed more than thirty years ago, initially with feedforward 
neural networks [5,6] and subsequently with fuzzy models or neurofuzzy schemes [7–9]. 

Machine learning methods, such as support vector machines, multiple linear regres-
sion, or random forest regressors, have turned out to be promising forecasters [10–13]. 
Additionally, genetic algorithms and particle swarm optimization have contributed to the 
arsenal of load forecasters [14,15]. 

The advent of Deep Learning has created a new path in many scientific fields, includ-
ing smart energy management and power systems. All of the established Deep Learning 
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models have been used to perform accurate electric load prediction, leading to forecasters 
based on Convolutional Neural Networks (CNN), Long-Short-Term-Memory models 
(LSTM), Recurrent Neural Networks (RNN), and Gated Recurrent Unit schemes (GRU) 
[16–20]. 

One of the most challenging tasks in the prediction of problems is the formation of 
an appropriate and representative set of inputs, which will not lead to huge models with 
excessive computational burden. Since, in STLF, the inputs are usually past load values, 
climate variables, and temperatures, it would be quite helpful to employ dimensionality 
reduction or transformation methods in an attempt to provide a moderate input vector 
[21,22]. 

In light of the above, the DBD-FELF forecasting model (Dynamic Block-Diagonal 
Fuzzy Electric Load Forecaster) is proposed for the Greek power system. It is a modified 
fuzzy model, since the consequent parts of its fuzzy rules have internal recurrence; they 
are block-diagonal recurrent neural networks, wherein there are feedback connections 
only between pairs of neurons in the hidden layer. This local output feedback, though 
limited, is able to identify the dynamics of electric load time-series. The Fuzzy C-Means 
clustering algorithm is employed to perform input space partition and determine the pa-
rameters of the premise parts of the fuzzy rules. The consequent parameters are tuned by 
the use of RENNCOM, which is a constrained optimization algorithm that takes into ac-
count the temporal relations of the recurrent structures and overcomes the failings of the 
typical gradient-based methods. In an attempt to explore the capability of identifying the 
Greek load time-series based only on past load values, neither temperature inputs nor 
other climate variables are used. Moreover, DBD-FELF is fed with a single past load value, 
thus addressing the issue of input selection. Despite these two differences with respect to 
established load forecasters, the proposed scheme performs quite effectively, both on 
working days and weekends throughout the whole year, while having a significantly re-
duced structural complexity, especially compared to Deep Learning approaches. 

The rest of this paper is structured as follows: The architectural and structural attrib-
utes of DBD-FELF are presented in Section 2. The next section hosts the clustering and 
learning algorithms. The experimental results are detailed in Section 4, where a compara-
tive analysis with established models is conducted. The pool of competing rivals includes 
static and recurrent fuzzy and neurofuzzy systems, along with LSTM, GRU, and RNN 
schemes. In this analysis, the particular characteristics of DBD-FELF are highlighted, and 
its performance on the load time-series of the Greek power system is evaluated. Conclu-
sions are drawn in the last section. 

2. The Architecture of DBD-FELF 
DBD-FELF belongs to a class of fuzzy models that can be considered as generaliza-

tions of the Takagi–Sugeno–Kang fuzzy model (TSK [23]). The forecaster’s fuzzy rule base 
consists of rules that contain fuzzy sets in the premise part, while the consequent parts are 
not linear functions of their inputs, as is the case in a classic TSK model, but instead, they 
consist of neural structures. In the present case, the consequent parts are small neural net-
works with internal recurrence comprising block-diagonal modules [24]. The overall 
fuzzy scheme was introduced in [25] for system identification, and has been employed in 
various real-world applications, such as separation of lung sounds [26], adaptive noise 
cancellation [27], and telecommunications call volume forecasting [28,29]. It is described 
as follows: 
• For the general case of a multiple-input-simple-output model, the fuzzy rules base 

has r fuzzy rules in the form: 

( )

( )
1 1:         is   AND ... AND   is  

              ( ) ( )

i i i
m m

i i

R IF x (n) A x (n) A
THEN g n BDRNN n= x  

(1)
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where ( )iR  denotes the i-th rule, ( ) ( ) ( )1[ , ..., ]T
mn x n x n=x  is the input vector, n repre-

sents the sample index, and i
jA  corresponds to the fuzzy set of the j-th input for the i-th 

rule. 
• The fuzzy sets are implemented by Gaussian membership functions as follows: 

2

2

( ( ) )1( ( )) exp      1,..., ,      1,...,
2

i
j

j ij
jA

ij

x n m
x n i r j mμ

σ
 − = − ⋅ = = 
    

(2)

• The tuning parameters of the premise parts are the mean values, ijm , and the stand-
ard deviations, ijσ , of the membership functions. It becomes evident from Equation 
(2) that the premise parts of the fuzzy rules are of a static nature. 

• The degree of fulfillment of each rule is the algebraic product of the Gaussian mem-
bership functions: 

( )( )

2

2
1 1

2

1 12
1

( ( ) )1( ) ( ( )) exp
2

( ( ) )1            exp , ,..., , ,...,
2

i
j

m m
j ij

i jA
j j ij

m
j ij

i im i im
j ij

x n m
n x n

x n m
f n m m

μ μ
σ

σ σ
σ

= =

=

 − = = − ⋅ = 
  

 − − ⋅ = 
  

∏ ∏

 x
 (3)

• Equation (3) is an m-dimensional Gaussian function. Therefore, the degree of fulfill-
ment corresponds to the membership function of a fuzzy hyper-region. The fuzzy 
rule-base partitions the input space into operating regions, where each rule can be 
considered as a local sub-model, which contributes to the overall fuzzy system’s out-
put according to the degree of fulfillment, and produces its own output as a result of 
the operation of its BDRNN. 

• The consequent parts of the rules are block-diagonal recurrent neural networks. The 
structure of a two-block BDRNN is presented in Figure 1. The input signal is fed to 
the blocks of neurons, where each block contains a pair of neurons. There are no con-
nections between neurons that belong to different blocks, while neurons of the same 
block feedback both to themselves and to each other, with unit delays. This network 
structure is of a dynamic nature, having internal recurrence (local output feedback, 
[30]). 

 
Figure 1. A two-block BDRNN as the consequent part of the i-th fuzzy rule. 
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For a BDRNN with N neurons, the outputs of the neurons are given by the following 
state equations: 

( ) ( ) ( ) ( ) ( ) ( )
2 1 1 2 1, 1, 2 1 2, 2

1
( ) ( ) ( 1) ( 1)

m
i i i i i i
k k j j k k k k

j
s n f a x n w s n w s n− − −

=

 
= ⋅ + ⋅ − + ⋅ − 

  


 
(4)

( ) ( ) ( ) ( ) ( ) ( )
2 1 2 , 2, 2 1 1, 2

1
( ) ( ) ( 1) ( 1)

m
i i i i i i
k k j j k k k k

j
s n f a x n w s n w s n−

=

 
= ⋅ − ⋅ − + ⋅ − 

  


 
(5)

1,..., ,      1,...,
2
Ni r k= =

. 
The output of the BDRNN for the i-th fuzzy rule is calculated as follows: 

( )
2

1
( ) ( )

N
i

i ij j
j

g n f b s n
=

 
 = ⋅
  


 

(6)

where the notation given below is used: 

 The typical sigmoid function, ( ) 1
1

z

z

ef z
e

−

−

−=
+

 , implements the activation functions 

1f  and 2f . 
 ( )

2 1 ( )i
ks n−  and ( )

2 ( )i
ks n  are the outputs of neurons that form the k-th block when the 

n-th sample is processed. 
 ( )ig n  is the output of the i-th fuzzy rule. 
 ( )

2 1,
i
k ja −  and ( )

2 ,
i
k ja  are the synaptic weights of the neurons that form the k-th block, and 

j is the dimension index of the input vector. 
 i jb  are the synaptic weights of the output neuron. 

 ( ) ( )
1, 2 ,,  i i

k kw w  are the feedback weights of the k-th block of neurons of BDRNN. In order 
to reduce the number of tuning parameters by half, the scaled orthogonal form is 
selected. As described in [24], the feedback weights of each block comprise the fol-
lowing feedback matrix: 

( ) ( )
1, 2,( )
( ) ( )
2, 1,

,      1,...,
2

i i
k ki

k i i
k k

w w NW k
w w

 
= = − 

 (7)

• The defuzzification part of DBD-FELF produces the model’s output. The weighted 
average defuzzification scheme is employed, since it is the most popular in TSK fuzzy 
models, requiring a low computational burden: 

1

1

( ) ( )
( )

( )

r

i i
i

r

i
i

n g n
y n

n

μ

μ

=

=

⋅
=



 

(8)

The architecture of DBD-FELF belongs to a class of dynamic fuzzy neural models 
where dynamics exist only at the consequent parts of the rules, leaving the premise and 
defuzzification parts static [31,32]. Moreover, there are no external feedback connections 
that blur the interpretability of the overall model. This class aims to preserve the local 
character of TSK modeling, since the rules in these models can be considered as local sub-
systems that are interconnected through the defuzzifier. The advantages of this class over 
models with (a) feedback of the total output [33], (b) recurrence in the premise parts of the 
fuzzy rules [34], or (c) recurrent modules in a cascade connection [35] are highlighted in 
[36–38]. In [39], a similar recurrent neurofuzzy system was introduced as a very efficient 
load forecaster, having reduced complexity compared to its Deep Learning counterparts. 
In this context, DBD-FELF is an alternative approach in this path. 
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3. The Model-Building Process 
In the model-building process, the fuzzy rule base is constructed by partitioning the 

input space, and the forecaster’s parameters are calculated. In an attempt to create a mod-
erately sized fuzzy rule base, the Fuzzy C-Means (FCM) (Dunn [40] and Bezdek [41]) clus-
tering method is applied in order to explore the input space and extract the most appro-
priate clusters that will determine (a) the number of fuzzy rules and (b) the fuzzy hyper-
region of the premise parts. 

FCM is a distance-based clustering method, which provides the most appropriate 
cluster centers in terms of minimum distances between the data samples that belong to 
each cluster. Since each cluster center corresponds to a fuzzy hyper-region, the resulting 
clusters produce fuzzy rules so that each one of them is focused on a part of the data set. 
For a given number of clusters, r, and a data set of P m-dimensional samples, the cluster 
centers are derived as follows: 

( )

( )
1

1

( ) ( )
,      1,..., ,      1,...,

( )

P
c

in j
n

ij P
c

in
n

u n x n
m i r j m

u n

=

=

⋅
= = =



 

(9)

c is a fuzziness parameter within [ ]1,  + ∞  and inu  is the membership degree that the 
n-th data sample belongs to the i-th cluster: 

( ) ( )
2

12 2

1 1 1

1

( ) ( )

in
mr m m

ij j kj j
k j j

u

m x n m x n
−

= = =

=
 

− ⋅ − 
  

  
 

(10)

According to the above, the number of clusters, r, determines the size of the fuzzy 
rule base. Using Gaussian membership functions for each input axis, Equation (9) pro-
vides their mean values. The standard deviations are calculated as proposed in [42]: 

( )2

1

1

( )
P

in ij j
n

ij P

in
n

u m x n

u
σ =

=

⋅ −
=



 

(11)

Once the mean values and the standard deviations of the membership functions are 
determined, the premise parts of the fuzzy rules remain fixed. Thus, the weights of 
BDRNNs at the consequent parts remain to be tuned. 

The training algorithm for the synaptic weights of BDRNN is RENNCOM [43]. It is a 
constrained optimization method wherein various constraints regarding the learning pro-
cess can be incorporated. In the present case, the methods based on gradient descent do 
not guarantee stable learning since, at the hidden layer of BDRNN, there exist feedback 
connections. Therefore, a constraint relevant to stable learning can be introduced in the 
form of an appropriate function, which will be optimized simultaneously with the stand-
ard error function. Such an approach was followed in [26], where both the premise and 
consequent parameters were calculated via RENNCOM. In DBD-FELF, the algorithm is 
applied only to consequent weights and is briefly presented below. 

According to the analysis given in [43], regarding the type of feedback matrices in 
Equation (7), their eigenvalues should fulfill the following constraint for stability to be 
ensured: 

( ) ( ) ( ) ( )2 2 2 2( ) ( ) ( ) ( )
1, 2, 1, 2,1 1 1

1,..., ,    1,...,
2

i i i i
ik k k k kw w w w

Ni r k

λ ≤ ⇔ + ≤ ⇔ + ≤

= =
 (12)
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A suitable stability function for incorporating Equation (12) is the sigmoid function, 
which is smooth and continuously differentiable, therefore making it robust to problems 
caused by parasitic oscillations. Thus, the stability function is written as follows: 

( )
( )

( ) ( )

( ) ( )

2 2( ) ( )2
1, 2,

2 2 2( ) ( )
1, 2,

11

1 1

1 1( )
1 1

λ

λ

 − ⋅ + −− ⋅ −   

 − ⋅ − − ⋅ + −  

− −= = =
+ +

i i
s k ks ik

i is ik s k k

a w wa

ik d ik
a a w w

e ep f z
e e

 (13)

The model is stable when the eigenvalues lie within the unit circle. Since parameter 
sa  controls the slope of the sigmoid function in Equation (13), and consequently, its ac-

tive region, sa  takes a value within [4,8]. 
Let all the consequent parameters of Equations (4)–(6) comprise the parameter vector 

of each fuzzy rule, conθ . The RENNCOM algorithm aims to achieve the following three 
objectives: 
(1) The error measure, E, should be minimized so that the electric load time-series, ˆ( )y n

, is identified. The Mean Squared Error is selected to be the error measure: 

[ ] 2
1

1 ˆ( ) ( )
=

= ⋅ −
P

n
MSE y n y n

P
 (14)

The error measure is minimized through an iterative process, where, at each iteration, 
E  is decremented by a certain amount, Eδ . This change is selected in an adaptive 
way so that, after a succession of iterations, the accumulated changes lead to the es-
tablishment of an accurate input-output representation. 

(2) A second function, called the pay-off function, Φ, should be minimized so that stabil-
ity during the learning process is preserved. In the present case, the pay-off function 
includes the constraints given by Equation (12) and has the following form: 

( )
( ) ( )2 2( ) ( )

1, 2,

2 22

11 1 1 1

1 1 21
2 2

1

Φ
 − ⋅ + −= = = =   

 
 

= ⋅ − − = ⋅  
 

+ 

 
i i

s k k

N N
r r

ik
a w wi k i k

p

e

 (15) 

From Equation (15), it can be inferred that minimizing Φ means maximizing the de-

nominators and, consequently, forcing the sums ( ) ( )2 2( ) ( )
1, 2, 1+ −i i
k kw w   to be nega-

tive. Therefore, the consequent weights are updated so that the eigenvalues of the 
block submatrices lie within the unit circle. 

(3) An extra condition is imposed, which facilitates a search in the weight space [43]: 

2 1( )Φ −= ⋅ Δ ⋅ 1 = 0θ θ  −T
w d d  (16) 

dθ  is the amount by which the consequent parameter vector is changed at each it-
eration. Matrix Δ is a diagonal matrix that hosts the maximum parameter change 
(MPC) of each weight. Equation (16) describes a hyper-ellipsoid, which is centered 
on the current consequent weight vector, and a search for the new values of the 
weights is restricted by this hyper-ellipsoid. For given values of Eδ  and Δ, the op-
timal dθ  is the vector that maximizes dΦ . 
An analysis of the consequent updates in the parameters is fully described in [43]. 

The set of equations that implement the learning scheme is as follows: 

new old d= +θ θ θ  (17)
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2

2

Δ

Δ

θ θ
θ

θ θ θ θ θ θ

θ θ
θ θ

θ θ
2

T

T
E E

E E
∂ δ
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∂ ∂

  ⋅ 
    ⋅ Δ ⋅ 
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θ
θ θ

 (18)

The decrement Eδ  is expressed as a function of the gradient 
E∂

∂ θ
, the MPC matrix, 

and a constant ξ within [0, 1]: 

2
TE EE ∂ ∂δ ξ

∂ ∂
  = − ⋅ ⋅ Δ ⋅  
   θ θ

 (19) 

Due to the dynamic nature of the neurons and the existence of temporal relations, the 

gradients 
E∂

∂ θ
 and ∂Φ

∂ θ
 are extracted using ordered derivatives [44] and Lagrange mul-

tipliers, which facilitate the process. Moreover, the multipliers with respect to the feed-
back weights create difference Equations (21) and (23), which are solved recursively, start-
ing from the last data sample (Equations (22) and (24)): 

,

1

( )2 ˆ( ) ( ( ) ( ))
( )

i
g i r

jj

nn y n y n
P n

μλ
μ

=

= ⋅ − ⋅  (20) 

( ) ( ) ( )
,2 1 , ,2 1 2 ,2 1 1, 1

( ) ( )
,2 2 , 1

( ) ( ) ( , ) ( 1) ( 1, , 2 1)

             ( 1) ( 1, , 2 )

i i i
s k g i i k s k k

i i
s k k

n n b f n i n w f n i k

n w f n i k

λ λ λ

λ
− − −′ ′= ⋅ ⋅ + + ⋅ ⋅ + −

′− + ⋅ ⋅ +
 (21) 

( )
,2 1 , ,2 1 2( ) ( ) ( , )i

s k g i i kP P b f P iλ λ− − ′= ⋅ ⋅  (22) 

( ) ( ) ( )
,2 , ,2 2 ,2 1 2 , 1

( ) ( )
,2 1, 1

( ) ( ) ( , ) ( 1) ( 1, , 2 1)

             + ( 1) ( 1, , 2 )

i i i
s k g i i k s k k

i i
s k k

n n b f n i n w f n i k

n w f n i k

λ λ λ

λ
−′ ′= ⋅ ⋅ + + ⋅ ⋅ + −

′+ ⋅ ⋅ +
 (23) 

( )
,2 , ,2 2( ) ( ) ( , )i

s k g i i kP P b f P iλ λ ′= ⋅ ⋅  (24) 

1( 1, ,2 1)f n i k′ + − , 1( 1, ,2 )f n i k′ + , and 2( , )f n i′  are the derivatives of the neurons of the hidden 
and output layers, with respect to their arguments. 

At each iteration, each consequent parameter update, idθ , varies from the other up-
dates since it fulfills the constraint i idθ Δ≤ . The MPCs are adaptable, and their values 
are changed via the following adaptation mechanism: Initially, all the consequent weights 
take a value 0Δ . The gradients of E with respect to each weight idθ  at the present and 
the previous iterations are monitored, and their product is calculated. If the product is 
positive, MPC increases by a factor [ ]1.1,  1.3n+ ∈  , else it diminishes by a factor 

[ ]0.5,  0.8n+ ∈ . The MPCs are bounded by a small positive number in the range 5 310   10− −−  
so that the weights retain nonzero values. 

According to the above, at each iteration, the learning process involves the following 
steps: First, the aforementioned adaptation mechanism calculates the new MPCs. Next, 
the consequent parameters are updated using Equations (17)–(24), and the current MSE is 
calculated. If a predefined threshold for MSE is attained, the learning process ends; other-
wise, it is repeated. The whole model-building process is depicted by the flow-chart in 
Figure 2. 
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Figure 2. Flow-chart of the model-building process. 

4. Experimental Results 
4.1. Problem Statement—Data Preprocessing Phase 

The DBD-FELF described in the previous section is applied to predict one-day-ahead 
hourly loads of the Greek power system. In an attempt to investigate whether a recurrent 
system is capable of identifying the temporal relations of the electric load time-series, two 
decisions were made regarding the forecasting scenario: 

(a) The data set is not divided into seasons and the whole annual electric load time-
series is examined. Moreover, there is no separation between working days and 
weekends. 

(b) A single input is used—the actual load value at hour h of the previous day, 1,
ˆ

d hL −  
(MW)—with DBD-FELF predicting the load at the same hour of day d. In this 
way, the forecaster attempts to identify the mapping 

( ), 1,
ˆ

d h d hL f L −=
 (25)

without resorting to climate and temperature variables. d = 1, ..., 365 and h = 1, ..., 
24 are the day and hour indices, respectively. This decision is made to provide a 
very economical model in terms of parameters and computational burden. 
Therefore, no feature selection (a rather demanding preprocessing step) is re-
quired based either on the expertise of the system operators or on statistical 
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methods and regression models [45]. DBD-FELF intends to model the depend-
ence of current load on past loads by taking advantage of the recurrent nature of 
BDRNNs. 

Two error measures are selected in order to evaluate the forecasting performance of 
DBD-FELF. The first one is the Root Mean Squared Error, which is the root of MSE (Equa-
tion (14)). It is the most common metric in the area of modeling, measuring, in a quadratic 
manner, the discrepancy between the actual data and the output of the forecaster. 

The second metric is the Average Percentage Error (APE) with respect to the daily 
peak: 

24 , ,

1 1 max,

ˆ
1 1 100%

24

M d h d h

d h d

L L
APE

M L= =

 −
 = ⋅ ⋅ 
  

 
 

(26)

where M is the number of days in the data set and max,
ˆ

dL  is the maximum actual load of 
day d. 

The data set contains hourly load values from four consecutive years, 2013–2016, 
which are publicly available on the Greek Independent Power Transmission Operator 
website [46]. The total amount of data (35,064 samples) is split into training and testing 
data sets by a ratio of 3 to 1, respectively. The first three years constitute the training data 
set (26,280 samples), and the leap year, 2016, which contains 8784 samples, is the testing 
set. A preprocessing stage was necessary to deal with missing or irregular values, integrate 
the data in a common format, and perform normalization so that they can be used by 
BDRNNs. When a missing or irregular value occurred, it was filled by the average of the 
value at the same hour of the previous day and the next one. When there were consecutive 
missing values, cubic spline interpolation was employed to fill the gaps. 

As far as normalization is concerned, data are within [ ]0.8,  0.8− , meaning that load 
data fall within the slopes of the activation function of the neurons at the consequent parts 
of the fuzzy rules. 

The final data file contains 1461 lines (three regular years and one leap year) and 25 
feature columns (one for the data serial number and twenty-four for the hourly loads). 
Apart from these columns, some more were added, containing metadata regarding the 
day of the week and season of the year. These additions were necessary in order to per-
form evaluation tests, partition the results into seasonal data or to working days and 
weekends, etc. 

4.2. DBD-FELF’s Features 
The tuning parameters of a DBD-FELF, with Gaussian membership functions, r rules, 

and N hidden neurons at each rule, are hosted in Table 1. 

Table 1. Parameters of DBD-FELF. 

Parameter Number 
m r 
σ r 
a r·N 
b r·N 
w r·N 

Premise 2·r 
Consequent 3·r·N 

Total 2·r +3·r·N  

The FCM partition algorithm leads to a fuzzy rule base with 3 rules. It should be 
noted that the same dataset used in [39] is employed; therefore, the conclusions regarding 
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the selection of the number of rules based on the Davies–Bouldin index [47] and the re-
spective arguments apply here as well. Please refer to [39] for a detailed analysis. Moreo-
ver, since a comparative analysis with the forecaster proposed in [39] is presented in the 
sequel, the same input partition facilitates the comparison. The input space partition is 
presented in Figure 3. 

 
Figure 3. Input space partition with FCM. 

It can be concluded from Figure 3 that the three fuzzy sets adequately cover the input 
space, which is centered at 4306, 5428, and 6751 MW, meaning that the three cluster cen-
ters are placed where the load values appear most of the time. The first and third fuzzy 
sets have Gaussian membership functions with higher standard deviations than the set in 
the middle in an attempt to cover the lower and upper values of the universe of discourse. 
As far as overlapping is concerned, the first and second fuzzy sets have an overlapping 
factor of 65%, and the second and third sets have an overlapping factor of 59%. Moreover, 
in the central region of loads, all three rules operate with an overlapping factor of 22% 
between the first set and the third one. These high overlapping factors are necessary for 
the rules to operate cooperatively in a wide range of electric loads. 

BDRNNs with 1 to 5 blocks were examined. As shown in Section 4.3, a single block 
is sufficient to accurately perform predictions. Therefore, N is set to 2, and the parameter 
set is limited to 24 parameters. Since the premise parameters are determined by Equations 
(9) and (11), only 18 consequent weights (75% of the total number of parameters) need to 
be tuned by RENNCOM. 

The learning parameters of RENNCOM are shown in Table 2. 

Table 2. Learning parameters of RENNCOM. 

n+  n−  minΔ  maxΔ  0Δ  sa  ξ Iterations 

1.05 0.5 1 × 10−4 0.5 1 × 10−2 6 0.9 1000 

4.3. Experimental Results 
In order to depict the effect of network complexity to forecasting performance, the 

yearly forecast APE and RMSE, attained by DBD-FELFs with 1 to 5 blocks of recurrent 
neurons in their consequent parts of their rules, are summarized in Table 3. The RMSE is 
calculated on the denormalized (actual) values and is expressed in MW. All the results are 
averaged over 10 trials. Taking into consideration that, usually, an electric load prediction 
is considered reliable when its APE value falls below 2%, it becomes evident that all five 
versions of DBD-FELF operate very effectively. Moreover, the existence of internal feed-
back at each rule and the efficient partition of the input space are reflected on the size of 
BDRNN necessary for a fuzzy rule to track the time-series dynamics. The simplest 
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BDRNN performs practically the same compared to bigger networks; therefore, in the se-
quel, the DBD-FELF with a single block of recurrent neurons will be employed. 

Table 3. Yearly APE and RMSE. 

No of Blocks APE Training RMSE  
Training APE Testing RMSE Testing No of Param. 

1 1.05% 107 1.18% 112 24 
2 1.10% 104 1.22% 110 42 
3 1.09% 107 1.20% 110 60 
4 1.05% 107 1.18% 111 78 
5 1.13% 108 1.18% 108 96 

The seasonal forecasting results are reported in Table 4. Despite the fact that a single 
model is used for the whole year, DBD-FELF predicts well below 2% in all seasons, with 
Spring being the most difficult season, where the highest deviation between the training 
and the testing error values occurs. The behavior of the forecaster is very similar for the 
three remaining seasons, with APE values vary in a very small range, 0.08%. 

Table 4. Seasonal APE and RMSE. 

Season APE Training RMSE Training APE Testing RMSE Testing 
Winter 1.03% 125 1.04% 121 
Spring 1.36% 118 1.66% 131 

Summer 0.81% 90 0.96% 104 
Autumn 1.00% 88 1.03% 88 

In terms of the absolute error for the testing data set, a yearly average of 76.2 MW is 
attained, with its standard deviation being 81.8 MW, which means that the forecast error 
is less than 158 MW for most of the hours in 2016 (8784 h as it was a leap year). The abso-
lute error duration curve is hosted in Table 5. This curve depicts the percentage of hours 
of the year in which the absolute value of the forecast error is greater than the values given 
in the first row. It becomes evident that DBD-FELF performs very efficiently since, for 
nearly 69.5% and 92% of the time, the forecast error is less than 100 and 200 MW, respec-
tively. Moreover, the forecast error exceeds 500 MW for 15 h throughout the year. It should 
be noted that 9 out of these 15 h belong to Orthodox Easter and Assumption days, which 
are highly irregular days, as will be discussed in the sequel. 

Table 5. Absolute error duration curve. 

Electric Load >100 MW >200 MW >400 MW >500 MW 
Hours 2686 718 62 15 
Time 30.58% 8.17% 0.70% 0.18% 

The daily evolution of electric load for weekdays and Sundays, regarding all seasons, 
is shown in Figures 4–7, and a winter week is hosted in Figure 8. Moreover, Figure 9 pre-
sents the three major holidays in Greece: Christmas, Orthodox Easter, and Assumption 
days. In these charts, the blue solid lines are the actual load data series, and the red dashed 
lines refer to the predictions made by DBD-FELF. 
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(a) (b) 

Figure 4. Presentation of winter days: (a) working day; (b) Sunday. 

  
(a) (b) 

Figure 5. Presentation of spring days: (a) working day; (b) Sunday. 

From Figures 4–9, the following observations can be made: 
• In the case of working days, the appearances of morning and evening peaks, as well 

as the first minimum load, are similar at all seasons. During Spring and Autumn 
working days, the evening minimum is more discrete than during Winter and Sum-
mer. 

• As expected, the evolution of the load curve on Sundays is quite different from the 
one of working days. Additionally, the seasonal patterns are also different. Autumn 
and Spring Sundays follow the evolution of the respective working day load curves 
after 6 p.m. 

• Even though there exist differences between seasonal patterns, as well as between the 
types of days, the proposed forecaster efficiently models the actual load curves since 
it identifies the peaks and the minimum loads and accurately predicts the values at 
the slopes. As shown in Figure 8, the single-input forecaster is capable of tracking the 
transition from weekend days to working days and vice versa. 

• As far as Holidays are concerned, it can be seen in Figure 9a that the Christmas load 
curve is tracked by DBD-FELF very efficiently. The average percentage error for 
Christmas day is 0.31%. This behavior can be attributed to the fact that, during Christ-
mas, Greeks stay at home or pay visits; therefore, the household loads compensate 
the industrial ones. The two minima occur at 5 a.m. and 3 p.m., and the first peak 
load at 10 a.m., at the same hours as the previous day. Moreover, the load evolution 
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is quite similar on these two days, leading to the conclusion that the temporal relation 
of past loads has been effectively identified. 

• On the contrary, the Easter and Assumption holidays are quite a different story. The 
day of Easter is a highly irregular day, as shown in Figure 9b. There is no morning 
peak, and there is a continuous decrease in load demand until 3 p.m. Moreover, the 
load values are significantly reduced (2331 MW at 3 p.m.) with respect to the previous 
day (3405 MW) and to the previous Sunday (3392 MW), leading to enormous errors, 
including the following: 735.9 MW at 2 p.m., 770 MW at 3 p.m. and 652.6 at 4 p.m., 
and an average percentage error of 8.11%. This unusual load curve reflects the fact 
that, during Easter, no industrial activity takes place, and Greek people leave their 
homes and celebrate outdoors. The evening peak attains 4500 MW, whereas, in a typ-
ical Spring Sunday, the respective peak is around 6500 MW (Figure 5b). In the case 
of 15 August (Assumption day), DBD-FELF is not accurate, at least until 6p.m. Even 
though it tracks the dynamics, the predicted load takes fairly bigger values, leading 
to errors up to 507 MW. The load curve is quite similar to that of Easter, as there is 
no morning peak as well, and load keeps more or less reducing to a minimum below 
3000 MW around 3 p.m. (lunch time). Assumption day is at the heart of summer va-
cations for Greek people; most are on leave and spend the morning at the beach, re-
turning to their summer houses or to hotels late in the evening. However, the load 
profile returns to normal at around 6p.m., and the performance DBD-FELF is signif-
icantly ameliorated. The average percentage error for 15 August is 3.53%. 

  
(a) (b) 

Figure 6. Presentation of summer days: (a) working day; (b) Sunday. 

  
(a) (b) 

Figure 7. Presentation of autumn days: (a) working day; (b) Sunday. 
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Figure 8. A winter week. 

  
(a) (b) 

 
(c) 

Figure 9. Presentation of holidays: (a) Christmas day; (b) Easter day; (c) Assumption day. 

DBD-FELF is tested in comparison to six Computational Intelligence-based static and 
dynamic models, namely, ANFIS [48], LSTM forecaster [45,49], GRU and RNN models 
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[17], the DFNN [36], and the ReNFuzz-LF [39] neurofuzzy models. ANFIS is selected as a 
well-established static neurofuzzy system, LSTM is an effective Deep Learning model in 
modeling applications, and GRU and Recurrent Neural Networks are popular dynamic 
schemes with enhanced learning capabilities. The pool of competing rivals includes two 
dynamic neurofuzzy systems, DFNN and ReNFuzz-LF, which are based on generalized 
TSK fuzzy rules such as DBD-FELF but have different network structures of the conse-
quent parts, as described in [39]. The criteria employed in the comparative analysis are 
the prediction accuracy and model complexity. All models are applied to the same data 
sets of the Greek power system. Several setups of the LSTM scheme are tested: networks 
with one and two layers, each layer consisting of 25, 50, or 500 units. The results from four 
of them are included below, having been averaged over 10 trials. A GRU with two layers 
and 500 units per layer, along with two RNNS with two hidden layers and 40/200 neurons 
per layer, respectively, are also included in the test pool. Their other hyperparameters are 
summarized in Table 6, where the structural and learning parameters of DFNN and ReN-
Fuzz-LF are also given—taken from [39]. The FCM partition applied to DBD-FELF is used 
for DFNN and ReNFuzz-LF. The input vector of the ANFIS model comprises two inputs, 

1, 1, 1,d h d hL L− − −   , in an attempt to compensate for its static nature. Among the several ANFIS 
structures that were investigated, the one containing nine fuzzy sets per input, grid parti-
tion, and a fuzzy rule base of eighty-one rules is selected. All forecasters are trained for 
1000 iterations. The results are reported in Table 7. 

Table 6. Parameters of the competing forecasters. 

DFNN Structural Parameters 

uO  
1yO  

2yO  
3yO  H 

Member-
ship func-

tion 

Activation 
function 

1 2 2 1 2 Gaussian tanh 
Learning parameters 

n+  n−  minΔ  0Δ  ξ  

1.05 0.5 0.0001 0.01 0.85 
ReNFuzz-LF Structural Parameters 

H Membership function Activation function 
2 Gaussian tanh 

Learning parameters 

Temp 1a  2a  n+  n−  minΔ  0Δ  

1.2 0.01 0.4 1.05 0.5 0.0001 0.01 
ANFIS Learning parameters 

Initial Step size Step size increase rate Step size decrease rate 
0.01 1.1 0.9 

Membership function: Gaussian 
GRU Hyperparameters 

Activation 
function  

Bias Dropout Batch size Optimizer learning rate 

tanh Yes 0.35 16 Adam 0.001 
LSTM-1 Hyperparameters 

Activation 
function  

Bias Dropout Batch size Optimizer learning rate 

tanh Yes 0.35 16 Adam 0.001 
LSTM-2,3,4 Hyperparameters 
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Activation 
function  

Bias Dropout Batch size Optimizer learning rate 

tanh Yes 0.2 24 Adam 0.001 
RNN-1 Hyperparameters 

Activation 
function  

Bias Dropout Batch size Optimizer learning rate 

tanh Yes 0.35 80 Adam 0.001 
RNN-2 Hyperparameters 

Activation 
function  

Bias Dropout Batch size Optimizer learning rate 

tanh Yes 0.35 24 Adam 0.001 

Table 7. Results of the competing forecasters. 

Model APE (Testing) No. of Parameters 
DBD-FELF 1.18% 24 

ReNFuzz-LF 1.35% 33 
DFNN 1.36% 48 
ANFIS 1.48% 279 

LSTM-4 (1 layer, 25 units) 1.73% 2726 
RNN-2 (40 neurons) 1.72% 4961 

LSTM-3 (1 layer, 50 units) 1.51% 10,451 
LSTM-2 (2 layers, 50 

units) 
1.23% 30,651 

RNN-1 (200 neurons) 1.71% 120,801 
GRU 1.17% 2,258,001 

LSTM-1 (2 layers, 500 
units) 1.18% 3,006,501 

From the aforementioned results, it becomes evident that all seven types of models 
and all eleven forecasters attained APE values below 2%, with six of them predicting with 
APE less than 1.40%. DBD-FELF, GRU, and LSTM-1 exhibit a similar performance, with 
the proposed forecaster requiring a parameter set that is a fraction of those of the other 
two rivals. Moreover, all three dynamic neurofuzzy forecasters proved to be very efficient 
despite their small size. 

Additionally, recurrent neural networks are the least effective, even with a very com-
plex structure. These observations highlight the following: (a) the advantage that local 
recurrence offers one tasked with identifying the temporal relations of data series, even 
with a limited number of units, and (b) the enhanced learning capabilities with low com-
putational complexity that the fuzzy blending of small scale recurrent sub-systems can 
create. Moreover, DBD-FELF outperforms ReNFuzz-LF in terms of prediction accuracy 
and structure complexity. 

In order to further highlight the characteristics of the tested models, the times re-
quired to complete the training and testing phases are given in Table 8, where the most 
efficient forecasters are included. All models were executed using Google Colab. Its ses-
sions were initialized with a K80 GPU and 12GB of RAM. All the results were averaged 
over 10 trials. According to the reported times, it becomes evident that the small structure 
of DBD-FELF reflects the duration of the training phase and the fast operation of the re-
sulting system. 
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Table 8. Duration of the training and testing phases for the forecasters with the best performance. 

Model Training Phase (Seconds) Testing Phase (Seconds) 
DBD-FELF 49.87 0.72 

GRU 347.8 7.187 
LSTM-1 (2 layers, 500 

units) 
584.4 8.973 

Hence, it can be stated that the block-diagonal feedback structure of the consequent 
parts of the fuzzy rules can model the internal dependencies of the load time-series better 
than the respective consequent parts of ReNFuzz-LF, which are recurrent neural networks 
with simple local output feedback. An interesting conclusion can be drawn from the fore-
cast error duration curves of DBD-FELF and ReNFuzz-LF; in Figure 10, the reduction in 
terms of hours that DBD-FELF has produced over the curve of ReNFuzz-LF is shown. 
Even though, in the area of 100 MW, the value is very low (just 3.62%), which means that 
these forecasters practically operate in the same way where their prediction results are 
most accurate, the difference in the amount of hours increase as less accurate forecasts are 
produced. For instance, ReNFuzz-LF has 40 h with a prediction error over 500 MW [39], 
while DBD-FELF has 15 h—showing a 62.50% reduction. The results in Figure 10 show 
that the proposed forecaster is more robust, preventing large errors. 

 
Figure 10. Comparison of DBD-FELF’s and ReNFuzz-LF’s error duration curves. 

In conclusion, DBD-FELF has the following characteristics: 
• It produces accurate forecasts for the electric load data of the Greek Power System. 
• It is an economical model with reduced computational complexity with regard to its 

rivals. 
• The model-building process does not require a preprocessing step for selecting ap-

propriate past load values. 
• The model operates effectively without climate variables. 
• A single model is applied for forecasting the whole year, independent of the nature 

of the day. The results justify this decision in general; however, the effect of highly 
irregular days such as Easter and 15 August (Assumption day) are clear. 

5. Conclusions 
A block-diagonal fuzzy neural network for short-term electric load forecasting of the 

Greek power system has been suggested. DBD-FELF is a fuzzy system with rules that have 
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small-scale block-diagonal recurrent structures as consequent parts. Unit feedback con-
nections exist between the pairs of neurons that constitute each block. The FCM clustering 
method performs the partition of the single input’s space, determining the size of the 
fuzzy rule base and the values of the premise parameters. The RENNCOM iterative 
method guarantees stable learning of the consequent weights. Climate and temperature 
variables are not included in the input vector, while past load values are kept to the min-
imum. These decisions led to an economical and fast forecaster, while the experimental 
results have shown that DBD-FELF produces very accurate predictions, equal or superior 
to Computational Intelligence-based models of significantly higher complexity. Obvi-
ously, this approach has limitations regarding performance in cases of highly irregular 
days, where the load evolution is very different from the one in previous days. In the 
future, the effect of highly irregular days should be dealt with, possibly by introducing 
some expert knowledge in the form of typical fuzzy rules that will be activated when such 
a day is recognized. 

Author Contributions: Conceptualization, G.K., P.M., A.V., and C.H.; methodology, G.K., P.M., and 
C.H.; software, G.K. and P.M.; validation, G.K. and A.V.; formal analysis, G.K., P.M., and C.H.; in-
vestigation, G.K. and P.M; resources, G.K. and P.M.; data curation, G.K.; writing—original draft 
preparation, G.K., P.M., and A.V.; writing—review and editing, P.M. and C.H.; visualization, G.K. 
and P.M.; supervision, P.M.; project administration, P.M. All authors have read and agreed to the 
published version of the manuscript. 

Funding: This research received no external funding. 

Data Availability Statement: Publicly available datasets were analyzed in this study. These data 
can be found here: [https://www.admie.gr/en/market/market-statistics/detail-data (accessed on 18 
April 2023)]. 

Conflicts of Interest: The authors declare no conflicts of interest. 

Nomenclature 
i
jA  fuzzy set of the j-th input for the i-th rule. 

i
jAμ  membership function of the j-th input axis for the i-th fuzzy rule 

ijm  mean of a Gaussian membership function of the j-th input dimension for the i-th 
fuzzy rule 

ijσ  standard deviation of a Gaussian membership function of the j-th input dimen-
sion for the l-th fuzzy rule 

iμ  degree of fulfillment of the i-th fuzzy rule 

N number of neurons at the consequent parts of the fuzzy rules 
RMSE root mean squared error 
APE average percentage error 
P size of the electric load data set 

max,
ˆ

dL  maximum actual load of day d 

1,
ˆ

d hL −  actual load at the h-th hour d-1 

,d hL  predicted load at the h-th hour d-1 

( )i
kW  scaled-orthogonal feedback matrix for k-th block of the i-th fuzzy rule 

( ) ( )
2 1 2,i i

k ka a−  synaptic weights at the k-th block of the i-th fuzzy rule 

( ) ( )
2 1 2,i i

k kw w−  feedback synaptic weights at the k-th block of the i-th fuzzy rule 

ijb  synaptic weights at the output layer of the i-th fuzzy rule 
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( ) ( )
2 1 2,i i

k ks s−  the outputs of the neurons that consist the k-th block of the i-th fuzzy rule 

BDRNNi the block-diagonal recurrent neural network of the i-th fuzzy rule 

ig  the output of the i-th fuzzy rule 

conθ  weight vector for the consequents parts of the fuzzy rules 

ikp  stability function for the k-th block of the i-th rule 

Eδ  error decrement  

Φ  pay-off function 

MPC maximum parameter change 

inu  membership degree that the n-th data sample belongs to the i-th cluster 

i

E
w

∂
∂

+

 
ordered partial derivative of the error measure with respect to a consequent 
weight iw  

( ) ( )
,2 1 ,2,i i

s k s kλ λ−  Lagrange multipliers for the outputs of the neurons that consist the k-th block of 
the i-th fuzzy rule 

,λg i  Lagrange multiplier for the output of the i-th fuzzy rule 

n+  increase factor for maximum parameter change 

n−  decrease factor for maximum parameter change 

minΔ  minimum parameter change 

maxΔ  maximum parameter change 

0Δ  initial parameter change 
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