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In today’s world, energy demand is increasing, and meeting this demand in an envi-
ronmentally benign and sustainable manner is the greatest challenge. In order to establish
a prosperous, low-carbon economy and sustainable society, innovative technologies for
CO2-free energy are required [1,2]. In order to rapidly devise renewable CO2-free energy
solutions, it is imperative to develop sustainable and efficient technologies enabling the
same economic scale as existing processes. Currently, renewable energy technologies, such
as wind, solar, biomass, hydro, geothermal, and thermal energy [3], as well as CO2-free
green fuels, including hydrogen, ammonia, etc. [4,5], are widespread. In industries where
electrification is a challenge, using hydrogen as an energy source can help reduce CO2
emissions because it produces no CO2 when consumed [6]. Hydrogen can be produced via
a number of methods, including methane pyrolysis, coal gasification, and steam methane
reforming. Additionally, the process of water electrolysis can be used to produce CO2-free
hydrogen [7,8]. Despite this, there is a requirement to develop low-cost CO2-free hydrogen
production technologies in terms of infrastructure and storage. Likewise, ammonia does
not release CO2 upon combustion [9]; switching to ammonia from current fuels of coal
and natural gas leads to a significant decrease in CO2 emissions. Recently, scientists have
attempted to produce ammonia using renewable energy sources such as solar and/or
wind [10]. Traditionally, ammonia is produced using fossil fuels as raw materials. The
utilization of renewable-derived hydrogen for ammonia synthesis at relatively lower tem-
perature and pressure conditions can cause CO2-free ammonia synthesis [11]. Fuel cells
are clean power-generating devices that produce electricity by electrochemically reacting
hydrogen with oxygen from the air. Sir William Robert Grove developed the first form
of fuel cell technology in 1839 [12]. Since then, research has been conducted with the aim
of commercializing large-scale applications of fuel cells [13]. The biggest obstacles to the
commercialization of fuel cells are cost and durability. The commercialization of fuel cell
technology is hampered by issues with size, weight, thermal management, and water
management [14]. In recent decades, enhancing the performance of supercapacitors and
batteries has been a priority. It is essential to conduct research regarding the safety, system-
level energy metrics, and cost of advanced batteries in order to support the “wireless
electrification” process [15]. Energy and power density at a cellular level have been sub-
jected to extensive research. For batteries, supercapacitors, and their hybrids to be widely
adopted, challenges in the areas of chemistry, materials, and cell design that affect safety,
cost, and the resilience of the power systems must be solved [16]. The development of
efficient and affordable CO2-free clean energy technologies to replace conventional energy
systems, which are ultimately necessary for the growth of a sustainable society, is being
actively encouraged. This Special Issue on CO2-free energies collates the various concepts,
possibilities, and difficulties associated with the adoption CO2-free green energy systems.

In this Special Issue, Abbass et al. [17] describe the application of the antlion optimizer
algorithm for the maximum power point tracking of a solar array comprising a single
module with 20 cells, resulting in an overall 100 W array under ideal conditions. However,
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in practice, it is impossible to attain the maximum current and voltage from a PV cell.
The authors compared the results of the antlion optimizer algorithm with those of con-
ventional approaches. According to their research findings, in the case of solar irradiance
was 1000 W/m2, a maximum power of 91.3 W was attained using the antlion optimizer
algorithm in the short time of 0.05 s, whereas the PFA and P&O resulted in 90 W after 2 s
and 0.64 s, respectively. The authors also analyzed the efficiency of the antlion optimizer
algorithm when solar irradiance decreased to 200 W/m2 and then reached 1000 W/m2. In
this case, the maximum power achieved using the antlion optimizer algorithm was 55 W
at an irradiance of 200 W/m2, which increased to 91.3 W with an increased irradiance of
1000 W/m2, whereas values of only 78 W and 82 W were obtained using P&O and FPA,
respectively. The antlion optimizer algorithm described in the paper is more efficient than
conventional processes such as PFA and P&O. Another research communication published
in this Special Issue by Manakhov et al. [18] explored decarbonizing mobility among all
electrification versus all hydrogenization. In this study, the authors evaluated the expected
demands for low-carbon fuels, such as green and blue hydrogen and low-carbon electricity.
According to the authors’ conclusions, 366 million tons of hydrogen per year is required
for hydrogen mobility. By 2035, this figure is expected to increase to 422 million tons per
year, much larger than the currently available hydrogen production capacities. According
to the authors’ calculations, hydrogen mobility from blue hydrogen will require 4.0 billion
tons of CO2 per annum, which is less than decarbonization of coal-fired plants requiring
more than 10.0 billion tons of CO2 per annum. The authors also calculated the required
cost of the fuel and compared various possibilities, including social perception, economic
viability, and technical readiness. This study and its results can effectively contribute to
future aspects of a CO2-free sustainable society.

A review published in this Special Issue by Qazi et al. [19] summarized approaches
to the utilization of graphene for efficient energy storage and other environmental appli-
cations. The authors described the most common synthetic techniques for the production
of graphene and its derivatives, in addition to how these techniques affect a material’s
characteristics. In addition, this paper summarizes the most important applications of
graphene and its derivatives, such as CO2 capture, biomedicine, potential energy storage,
and conversion. The authors also highlighted future aspects of the sustainable utilization
of graphene and its derivatives, as well as the challenges that must be overcome for effi-
cient and economic industrial-scale applications, promoting the utilization of graphene
chemistry and its potential large-scale applications. Another review [20] published in this
Special Issue focused on the future of hydrogen as an alternative fuel for next-generation
industrial applications. The author summarized recent progress in various hydrogen
applications such as hydrocarbon processing, fuel refining, materials, pharmaceuticals,
electronics, etc. Additionally, this review emphasizes the current industrialization sce-
nario and describes potential advances, such as speculative scientific breakthroughs, the
manufacture of eco-friendly raw materials, potential exploration, and the incorporation
of renewable resources. This article also covers the economic effects of using hydrogen as
a green resource, challenges regarding the industrial-scale application of hydrogen, and
future research perspectives.

In summary, the current Special Issue concisely illustrates the significant challenges
associated with developing CO2-free energy solutions. The guest editors wish to thank the
editorial board and all authors for their significant contributions to this field of research.
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