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Abstract: In order to eliminate the potential safety hazard that arises when metal foreign objects
intervene in the wireless charging area of electric vehicles, this paper proposes that a metal foreign
object detection method be applied to the wireless charging system of electric vehicles based on the
optimal design of the array detection coil. Firstly, the equivalent circuit model of the metal foreign
object detection system is established, then the principle of the foreign object detection system is
analyzed, and the scale factor β is introduced as the optimization index of the detection coil. Secondly,
the change of the scale factor β with the circuit parameters is analyzed and the appropriate circuit
parameters are compared and selected. Thirdly, on the basis of the planar square spiral coil, Ansys
Maxwell finite element simulation software is used to optimize its structural parameters, combination
mode, and resonant circuit, as well as design the anti-series and anti-parallel enhanced detection
coil sets with the decoupling and elimination of detection blind spots. Finally, the feasibility of the
proposed detection method of metal foreign objects is verified by experiments. The results show that
the two array detection coil sets can detect small-sized common metal foreign objects such as paper
clips and the proposed double-layer reinforced structure can significantly improve the detection
sensitivity of the system.

Keywords: electric vehicle; wireless charging; metal foreign object detection system; detection coil set

1. Introduction

Compared with the traditional wired charging method, wireless charging is more
aesthetically pleasing and flexible, overcoming the problems of the easy wear of the con-
nector and inconvenient charging in the traditional charging mode. In the aspect of energy
transmission, using an array to transmit energy to freely moving objects, through the
design and optimization of the transmitter array, the transmission efficiency of the wire-
less charging system is improved [1,2] and wireless energy transmission technology has
a broader research prospect. Wireless power transfer technology has received extensive
attention from domestic and foreign research units and has made certain progress in the
fields of biomedicine, electric vehicles, and intelligent warehousing [3–7]. However, during
wireless charging, metal foreign objects invading the charging area can affect the electrical
parameters of the system, resulting in the system not working properly [8]. At the same
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time, various electromagnetic effects dominated by eddy current effects will cause losses in
the system and a waste of energy. More seriously, the rise in surface temperature of metal
foreign objects caused by eddy current effects in high-frequency magnetic fields may cause
fires and reduce the safety of the system [9,10]. Therefore, foreign object detection is one of
the essential and important functions of wireless charging systems.

Based on whether auxiliary coils are applied, the current foreign object detection tech-
nology can be roughly divided into two categories. The foreign object detection technology
without an auxiliary coil is mainly based on the sensor [11,12] or circuit system parameter
change [13,14], although the former has high detection sensitivity, a high cost, is damaged
easily, and high environmental requirements that restrict its wide range of applications. The
latter implementation method is simple and does not require the installation of additional
detection devices but its detection accuracy is low and its reliability is poor, which cannot
be used in high-power wireless charging occasions.

Foreign object detection technology based on an external auxiliary coil has a low
application cost and high reliability and is the main way to detect foreign objects in related
fields of wireless charging systems. The foreign object detection technology of the external
auxiliary coil can be subdivided into two categories: active [15–17] and passive [18–21],
and its judgment is based on whether the detection coil needs to apply a high-frequency
excitation signal. The intrusion of metal foreign objects will cause the magnetic field in
the charging area to change, thereby changing the equivalent impedance, voltage, and
other parameters of the detection coil, and realizing the detection of metal foreign objects
through the changing electrical parameters. The literature [19] proposes an improved
differential passive foreign object detection technology for the balance coil on the basis of
the traditional balance coil, which has high detection accuracy and strong anti-interference,
which effectively improves the disadvantages of traditional balance coil occupying a
large space but the existence of detection blind zone restricts its further application and
development. The literature [20] proposes a passive foreign object detection technology
based on a non-overlapping coil structure, which detects foreign objects through the voltage
difference of the DQ coil and uses a double-layer coil set to eliminate the detection blind
zone. Passive foreign object detection technology relies too heavily on the energy transfer
system to detect foreign objects before the system is operating. The literature [16] proposes
an active foreign object detection technology to judge the size of foreign objects and identify
foreign species by detecting the impedance change characteristics of coils but its detection
accuracy needs to be further improved. The literature [17] proposes a metal foreign object
detection method based on an array differential coil, which preliminarily identifies the
material of the metal foreign object according to the influence of the foreign object on the
output voltage of the detection coil, however, the output voltage of some coils does not
change significantly under a low power state and there is a risk of a false alarm.

To solve this problem, this paper proposes an active metal foreign object detection
method applied to an electric vehicle wireless charging system based on two array detection
coil sets. This paper first analyzes the basic working principle of the metal foreign object
detection system. Secondly, there was a reasonable selection of system circuit parameters
to improve system detection sensitivity. Thirdly, the detection coil was optimized in terms
of structural parameters, combination mode, and a resonant circuit, and two array-type
enhanced detection coil sets were designed. Finally, a foreign object detection experimental
platform was built to verify the feasibility of the proposed foreign object detection method.

2. Equivalent Circuit Model of a Foreign Object Detection System

According to Faraday’s law of electromagnetic induction, considering the influence
of the eddy–current effect and magnetic effect, metal foreign objects can be equivalent
to resistive inductive series models. When there are no foreign objects in the detection
area, the equivalent circuit of the foreign object detection system is shown in Figure 1.
The relationship between the voltage and current can be obtained from KVL, as shown in
Equation (1). Figure 2a is the equivalent circuit diagram of the detection system when a for-
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eign object invades the detection area, and the effect of the foreign object on the impedance
parameters of the detection coil is equivalent to the detection coil. Furthermore, the equiv-
alent circuit obtained after simplification is shown in Figure 2b, and the corresponding
voltage expression is shown in Equation (2).
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The input voltage Uin is set equal in the presence of the foreign object, the phase angle
is 0, and r is the internal resistance of the power supply. RD is the sampling resistor; RL
is the equivalent resistance of the detection coil; LD is the equivalent inductance of the
detection coil; CD is the series resonant capacitor; RX is the equivalent resistance of the
foreign object; LX is the equivalent inductance of the foreign object; MDX is the mutual
inductance between LD and LX; I′D, ID is the system detection current when there is no
foreign object; IX is the equivalent current of the foreign object; ∆RL is the change of the
equivalent resistance of the detection coil after the intervention of the foreign object; ∆LD is
the change of the equivalent inductance of the detection coil after the intervention of the
foreign object; the resonance angle frequency is ω; and ω2LDCD = 1.

Uin = ID[
1

jωCD
+ jωLD + RD + RL + r] = ID(RD + RL + r) (1)

Uin = I′D[(−jω∆LD + RD + RL + ∆RL + r)] (2)

From Equations (1) and (2), the expression of the current with or without a foreign
object can be obtained, as shown in Equations (3) and (4), where k is constant. The scale
factor β in Equation (5) is the voltage ratio across the sampling resistor with or without
foreign objects, which is used to characterize the detection effect of the system. The smaller
the β, the greater the voltage change, and the more significant the system detection effect.

I′D =
Uin

−jω∆LD + RD + RL + ∆RL + r
= k(RD + RL + ∆RL + r + jω∆LD) (3)

ID =
Uin

RD + RL + r
=

k
[
(RD + RL + ∆RL + r)2 + (ω∆LD)

2
]

RD + RL + r
(4)
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β =
|U′D|
|UD|

=
|I′DRD|
|IDRD|

=
|I′D|
|ID|

=
RD + RL + r√

(RD + RL + ∆RL + r)2 + (ω∆LD)
2

(5)

In Equation (5), the scaling factor β is related to the internal resistance r of the power
supply, the equivalent resistance of the sensing coil RL, the equivalent inductance of the
sensing coil LD, the resonant angle frequency ω, the equivalent resistance changes of the
sensing coil ∆RL, and the equivalent inductance change of the sensing coil ∆LD. Among
them, the internal resistance of the power supply r is basically unchanged and can be
regarded as a constant. RL and LD are related to the design of the detection coil, and ∆RL
and ∆LD are related to the material, volume, and relative position of the foreign object.
When the structure of the detection coil is determined, the sensitivity of the detection
system can be changed by reasonably selecting the values of ω and RD. Therefore, selecting
appropriate circuit parameters and reasonably designing the detection coil is beneficial to
improving the accuracy and reliability of the system detection.

3. Resonant Circuit Parameter Optimization

In order to improve the sensitivity and accuracy of the detection system, if RL, LD,
∆RL, and ∆LD are certain, the circuit resonance frequency can be adjusted by changing the
resonant capacitor CD.

As can be seen from Equation (5), the scale factor β gradually decreases as the reso-
nance frequency gradually increases. The higher the frequency of the excitation source of
the sensing system, the greater the change in the equivalent impedance of the coil when a
foreign object is involved, the smaller the detection current, and the smaller the voltage
across the sampling resistor. Therefore, a high-frequency excitation signal with a resonant
frequency of 3MHz is used in this paper.

The scale factor β is plotted according to the system circuit parameters shown in
Table 1, as shown in Figure 3.

Table 1. System circuit parameters.

Parameters Value

Group 1 2 3 4
RL [Ω] 4.65 0~10 4.65 4.65

∆RL [Ω] 0.72 0.72 0.72 0~1
∆LD [µH] 3.04 3.04 0~4 3.04

RD [Ω] 0~20 1 1 1
f [MHz] 3 3 3 3

It can be seen from Figure 3a that the scale factor β increases linearly with the increase
of the sampling resistor RD because the voltage change across the sampling resistor de-
creases with the increase of RD after the intervention of a foreign object. Therefore, the
smaller the sample resistor RD, the better. However, in the actual design, the sensing coil is
generally designed first, and then the sampling resistor is selected according to the current
carrying capacity of the coil. As can be seen from Figure 3b, the scale factor β increases
linearly with the increase of the equivalent resistance of the sense coil RL, so the equivalent
resistance of the coil should be minimized when designing the sense coil. Figure 3c shows
that the scale factor β decreases rapidly as the equivalent inductance of the sensing coil
changes ∆LD. For the same foreign object, the equivalent inductance change of the coil
can be increased by optimizing the coil structure and reducing the distance between the
foreign object and the detection coil, thereby improving the detection sensitivity of the
system. Figure 3d shows the scale factor β change with the equivalent resistance of the
sensing coil ∆RL. Although the overall curve shows a downward trend, the scale factor β
does not change much, and it can be concluded that the equivalent resistance change of the
sensing coil has little effect on the system detection effect.
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4. Detection Coil Optimization Design and Simulation Analysis

From the above analysis, it can be seen that the optimal design of the detection coil
is the key to foreign object detection technology. Based on the planar square helical coil,
Ansys Maxwell finite element simulation software is used to optimize the design of its
structural parameters, combination method, and resonant circuit. Since the scale factor β
can judge the quality of the inspection effect, the scale factor β is used as the optimization
index of the detection coil below, and Table 2 is the system circuit parameters required
for simulation.

Table 2. System circuit parameters.

Parameter Value

Outer diameter of the transmitting coil [mm2] 650 × 500
Inner diameter of the transmitting coil [mm2] 140 × 290

Coil thickness [mm] 5
Number of turns of the transmitting coil × wire

diameter [mm] 8 × 5

The distance between the transmitting coil and the
detection coil [mm] 10

Foreign object specifications [mm3] 20 × 20 × 2 Copper foil
The distance between the foreign object and the

detection coil [mm] 1

4.1. Detection Coil Structure Parameter Design

Figure 4 shows the square coil structure diagram, and its relevant parameters are de-
fined as inner diameter D, line spacing S, and side length A. In addition to these parameters,
the wire width, wire thickness, and coil turns N need to be considered, and the side length
A is related to each parameter and is determined by them. The wire linewidth is generally
selected as a fixed value based on full consideration of the ampacity, and 1 mm is selected
as the coil linewidth here. This article uses the form of a PCB coil, the wire thickness is 35
µm, and the material is copper. In the following, the detection coil will be optimized from
three aspects: the inner diameter D, number of turns N, and line spacing S.
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4.1.1. Optimized Design of Detection Coil Inner Diameter D

In the optimized design of coil inner diameter, the line spacing S = 1 mm, and the
number of turns N are set to 10, and the influence of different coil inner diameter D on
the detection effect is studied. When the inner diameter of the coil is taken 10 mm with or
without a foreign object, the coil model is shown in Figure 5, and Figure 6 shows the scale
factor β changes with the inner diameter D of the coil. As can be seen from Figure 6, as the
inner diameter D of the coil increases, the scale factor β first increases, then decreases, and
then increases. When the inner diameter of coil D is equal to 10 mm, the scale factor β the
smallest, and the system detection effect is the best. It should be noted that the line spacing
and the number of turns here are not optimized values, and the optimization of the coil
inner diameter D should be based on actual design needs.
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4.1.2. Optimized Design for Detecting Coil Turns N

In the optimization design of coil turns, the line spacing is set to S = 1 mm, the inner
diameter of the coil D = 10 mm, and the number of coil turns N is taken as 5, 8, 10, 12, 15,
20, and the influence of different coil turns N on the detection effect is studied. Figure 7
shows the scale factor β change with the number of turns N of the coil. As can be seen
from Figure 7, the scale factor β decreases first and then increases with the increase of the
number of turns N. When the number of coil turns N is 10, the scale factor β is minimal.
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4.1.3. Optimized Design of Detection Coil Line Spacing S

In the optimization design of the detection coil line spacing S, the inner diameter
of the coil is set to D = 10 mm, the number of turns N is 10, and the line spacing S is
0.6 mm, 0.8 mm, 1 mm, 1.2 mm, 1.4 mm, and the influence of different line spacing S on
the detection effect is studied. Figure 8 shows the scale factor β change with the number of
turns N of the coil. As can be seen from Figure 8, the scale factor β decreases first and then
increases as the line spacing S increases. When the line spacing S is 1 mm, the scale factor β
is the smallest, and the foreign object detection effect is the best.
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In summary, the selected coil structure parameters in this paper are coil inner diameter
D = 10 mm, number of turns N = 10, and wire spacing S = 1 mm. However, in practical
applications, the design needs of each structural parameter should be comprehensively
considered to determine the optimal value.

4.2. Detection Coil Combination Design

Based on the parameters of the coil structure optimization in the previous section, this
section uses Ansys Maxwell finite element simulation software to explore magnetic field
changes in different combinations. According to the literature [22], foreign objects are not
easily detected in locations with low magnetic induction intensity and are easily detected in
locations with high magnetic induction. Therefore, the magnetic induction intensity of the
3 mm plane above the detection coil is selected as a reference index for the detection effect.

4.2.1. Anti-Series Detection Coil Unit

The existing metal foreign object detection technology is mainly active foreign object
detection based on adjacent unit anti-series detection coils (two coils are wound in opposite
directions and connected in series). The detection coil unit of this connection method has
the following advantages: (1) the small-size detection coil has a strong perception ability
for small foreign objects; (2) when the detection coil unit is located in a uniform magnetic
field, the coupling between it and the energy transfer coil is small, thereby reducing the
influence of other parts of the system on the foreign object detection sensing device.
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When the position of the anti-series detection coil unit is symmetrical with respect
to the symmetry axis of the energy transmission coil, the net magnetic flux through the
detection coil unit is zero, that is, the energy transfer coil is decoupled from the detection
coil unit. When the detection coil unit is placed in other positions, the magnetic field
passing through the coil is uneven, and the energy transmission coil and the detection coil
unit cannot be decoupled, which affects the accuracy and reliability of the foreign object
detection system.

4.2.2. Series Coil Set

On the basis of the anti-series detection coil unit, multiple transverse or longitudinal
series coil sets are constructed, and this paper uses the transverse series coil set as an
example, as shown in Figure 9. Multiple sets of detection coil units are connected in a
series to form a coil set, and the placement position of the series coil set is symmetrical with
respect to the energy transmission coil.
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Figure 9. Transverse series coil set.

When energized, the high-frequency magnetic field generated by the sensing coil
wound clockwise and counterclockwise is perpendicular to the plane where the coil set
is located and always in the opposite direction. Since the external magnetic field, that is,
the magnetic field generated by the energy transmission transmitting coil passes through
the magnetic field lines that are clockwise and counterclockwise around the sensing coil, it
can be regarded as a relatively uniform magnetic field. Therefore, the net magnetic flux
through all the sensing coils is zero, that is, the single row of sensing coils is decoupled
from the energy transmission and emission coils.

The energy transfer coil and the series coil set shown in Figure 9 are modeled in the
simulation software. When the symmetrical center P of the series detection coil set moves
from (0,0) to (50,50), the coupling coefficient changes with the position of the series coil set
as shown in Figure 10. As can be seen from Figure 10, when dx = 0, that is, the symmetry
center of the coil set is on the y-axis, and the coupling coefficient increases with the offset
y-axis distance of the symmetry center. When dy = 0, that is, the symmetrical center of the
coil set is on the x-axis, and the coupling coefficient of the energy transmitting coil and the
series detection coil set is close to zero. Therefore, the center of symmetry of the transverse
series coil set described above should be placed on the x-axis.
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4.2.3. Double-Layer Reinforced Detection Coil Set

In order to improve the ability of the sensing coil to detect metal foreign objects, this
paper adopts the mode of simultaneous detection of multiple coils under the same excitation
conditions. This section will examine the influence of different connection methods of
multilayer detection coils on the detection effect.

Figure 11 shows a 3 mm planar magnetic field cloud above the single-layer anti-series,
double-layer co-winding, and double-layer reverse-winding coil unit, and the excitation
current is set to 10A. As can be seen from Figure 11a, the 3 mm plane magnetic field above
the geometric center of the sub-coil of the single-layer anti-series detection coil unit is
strong, and the surrounding magnetic field is weak. It can be seen from Figure 11b that
the 3 mm plane magnetic field above the double-layer co-winding detection coil unit is
significantly higher than that of the single-layer anti-series unit, which can play a role in
strengthening the magnetic field of the detection coil. As can be seen from Figure 11c,
the 3 mm plane magnetic field above the double-layer reverse winding detection coil unit
is very low, which is not conducive to improving the sensitivity of the system detection.
Therefore, in order to improve the detection coil’s ability to perceive small metal foreign
objects, this paper comprehensively applies the double-layer co-winding mode to the
design of array detection coils.
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4.2.4. Anti-Parallel Detection Coil Unit

For the detection coil unit with opposite winds, the existing foreign object detection
technology basically adopts the connection method of connecting the two in a series, and
there is rarely a parallel connection scheme. As shown in Figure 12, the same number is
connected in parallel to the opposite sub-coil to form an anti-parallel sensing coil unit to
explore whether it can be decoupled from the energy transmission transmitting coil.
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In the simulation software, the model of the energy transmitting coil and the anti-
parallel coil unit is established, and the anti-parallel detection coil unit is placed 10 mm
above the geometric center of the energy transmission coil, and the energy transmission
coil is symmetrically symmetrical. The simulation results show that the coupling coefficient
between the energy transmission coil and the anti-parallel detection coil unit is 1.25 × 10−5,
which is 0.0005 times that of the coupling coefficient with the single detection coil. From
this, it can be concluded that the anti-parallel sensing coil unit is decoupled from the energy
transmission transmitting coil at a field-symmetric position.

The anti-parallel detection coil unit model is proposed to open up the choice of con-
nection mode for decoupling the coil unit and enhancing the flexibility of the system circuit.
Compared with the anti-series detection coil unit, the anti-parallel detection coil unit has
two branches on the basis of decoupling from the energy transmitting coil, which alleviates
the problem of small detection signal change caused by too many branch coil units.

Each branch coil is matched with a resonant capacitor, which together constitutes a
decoupling unit as a whole in the space and it detects each test area separately in function.
When a metal foreign object falls between two sub-coils of the anti-series detection coil unit
and the coverage area is the same, the detection system cannot detect the foreign object,
and there is a detection blind zone. However, the anti-parallel detection coil unit does not
have a detection blind zone. As long as the metal foreign object is in the detection area and
the sub-coil impedance changes, the detection system can successfully identify it.

4.3. Detection Coil Resonant Circuit Design
4.3.1. Series Resonant Circuit Design

Based on the change of the impedance of the detection coil itself, the reliability and
sensitivity of determining whether there are metal foreign objects in the detection area
are poor, and the reason is that some tiny metal foreign objects have limited degrees of
resistance change for the detection coil, and the detection is difficult, and there is a risk
of missing detection and not being detected. Building a coil resonant topology can reflect
the impedance change of the sensing coil to the entire resonant topology element, thereby
amplifying the detection parameters. Series resonance and parallel resonance are the most
basic resonant topologies, from which various high-order composite resonant topologies
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can be derived. Taking series resonance and parallel resonance as examples, the designed
resonant circuit can be generalized to various high-order composite resonant topologies.

As shown in Figure 13, the multi-coil series coil set can be decoupled from the energy
transmission transmitting coil, which is conducive to reducing the mutual interference
between the two coils and ensuring the normal operation of the foreign object detection
system. However, the metal foreign object can only change the impedance parameters of
the local detection coil, and the change in the impedance parameters of the series coil set
is relatively small, resulting in no obvious change in the detection signal. Therefore, this
connection mode is difficult to detect small metal foreign objects and has limitations in
detection sensitivity.
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Figure 13. Traditional capacitor-inductor connection mode.

In view of the shortcomings of the above circuit connection mode, this paper proposes
a new capacitor-inductor connection mode shown in Figure 14. The basic idea is to first
match each detection coil with a resonant full compensation capacitor to form a series
resonant unit, and then connect each series resonant unit in turn. It can be seen that when
a sensing unit is invaded by a metal foreign object, the unit detects that the impedance
value of the coil changes, and the resonant state is destroyed. The impedance value of the
detection coil of the other units does not change and is still in the series resonant state.
In this way, the area where the metal foreign object is located can be quickly located by
connecting the voltage across the series resonant unit or the sampling resistor. At the same
time, since this mode uses a single coil as the signal processing unit, that is, the detection
system can realize the detection function through the change of the impedance parameter
of a single coil, so there is no detection blind zone.
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4.3.2. Parallel Resonant Circuit Design

The sensing circuit based on the parallel resonant topology is shown in Figure 15, and
the sensing coil matches the resonant fully compensated capacitor connected in parallel to
form a parallel resonant unit. Its detection principle is that when there is no foreign object
in the detection area, the parallel resonant unit is in a parallel resonant state under the
excitation of the power supply, which is equivalent to an open circuit in the detection circuit,
and the voltage across the sampling resistor is almost zero. When a metal foreign object
falls into the detection area, the parallel resonant state is broken, and the sense current
flows through the sampling resistor so that the voltage across it is not zero. Therefore,
real-time monitoring of metal foreign objects is realized by sampling the change of voltage
across the resistor.
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Based on the parameters shown in Table 3, the sampling voltage UD expression can be
obtained from Figure 15, as shown in Equations (6) and (7). Set the sampling resistance
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value range to 0~1 kΩ and explore the influence of sampling resistance on the sampling
voltage, and the plot is shown in Figure 16. As can be seen from Figure 16, the sampling
voltage increases with the increase of the sampling resistance, and when the sampling
resistance is greater than 500 Ω, the sampling voltage is basically unchanged. Therefore,
when the sensing circuit adopts a parallel resonant topology, a sampling resistor with a
resistance value of 500 Ω is selected.

ZD =
jω(LD − ∆LD)

1 + ω2c∆LD
(6)

UD =

∣∣∣∣ RDUin

RD+RL+ZD

∣∣∣∣ (7)

Table 3. System circuit parameters.

Parameter Value

LD [µH] 5
∆LD [µH] 1

RL [Ω] 0.5
f [MHz] 3
Uin [V] 10
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As shown in Figure 17, the double-layer co-winding reinforcement detection, anti-
parallel connection method, and parallel resonant topology are combined to form an
anti-parallel reinforced detection coil group. Group A coils are the detection coils of the
first layer of the same row or row, and the coils of Group B are the detection coils of the
second layer below Group A. The upper and lower coils of the same unit are connected in
series and matched with parallel resonant capacitors, and the voltage change across the
sampling resistor can detect whether metal foreign objects invade.
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5. Experimental Verification of Foreign Object Detection System

In order to verify the feasibility of the above metal foreign object detection method,
this paper builds a wireless charging system foreign object detection experimental platform
according to the electric vehicle wireless charging standard SAE J2954 [23]. The establish-
ment of the wireless charging system foreign object detection experimental platform aims
to improve the detection ability of common metal foreign objects in relevant standards and
hopes to aid in the practical application of foreign object detection technology in wireless
charging systems.

The detection system consists of an array detection coil, an FY6900 signal generator,
a signal acquisition module, and a capacitive resistance array module. Among them, the
array detection coil is made of PCB, the anti-series enhanced detection coil set structure is
based on Figures 9 and 14, the anti-parallel enhanced detection coil set structure based on
Figures 12 and 17 are adopted, and the experimental platform is shown in Figure 18. The
FY6900 signal generator serves as the excitation source of the entire foreign object detection
system and provides high-frequency AC power. The signal acquisition module is used to
collect the output voltage of the detection coil and reflect the detection effect of the system.
In this paper, some common metal foreign objects in “Wireless Charging System for Electric
Vehicles Part 3” [24] are selected as detection objects to test the performance of the detection
circuit, as shown in Table 4.
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Table 4. Common metal foreign objects.

Foreign Object Type Remark

paper clip [mm] length 29
coins fifty-cent piece
screw reference size: M5

5.1. Anti-Series Enhanced Detection Coil Set Sensitivity Test

In order to explore the detection sensitivity of the metal foreign object detection system
to the metal foreign objects listed in Table 4, each metal foreign object is placed above the
center position of the sub-coil of the anti-series detection coil group (groups 12 × 5), and
Figure 19 shows the output voltage waveform of the foreign object detection system.

As seen in Figure 19, the output voltage of the detection system is 4.67 V when there
is no foreign object, and the output voltage of the detection system is 4.36 V, 4.08 V, and
3.06 V when paper clip, M5 screw, and the fifty-cent piece are inserted, respectively. For
metal foreign objects of different materials and sizes, the output voltage of the detection
system is different, and the metal foreign object material can be roughly judged. In order
to explore the effect of metal foreign objects on the output voltage of each sub-coil in the
detection coil group, the metal foreign object is placed above the central position of sub-coil
1 shown in Figure 18, and the change in output voltage of each sub-coil in the anti-series
detection coil group is recorded, as shown in Figure 20.
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Due to the manufacturing process and wiring of the coil will affect the coil parameters
in practical applications, in addition, the experimental device itself will be biased, the
measurement accuracy of the measuring instrument is not high, and it is easy to be affected
by the surrounding environment, so the output voltage of other sub-coils will inevitably
fluctuate, resulting in a certain error in the measurement parameters. As can be seen from
Figure 20, when a metal foreign object is present above the central position of sub-coil 1,
the output voltage of sub-coil 1 changes significantly more than other sub-coils of the coil
set, and the position of the metal foreign object can be judged.

As shown in Figure 21, the surface of the sub-coil is divided into nine regions, and
the change in the output voltage of the sub-coil when metal foreign objects invade each
area is recorded, as shown in Figure 22. As can be seen from Figure 22, the output voltage
changes the most when the metal foreign object is in the center of the sub-coil, and the
output voltage change is small when the metal foreign object is in the non-central area of
the sub-coil. When a paper clip falls into a non-central area of the sub-coil, the sensitivity
of the foreign object detection system may be affected due to small changes in the detection
signal. Therefore, the feasibility of the anti-series reinforced detection coil set (double layer)
will be verified below, and Figure 23 shows the change in output voltage in each area of the
sub-coil falling into the single- and double-layer detection coil stack.
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As can be seen from Figure 23, when a double-layer detection coil set is used, the
sub-coil has a significantly enhanced ability to detect paper clips in all regions, thereby
verifying the feasibility of the inverse series reinforcement detection coil set. In view of
the problem of the detection blind zone in the anti-series detection coil, the metal foreign
object shown in Table 4 was placed in the middle of the adjacent two sub-coils, and the
output voltage changes of paper clips, M5 screws, and fifty-cent pieces corresponding to
the sub-coils were 0.12 V, 0.22 V, and 0.27 V, respectively. Therefore, the threshold voltage
of the foreign object detection system is set to 0.1 V to eliminate the detection blind zone.

5.2. Anti-Parallel Enhanced Detection Coil Set Sensitivity Test

To verify the performance of the foreign object detection system based on the anti-
parallel detection coil set, the metal foreign object shown in Table 4 is placed above the
sub-coil, and Figure 24 shows the sampling voltage of the foreign object detection system
under different conditions.
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Figure 24. Sampling voltage of foreign object detection system when foreign objects invade.

Figure 24 shows that the system sampling voltage is 436 mV when there is no foreign
object, and the sampling voltage is 763 mV, 1.13 V, and 1.87 V when the paper clip, M5
screw, and fifty-cent piece are invaded, respectively, which verifies the feasibility of the
anti-parallel detection coil set.

In order to detect the anti-parallel detection coil set and enhance the sensitivity of the
detection coil set, a double-layer anti-parallel detection coil set is built based on Figure 17,
and Figure 25 shows the sampling voltage change of the sub-coil in the single-layer and
double-layer anti-parallel detection coil groups. It can be seen from Figure 25 that when
the double-layer anti-parallel detection coil set is used, the sampling voltage change
of the system increases significantly, which significantly enhances the sensitivity of the
detection system.
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6. Conclusions

In this paper, a metal foreign object detection method based on two array-type en-
hanced detection coil set structures is proposed, and the resonant circuit parameters and
detection coil structure parameters are optimized according to the scale factor β. The finite
element simulation model is established to analyze different combinations of detection
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coils, and the detection coil resonance topology is designed to amplify the detection signal.
A wireless charging foreign object detection system based on the detection structure of an
anti-series enhanced detection coil set and an anti-parallel enhanced detection coil set was
built to test the sensitivity of common metal foreign objects.

The results show that compared with the traditional single-layer array detection coil,
the sensitivity of the proposed Double-layer reinforced structure is nearly doubled, which
significantly enhances the detection ability of the system for small metallic foreign objects.
The foreign object detection method proposed in this paper realizes the detection function
of common metal foreign objects can eliminate the detection blind area and identify the
location of metal foreign objects and verify the correctness and feasibility of the theory in
this paper.
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