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Abstract: This paper addresses the optimal stochastic allocation of distributed energy resources
in distribution networks. Typically, uncertain problems are analyzed in multistage formulations,
including case generation routines, resulting in computationally exhaustive programs. In this ar-
ticle, two probabilistic approaches are proposed–range probability optimization (RPO) and value
probability optimization (VPO)–resulting in a single-stage, convex, stochastic optimal power flow
problem. RPO maximizes probabilities within a range of uncertainty, whilst VPO optimizes the
values of random variables and maximizes their probabilities. Random variables were modeled
with hourly measurements fitted to the logistic distribution. These formulations were tested on two
systems and compared against the deterministic case built from expected values. The results indicate
that assuming deterministic conditions ends in highly underestimated losses. RPO showed that
by including ±10% uncertainty, losses can be increased up to 40% with up to −72% photovoltaic
capacity, depending on the system, whereas VPO resulted in up to 85% increases in power losses
despite PV installations, with 20% greater probabilities on average. By implementing any of the
proposed approaches, it was possible to obtain more probable upper envelopes in the objective,
avoiding case generation stages and heuristic methods.

Keywords: stochastic programming; DER allocation; AC-OPF; convex optimization; continuous
distribution; logistic distribution; distributed energy resources; photovoltaic energy; San Andres Island

1. Introduction

The optimal power flow problem (AC-OPF) is an extensively used tool to find optimal
operative set points in the planning and operation of power systems. Its framework is being
transformed from a rigid, centralized setup, to a more flexible one by including new eco-
nomic agents and operational strategies. For instance, with the introduction of peer-to-peer
trading schemes, a consumer-producer (prosumer) is integrated into energy communities
and the overall welfare of the community is optimized by coordinating resources and
energy transactions with conventional grids [1], or the aggregation of distributed energy
resources (DER) into multienergy virtual power plants, whose operation is economically
optimized to provide services such as upstream reactive power support or frequency con-
trol [2]. Similarly, the problem of planning virtual microgrids (optimal partitions of a larger
conventional distribution network) with the allocation of DER can be addressed with an
integrated approach (instead of separating the problem) with the very same constraints
imposed by the original AC-OPF [3]. Although the AC-OPF properly formulates a balanced
steady-state problem for conventional networks, it has been also modified for the design of
microgrids with Photovoltaic (PV) units and storage systems to overcome power intermit-
tence from the utility to supply critical loads [4]. This increase in the number of applications
for AC-OPF has been boosted by more efficient and cheaper technologies in the production
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of electricity (allowing consumers to meet part of their demand and sell surpluses); the
integration of information technologies (IT) advancements in the operation within energy
supply chain, and data science analyses (e.g., the implementation of IoT solutions for energy
management in microgrids [5]; the aggregation of DER via IT [6]; the demand charcteriza-
tion for infrastructure planning [7]; the statistical characterization of solar irradiation [8];
and solar predictions based on artificial neural networks [9]), requiring grid operators, espe-
cially in the distribution, to operate, considering uncertainties and multidirectional flows of
power, currency, and information. Under these conditions, network planners and operators
implement AC-OPF to optimize either individual or combined, technical, economical, or
environmental objectives, such as power losses minimization [10], voltage regulation [11],
emissions reduction [12], operational and infrastructure investment cost reductions [13,14],
or a combination, resulting in techno-economic-environmental multiobjective formula-
tions [15]. This requires the study of newer methodologies involving active distribution
network modeling [16], adequate mathematical formulation of optimization problems
aiming to increase efficiency and solution quality [17] and the proper implementation of
optimization techniques to solve the problem [18]. Additionally, recent multidisciplinary
research has been directed to increase computational efficiency in the solution of the OPF
problem [18], showing results particularly in newer metaheuristic techniques (e.g., the
arithmetic optimization algorithm (AOA) [19], the hybrid Harris hawks optimizer-AOA
(hHHO-AOA) [20], and the mutation improved grey wolf optimizer (MIGWO) [21]), and
in the convexification of the problem with relaxations based on second-order cones [22,23]
or positive semi-definite expressions [24]. This is relevant since AC-OPF formulations are
more complex than the original power balance problem; they might include nonlinear
cost functions (in addition to the quadratic expression for the losses found in the original
AC-OPF fomulation),mixed-integer expressions (as in, a reconfiguration [25] or resource
allocation problem [26]), and/or uncertainty, which–individually or all together– are not
necessarily convex when included to the problem (in addition to the non-convex quadratic
constraints in the original AC-Power Flow problem), thus limiting the quality of the so-
lutions and the scope of results. Nevertheless, if the necessary effort is made to make
the problem convex, the solution is ensured to be optimal, unique, exact (if feasible), and
solvable in polynomial time (if not combinatorial). If convex is not possible, suboptimal
solutions are always obtainable with other tools (meta-heuristics), although the solution
cannot be guaranteed to be exact or unique. However, such tools are particularly useful in
such cases, as well as in multi-objective Pareto optimization [10].

Uncertainty has become relevant in the analysis of power systems, since most com-
mon DER technologies and demands have stochastic behavior. Uncertainty is typically
included in optimization problems by implementing case analysis [11,27], Monte Carlo
simulations [28], sensitivity analysis [29,30], or typically by using expected value reductions
and treating the stochastic problem deterministically. Depending on the model used to
describe uncertainty, the stochastic optimization problem can be formulated as a chance-
constrained OPF, in which the knowledge of random variables is expressed by distribution
functions, and their associated probabilities are constrained to comply with operational
constraints, e.g., in [31], demand and PV are modeled with the normal distribution, and
the probabilities constrain the problem to avoid voltage, line power flow, and storage
power violations. In [32], the probability of frequency deviation violations constrains the
primary frequency control problem. On the other hand, the optimization problem can
be formulated in multi-stage approaches by generating representative cases that follow
the distributions of random variables, and solving a deterministic problem for each case.
For instance, in [16], a two-stage stochastic program is defined for load restoration in
distributed microgrids, whose first stage generates the cases with Monte Carlo simulations,
then reduces them using hierarchical clustering. This information is fed to the second stage,
which implements AC-OPF to retrieve the solution set for each case. Similarly, in [33]
two optimization stages are proposed, but for the first stage, uncertainty is modeled by
implementing probability distributions, and scenarios are generated with the scenario tree
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method then reduced with the Kantorovich distance method. A different approach for the
two-stage stochastic optimization can be seen in [34], in which for both stages, Monte Carlo
sampling is implemented individually. See also [35] for a review in multiple techniques to
handle uncertainty.

In contrast to the two stage stochastic programs, in this paper, two single-stage ap-
proaches are proposed to formulate convex stochastic AC-OPF problems regarding DER
sizing and location. The allocation problem aims to install a single DER unit (photovoltaic
PV) to minimize power losses in the system, considering demand and irradiance random
variables that are modeled from measured data fitted to the logistic continuous distribution.
With the implementation of proposed approaches it is intended to observe the effect of
uncertainty on the planning of DER installations, and to provide methods that recollect
high quality solutions, with fewer software implementations, within higher probability
scenarios based on available data. The main contributions of this work are summarized
as follows:

• The implementation of single-stage convex stochastic programs that require no addi-
tional software implementations, whose results are expected to be global optimum.

• The modeling of uncertainty using a probabilistic approach, based on data available.
Its implementation in the optimization problem is performed with continuous logistic
distribution functions. With this approach, other distribution functions can be used
to calculate probabilities, as long as they can be formulated as concave expressions.
With this, the formulation of the optimization problem is more flexible to different
probability distributions that might better fit the data.

• The implementation of mathematical expressions for probabilities tailored to follow
the sense of the optimization and the nature of the random variable.

• The results, showing that the deterministic case (based on expected values) represent
a less likely case. On the other hand, both proposed approaches are more likely, thus
better estimating the long-term expected behavior.

After this introduction, the rest of the manuscript is organized to present the notation
first, followed by the formulation of the proposed optimization problems, an overview of
the test systems (one of the systems implements a real-world model from a distribution
network in San Andres Island in Colombia), and a summary of the resulting AC-OPF
problems (deterministic and stochastic) with the computational implementation. Then the
results, the discussion, and the conclusions are presented.

2. Methods

In this section, the notation used throughout the article is firstly described, followed
by the formulation of nonconvex AC-OPF and a convex reformulation. Then, the proposed
definition of the objective function regarding power losses and probabilities and, subse-
quently, constraints regarding the formulated PV-capacity-irradiance interface are defined.
Finally, an overview of the deterministic and the proposed stochastic problems is shown
together with the specifications in the computational implementation.

2.1. Notation

A distribution network consisting of the node set N = {1, 2, . . . , n}, and the set of lines
L = {1, 2, . . . , l}, whose elements consist in a pair of nodes ij | ∀i, j ∈ N ∧ ij ∈ L, can be
represented as an undirected graph G = {N, L}. The reference parameters are defined for
the first node (busbar) of the system, which also hosts the main generator injecting the
apparent power s ∈ C to supply the demand ∑

i∈N
di|di ∈ C ∀i ∈ N and cover the losses.

Node j ∈ N is a neighbour of node i ∈ N if the pair i, j are connected through a line ij ∈ L
whose complex admittance, yij ∈ C, remains constant. The neighbourhood Ni of the node
i ∈ N, is the set of neighbouring nodes j |j ∈ N ∧ ij ∈ L. The admittance matrix YG (size
is n× n) of the network is composed of each line admittance yij in the neighbourhood Ni
(shunt admittances are ommited). Its diagonal elements are calculated with Yii = ∑

j∈Ni

yij,
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while the off-diagonal elements are calculated with Yij =

{
−yij | ∀ij ∈ L
0 | ∀ij 6∈ L

. The ∗ operator

stands for the complex conjugate. The complex voltage is denoted as v. The squared
magnitude of the voltage is represented by the variable u, while for two adjacent nodes
ij ∈ L, the product between v∗j and vi is represented with wij. The Euclidean norm is

represented with the operator || ||. The symbols X and X stand for the upper and lower
bound, respectively. For multiperiod analyses, the set H = {1, 2, . . . , h} is introduced
to extend the size of affected variables, i.e., Xi(h) for the h period of analysis. In this
study, multiperiod analyses were carried out in hourly steps within a day. Probabilities are
assigned to the letter p. In the optimization problems, fo stands for the objective function.
Additional variables and symbols are presented throughout the paper and are explained as
they appear. The bolded expression 1 represents a row vector of ones, whereas 1T represents
the transpose of the row-vector of ones (column vector of ones). The functions real() and
imag() extract the real and imaginary components of the complex input argument.

2.2. AC-OPF Formulations

The AC-OPF problem is, as originally formulated by Carpentier, a nonconvex Quadrat-
ically Constrained Quadratic Program QCQP [36] (omitting objective function definition)
since the admittance matrix is not Hermitian. The balance of power can be expressed as in
Equation (1).

si − di
vi

= ∑
j∈N

Y∗ijvj∗ | ∀i ∈ N (1)

An alternative formulation can be implemented by taking advantage of the sparsity
in the incidence matrix of radial networks. The Bus Injection Model (BIM) considers the
current flow through each line (sending and receiving flows) connected to the node, as can
be observed in Equation (2) [37]. This formulation continues being nonconvex.

si − di
vi

= ∑
j∈Ni

(vi − vj)
∗y∗ij, | ∀i ∈ N (2)

As can be observed, in Equation (1), the sum takes into account each element within
the admittance matrix, whereas in Equation (2), summation is only performed for each line
in the neighborhood of the ith node with its respective admittance (it does not consider the
admittance matrix, but single element admittance).

To convexify the problem, as proposed in [38] (See [22,39] for more comprehensive
information regarding convex relaxations), a linearization is implemented by substituting
quadratic expressions with affine ones, and relaxing the equivalent term to form second-
order conic constraints. The linearization takes place by introducing a new complex variable
that replaces quadratic voltage terms, as seen in Equation (3). From these relaxations,
convexity can be ensured as long as the convex feasible set lies within the non-convex
feasible set.

wij =

{
viv∗j | ∀ i, j ∈ L

0 | ∀ i, j 6∈ L
(3)

If one builds a matrix W with every wij element, it is possible to see that W must be
hermitian, and the diagonal elements correspond to each node’s squared voltage magnitude.
To the diagonal elements of W, a new variable u is assigned. These transformations can be
observed in Equations (4)–(8), where the index i is replaced by the index k to leave the i as
the imaginary unit.

wkj = (vre
k + ivim

k )(vre
j − ivim

j ) = (vre
k vre

j + vim
k vim

j ) + i(vre
j vim

k − vre
k vim

j ) (4)
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wjk = (vre
j + ivim

j )(vre
k − ivim

k ) = (vre
j vre

k + vim
j vim

k ) + i(vre
k vim

j − vre
j vim

k ) (5)

wkj = w∗jk (6)

wkk = uk = (vre
k + ivim

k )(vre
k − ivim

k ) = (vre
k vre

k + vim
k vim

k ) (7)

√
uk =

√
(vre

k )
2 + (vim

k )2 = ||vk|| (8)

These transformations are used to create a set of conic constraints (one for each line)
taking advantage of the Euclidean norm of complex numbers (Equation (9)) and creating
a separated expression for the term uiuj (Equation (10)). Combining those equalities,
and relaxing them into inequalities, the set of convex conic constraints, namely second-
order conic constraints (SOC), is expressed as in Equation (11).

||wij||2 = ||vi||2||vj||2 = uiuj (9)

uiuj =
1
4
(ui + uj)−

1
4
(ui − uj) (10)

∥∥∥∥ 2wij
ui − uj

∥∥∥∥ ≤ ui + uj | ∀i, j ∈ L (11)

The basic convex AC-OPF based on the BIM is then formulated as in Equation (12).

minimize :

fo

subject to :

si − di = ∑
j∈Ni

(ui − wij)y∗ij, | ∀i ∈ N (12)

∥∥∥∥ 2wij
ui − uj

∥∥∥∥ ≤ ui + uj | ∀i, j ∈ L

If a multi-period analysis is carried out, the relaxed AC-OPF formulation changes to
the expressions in Equation (13).

minimize :

fo

subject to :

si(h)− di(h) = ∑
j∈Ni

(ui(h)− wij(h))y∗ij, | ∀i ∈ N ∧ ∀h ∈ H (13)

∥∥∥∥ 2wij(h)
ui(h)− uj(h)

∥∥∥∥ ≤ ui(h) + uj(h) | ∀i, j ∈ L ∧ ∀h ∈ H

Additional operational constraints can be included in the formulation, i.e., voltage
limits, generator capacity, and line power flow limits, but in this paper, such restrictions
are not considered because uncertainties could make the problem infeasible. Nevertheless,
the generation in the reference node is only bounded to be non-negative, as expressed in
Equation (14).

real(si) ≥ 0 ∧ imag(si) ≥ 0 | i = 1 (14)
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2.3. Objective Function

Now that the AC-OPF is constrained to convex terms, the objective function must be
defined with convex expressions as well. Therefore, a single objective function is defined
for two objectives: minimize power losses and maximize probabilities.

2.3.1. Energy Losses

The expression for Energy losses Eloss is typically nonconvex, but by using the afore-
mentioned transformations, it is now convex (affine), as shown in Equation (15).

Eloss = real( ∑
h∈H

∑
i∈N

∑
ij∈L

(ui(h)− wij(h))y∗ij) (15)

2.3.2. Probabilities

In this paper, the maximization of probabilities for the logistic probability distribution
is carried out. The continuous logistic distribution is a two-parameter distribution, and has
both probability density (pdf) f (µ, σ), and cumulative probability F(µ, σ) (cdf) functions,
whose definitions are shown in Equations (16) and (17), respectively.

f (x; µ, σ) =
e
−x+µ

σ

σ(1 + e
−x+µ

σ )2
(16)

F(x; µ, σ) =
1

1 + e
−x+µ

σ

(17)

The first proposed approach to handle uncertainty is called range probability opti-
mization (RPO), and is defined as finding the value x of the random variable X within an
uncertainty range by maximizing its probability of occurrence. Therefore, the maximization
of this probability is included in the objective function. To calculate the probability for
the random variable following the RPO approach, the cdf is implemented as depicted in
Equation (18).

maximize : p(a ≤ X ≤ b) = F(X ≤ b)− F(X ≤ a) (18)

where a = (1− ε)x and b = (1+ ε)x define the uncertainty range in which the probability is
evaluated, and ε is the parameter that establishes the half width of the allowed uncertainty.
The expression in Equation (19) results from the simplification of Equation (18), and after
natural logarithm is applied, it is converted into a sum of concave expressions, as it is
shown in Equation (20), which are convenient for maximization. The natural logarithm is a
monotonically increasing function; thus, the maximization of the probability’s logarithm
represents the maximization of the probability itself.

p(a ≤ X ≤ b) =
1− e

a−b
σ

(1 + e
−b+µ

σ )(1 + e
−a+µ

σ )(e
a−µ

σ )
(19)

ln(p(a ≤ X ≤ b)) = ln (1− e
a−b

σ )− ln (1 + e
−b+µ

σ )− ln (1 + e
−a+µ

σ )− a− µ

σ
(20)

Besides the RPO, a different approach named value probability optimization (VPO) is
proposed. It includes in the objective function the maximization of the random variable
value and its probability of being greater than the value, as described in Equations (21)–(23),
and the minimization of the value with the maximization of the variable’s probability of
being less or equal than its value, as described in Equations (24) and (25).

maximize : xp(X > x) (21)
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p(X > x) = 1− 1

1 + e
−x+µ

σ

(22)

xp(X > x) = x(1− 1

1 + e
−x+µ

σ

) (23)

maximize : p(X ≤ x) (24)

p(X ≤ x) =
1

1 + e
−x+µ

σ

(25)

After simplifications in Equation (23) and by applying the natural logarithm to it and
to Equation (25), the resultant concave expressions are shown in Equations (26) and (27).

ln(xp(X > x)) = ln(x)− ln (1 + e
x−µ

σ ) (26)

ln(p(X ≤ x))− x = − ln (1 + e
−x+µ

σ )− x (27)

Since the aim of these formulations is to increase probabilities and decrease power
losses, the random variables and the calculation of their probabilities must be assigned
properly when considering VPO analyses. Generally speaking, if one is determined to
reduce power losses, the demand is to be reduced either by managing it directly with
demand response schemes or curtailment, or by supplying it with distributed resources.
Consequently, and to avoid triviality in the solution, the demand coefficient is minimized
and its probability maximized, following Equation (25), whereas the irradiance coefficient
and its probability (Equation (22)) are both maximized. Calculating probabilities otherwise
would end in trivial solutions: if the probability for the demand coefficient is calculated
with Equation (22), the maximum probability is obtained when the variable reaches its
lower bound while minimizing the variable’s value, and if the probability for the irradiance
coefficient is calculated with Equation (25), the maximum probability is obtained when
the variable reaches its upper bound, while maximizing the variable’s value. Therefore,
the demand minimization and its probability maximization are included in the objective
function with Equation (27), whereas the maximization of the irradiance coefficient and its
probability is included with Equation (26).

2.4. DER and Demand Modeling

In this article, the generation through photovoltaic DER (PV) and the demand are
modeled as stochastic processes from real data. The research group Electric Machines
and Drives (EM&D) at the National University in Bogotá, Colombia, worked on demand
characterization from data collected from Distribution Companies. The collected data for
demand was measured hourly from 2018 until 2020, whereas, the hourly irradiance (global
solar irradiance) measurements were retrieved from the Colombian Institute of Hydrology,
Meteorology, and Environmental Studies (IDEAM) for the period 2015–2018.

To obtain the distribution parameters for both variables, the data were fitted hourly to
a logistic distribution. In Figure 1, the fitted parameters are illustrated (see Table A1 in the
Appendix A for mean µ and scale σ parameter values).

Although the data for irradiance and demand was collected for different short periods,
and the modeling of random variables is based on statistics, we cannot expect important
changes in consumption dynamics or the irradiance in the region. Due to extraordinary
circumstances (e.g., pandemics [40]), one can infer that the data would be fitted result-
ing in different parameters, but in the long run, the differences in the results would be
marginal, specially for such a small location. In this framework, only consistent changes
in demographics or economics [41] and the implementation of demand side management
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schemes (i.e., demand response) would lead to important changes in the probabilistic
parametrization of the random variables and, thus, in the results.
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Figure 1. Logistic distribution fitted parameters.

Consequently, irradiance (I(h)) and demand coefficients (D(h)) replace the random
variable X seen through Equations (16)–(27), and modulate the behavior of the PV gener-
ation and the demand, respectively. Although the demand is typically defined constant
for each node in power flow analysis di, in this article the demand through every node is
regulated evenly by the random coefficient D(h) as described in Equation (28).

di(h) = diD(h) ∀i ∈ N ∧ ∀h ∈ H (28)

2.4.1. PV Location Modeling

The optimization problem in this article includes the allocation (size and location) of a
PV unit in the system. The location is represented by a Boolean variable that indicates if a
PV unit is to be installed in a node or not (Equation (29)), whereas the size of the PV unit
is modeled to deliver active power modulated linearly by the irradiance coefficient (I(h))
with a constrained capacity. The rated capacity of the PV unit can be fully utilized if the
irradiance measures I = 1000 W/m2 (base value), although such level was not registered
in the measurements. The linearized expression for the power delivered by the PV unit,
including its location, is shown in Equations (30)–(32).

∑
i∈N

zi = NGmax (29)

ppvi(h) <= ziPGmax (30)

ppvi(h) <= pvh(h) (31)

ppvi(h) >= pvh(h)− PGmax(1− zi) (32)

where the variables zi, pvh(h) and ppvi(h) represent the location of the PV, the modulated
power and the effective power of the located PV unit, respectively, and the parameters
NGmax and PGmax stand for the maximum number of PV units to be installed and their
maximum capacity, respectively.

2.4.2. PV-Capacity–Irradiance Interface

The interface between the PV unit power pvh(h), its capacity pvc, and the irradiance
I(h) is expressed in Equation (33). This interface is hereafter named PCI.

pvh(h) = pvc× I(h) (33)
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This non-linear expression is linearized using piecewise linear approximations. The
variables pvc and I(h) are sectioned in k and m equidistant points from their minimum until
their maximum values, giving place to k×m coefficients λkm interpolating the sectioned
values in each variable, as shown in Equations (34)–(36).

pvc = ∑
k

∑
m

pvckλkm(h) (34)

I(h) = ∑
k

∑
m

Im(h)λkm(h) (35)

pvh(h) = ∑
k

∑
m

pvhkm(h)λkm(h) (36)

where pvck, Im(h) and pvhkm are the set of sectioned values for the PV capacity, irradiance,
and the resulting modulated power, respectively. The set of λkm is a special ordered set 2
(SOS2), for which only two adjacent values (in rows and columns) can be nonzero, and its
whole sum is one (Equation (37)). To ensure that only two adjacent rows and columns can
be nonzero, two additional SOS2 sets are defined (one set for rows, the other for columns)
such that the sum of their values is also one, as observed in Equations (38) and (39).

∑
k

∑
m

λkm(h) = 1 (37)

ξk(h) = ∑
m

λkm(h) | ∑
k

ξk(h) = 1 (38)

ωm(h) = ∑
k

λkm(h) | ∑
m

ωm(h) = 1 (39)

Finally, the two SOS2 (ξk, ωm) each include a set of binary variables (δn, γn) to model
the adjacency in the λkm set. This is shown in Equations (40)–(43).

Ξ(h) =


ξ1(h) −δ1(h)

ξ2(h) −δ1(h) −δ2(h)
. . . . . .

ξn−1(h) −δn−2(h) −δn−1(h)
ξn(h) −δn−1(h)

 ≤ 0T (40)

n−1

∑
n=1

δn(h) = 1 (41)

Ω(h) =


ω1(h) −γ1(h)

ω2(h) −γ1(h) −γ2(h)
. . . . . .

ωn−1(h) −γn−2(h) −γn−1(h)
ωn(h) −γn−1(h)

 ≤ 0T (42)

n−1

∑
n=1

γn(h) = 1 (43)

Note that the inequality sign ≤ in Equations (40) and (42) is not intended to represent
a semidefinite negative constraint, but row-wise inequalities.

2.5. Test Systems

For this article, the data of two distribution systems– The IEEE33-bus system (I33)
and the modeled distribution network for the neighborhood “Juan 23” (J23), located in
San Andres Island (Colombia)–parameterize the AC-OPF formulations. The J23 system
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was modeled from data provided by the EM&D research group. The I33 system has a
total demand of 3715 kW and 2300 kVAr with 210.9876 kW power losses (see system data
in [42]) with a rated voltage of 12.66 kV, whereas the J23 system, with 13.6 kV rated voltage,
totals 1302 kW and 593 kVAr in demand and 31.30 kW in power losses (see system data in
Table A2 in the Appendix A). Each respective rated voltage and 1 MW (for both systems)
are used as base values. If a multiperiod power flow analysis (see Equation (13)) is carried
out with the demand following the mean averaged hourly profile (µD in Table A1), then
the losses sum up to 1.51 MWh/day for the I33 system and 337.25 kWh/day for the J23
system. As can be observed in Figure 2, the I33 and J23 systems have radial and radial/ring
configurations, respectively.

Figure 2. Grid configuration of test cases: Left I33, right J23.

2.6. Deterministic AC-OPF Model
To set reference OPF results, the allocation problem is also considered determin-

istically. To carry this out, the mean profiles for irradiance and demand coefficients
(D(h) = µD, I(h) = µI) will be included in the formulation to modulate demand and
PV power injections. This model is much simpler than the stochastic one since the AC-OPF
would not include the probability expressions in the objective function nor the PCI defined
before, but only the PV location modeling. This model is described in Equation (44).

minimize :

Eloss

subject to :

si(h) + ppvi(h)− di(h) = ∑
j∈Ni

(ui(h)− wij(h))y∗ij, ∀i ∈ N ∧ ∀h ∈ H

∥∥∥∥ 2wij(h)
ui(h)− uj(h)

∥∥∥∥ ≤ ui(h) + uj(h) ∀i, j ∈ L ∧ ∀h ∈ H

di(h) = diD(h) ∀i ∈ N ∧ ∀h ∈ H

ppvi(h) = ppvi I(h) ∀i ∈ N ∧ ∀h ∈ H

ppvi <= ziPGmax ∀i ∈ N ∧ ∀h ∈ H

ppvi <= pvc ∀i ∈ N ∧ ∀h ∈ H (44)

ppvi >= pvc− PGmax(1− zi) ∀i ∈ N ∧ ∀h ∈ H

∑
i∈N

zi = NGmax

pvc ≤ PGmax

real(si) ≥ 0 i = 1

imag(si) ≥ 0 i = 1
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2.7. Stochastic AC-OPF Model

The formulation including objective function with Equation (20) (RPO) is intended to
obtain the maximum probability values within a 10% uncertainty range, whereas AC-OPF
with Equations (26) and (27) in the objective (VPO) is intended to find an operating point by
minimizing the demand, and maximizing DER injections while maximizing probabilities in
both random variables. Therefore, two OPF problems are defined (RPO and VPO), for two
test systems (I33 and J23). The complete OPF, considering each case’s objective function
and some additional operational constraints, is detailed in Equation (45).

minimize :

Eloss − ∑
h∈H

(
Equations (20) or (27)|X = D(h)

)
− ∑

h∈H

(
Equations (20) or (26)|X = I(h)

)
subject to :

si(h) + ppvi(h)− di(h) = ∑
j∈Ni

(ui(h)− wij(h))y∗ij, ∀i ∈ N ∧ ∀h ∈ H∥∥∥∥∥ 2wij(h)
ui(h)− uj(h)

∥∥∥∥∥ ≤ ui(h) + uj(h) ∀i, j ∈ L ∧ ∀h ∈ H

di(h) = diD(h) ∀i ∈ N ∧ ∀h ∈ H

u ≤ ui(h) ≤ u ∀i ∈ N ∧ ∀h ∈ H

ppvi(h) <= ziPGmax ∀i ∈ N ∧ ∀h ∈ H

ppvi(h) <= pvh(h) ∀i ∈ N ∧ ∀h ∈ H

ppvi(h) >= pvh(h)− PGmax(1− zi) ∀i ∈ N ∧ ∀h ∈ H

∑
i∈N

zi = NGmax

pvc ≤ PGmax

pvc = ∑
k

∑
m

pvckλkm(h) ∀h ∈ H

I(h) = ∑
k

∑
m

Im(h)λkm(h) ∀h ∈ H

pvh(h) = ∑
k

∑
m

pvhkm(h)λkm(h) ∀h ∈ H (45)

∑
k

∑
m

λkm(h) = 1 ∀h ∈ H

ξk(h) = ∑
m

λkm(h) ∀h ∈ H

∑
k

ξk(h) = 1 ∀h ∈ H

ωm(h) = ∑
k

λkm(h) ∀h ∈ H

∑
m

ωm(h) = 1 ∀h ∈ H

n−1

∑
n=1

δn(h) = 1 ∀h ∈ H

n−1

∑
n=1

γn(h) = 1 ∀h ∈ H

Ξ(h) ≤ 0 ∀h ∈ H

Ω(h) ≤ 0 ∀h ∈ H

2.8. Computational Implementation

The optimization problems defined in this article are implemented in CVXPY [43,44]
through Anaconda’s Python distribution [45] and solved with MOSEK [46]. The following
parameters (expressed in per unit) were implemented for the applicable simulation: ε = 0.1,
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NGmax = 1, PGmax = 2, k = 10 for 0 ≤ pvck ≤ PGmax, m = 10 for 0 ≤ Im(h) ≤ 1. Solver
parameters were kept in their default values.

3. Results

In this section, the main results obtained from the defined optimization problems
are shown. For each system, the results for the deterministic AC-OPF problem are first
outlined, followed by the results for the stochastic formulations (RPO and VPO), respec-
tively. The RPO and VPO probabilities for the mean coefficients are available in Table A3
in the Appendix A. For each simulation, a table with its results (OPF) and power flow
analyses is presented, where the PF(µD) represents the results of a power flow analysis
with the mean demand coefficents, and the PF(D(h)) represents the results of a power flow
analysis with the demand coefficents obtained from the stochastic OPF. For the determin-
istic problem, the OPF implements the demand and irradiance coefficients following the
mean values, whereas for stochastic problems, the coefficients result from the optimization
of their probabilities.

3.1. Results for the I33 System
3.1.1. Deterministic AC-OPF

An overview of the results of the AC-OPF formulated in Equation (41) for the I33
system is shown in Table 1.

Table 1. Overall results of the deterministic OPF compared to multiperiod PF results for the I33 system.

Analysis ipv
pvc

[MW]
Eloss

[MWh/day]
vmin
[p.u.]

vmax
[p.u.]

PF (µD) - - 1.5155 0.9037 1.0000
OPF 8 1.9999 1.0325 0.9319 1.0070

It can be observed that, by implementing a PV unit on the system under mean condi-
tions, the overall power losses are reduced a 31%. The voltage profile was also improved,
by increasing the distance between the the lower voltage value and its lower bound. In
practice, the system would comply if a 10% lower bound is defined, but if this constraint
is tighten to the 5% lower bound, only the system with PV installation would not violate
the limits. Computationally, the PF problem would be infeasible if the tighter constraint
is included).

3.1.2. Stochastic OPF

Simulation results for the I33 test system under RPO (Equation (19) in the objective
function) are summarized in Table 2. The demand coefficients’ profile and probabilities are
depicted in Figure 3 while those of the irradiance coefficients profile and their probabilities
are shown in Figure 4 (see Table A4 in the Appendix A for detailed hourly modulating
coefficients and their associated probabilities).

Table 2. Overall results of RPO-OPF compared to multiperiod PF results for the I33 system.

Analysis ipv
pvc
[MW]

Eloss
[MWh/day]

vmin
[p.u.]

vmax
[p.u.]

PF (µD) - - 1.5155 0.9037 1.0000
PF (D(h)) - - 1.7702 0.9018 1.0000
RPO-OPF 17 1.7777 1.4168 0.9270 1.0487

It can be observed that, by implementing a PV unit on the system considering uncer-
tainty under RPO approach, the overall power losses are reduced a 6.5% compared to the
mean power flow analysis with a reduced PV capacity of 11% compared the deterministic
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scenario, and a 20% reduction in losses compared to the power flow analysis with the
obtained RPO demand coefficients. The voltage profile was also improved, although with
RPO demand coefficients, the power flow analysis got closer the lower bound than with
the mean PF.
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Figure 3. Demand coefficients and mean values with RPO probabilities.
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Figure 4. Irradiance coefficients and mean values with RPO probabilities.

For simulations under VPO (Equations (24) and (21) for demand and irradiance,
respectively, in the objective function), results are summarized in Table 3 and detailed with
coefficients and probabilities in Table A5. The demand coefficients’ profile and probabilities
are illustrated in Figure 5 while those of the irradiance coefficients are depicted in Figure 6.

Table 3. Overall results from VPO-OPF compared to multiperiod PF results for the I33 system.

Analysis ipv
pvc
[MW]

Eloss
[MWh/day]

vmin
[p.u.]

vmax
[p.u.]

PF (µD) - - 1.5155 0.9037 1.0000
PF (D(h)) - - 2.6283 0.8834 1.0000
VPO-OPF 12 1.9992 1.9124 0.9121 1.0000

It can be observed that, by implementing a PV unit on the system considering uncer-
tainty under VPO approach, the overall power losses are increased a 26% compared to the
mean power flow analysis, and reduced a 27% compared to the power flow analysis with
the obtained VPO demand coefficients. The voltage profile was also improved, although
the PF analysis with VPO demand coefficients would not comply the 10% lower bound.
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Figure 5. Demand coefficients and mean values with VPO probabilities.
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Figure 6. Irradiance coefficients and mean values with VPO probabilities.

3.2. Results for the J23 System
3.2.1. Deterministic AC-OPF

An overview of the results of the AC-OPF formulated in Equation (41) for the J23
system is shown in Table 4.

Table 4. Overall results of deterministic OPF compared to multiperiod PF results for the J23 system.

Analysis ipv
pvc
[MW]

Eloss
[MWh/day]

vmin
[p.u.]

vmax
[p.u.]

PF (µD) - - 0.3372 0.9964 1.0000
OPF 36 0.7992 0.2344 0.9973 1.0000

It can be observed that, by implementing a PV unit on the system under mean con-
ditions, the overall power losses are reduced a 30%. The voltage profile was marginally
improved.

3.2.2. Stochastic OPF

Simulation results for the J23 test system under RPO (Equation (19) in the objective
function) are summarized in Table 5. The profiles outlined by demand coefficients and their
probabilities are depicted in Figure 7, while the profiles for irradiance and probabilities
are shown in Figure 8 (see Table A6 in the Appendix A for detailed hourly modulating
coefficients and their associated probabilities).
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Table 5. Overall results from RPO-OPF compared to multiperiod PF results for the J23 system.

Analysis ipv
pvc
[MW]

Eloss
[MWh/day]

vmin
[p.u.]

vmax
[p.u.]

PF (µD) - - 0.3372 0.9964 1.0000
PF (D(h)) - - 0.3874 0.9963 1.0000
RPO-OPF 20 0.2222 0.2668 0.9967 1.0000

It can be observed that, by implementing a PV unit on the system considering un-
certainty under RPO approach, the overall power losses are reduced a 20% compared
to the mean power flow analysis, and a 31% compared to the power flow analysis with
the obtained RPO demand coefficients. The voltage profile was marginally improved.
Although the PF with RPO demand coefficients shows greater losses the the PF with mean
coefficients, the capacity of the PV unit was reduced (72%).
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Figure 7. Demand coefficients and mean values with RPO probabilities.
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Figure 8. Irradiance coefficients and mean values with RPO probabilities.

For simulations under VPO (Equations (24) and (21) for demand and irradiance,
respectively, in the objective function), results are summarized in Table 6 and detailed with
coefficients and probabilities in Table A7. Profiles shaped from demand coefficients and
their probabilities are illustrated in Figure 9 while the profiles constructed from irradiance
coefficients and their probabilities are shown in Figure 10.

It can be observed that, by implementing a PV unit on the system considering uncer-
tainty under VPO approach, the overall power losses are increased a 3.1% compared to the
mean power flow analysis, and reduced a 30% compared to the power flow analysis with
the obtained VPO demand coefficients. The voltage profile was also improved.
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Table 6. Overall results from VPO-OPF compared to multiperiod PF results for the J23 system.

Analysis ipv
pvc
[MW]

Eloss
[MWh/day]

vmin
[p.u.]

vmax
[p.u.]

PF (µD) - - 0.3372 0.9964 1.0000
PF (D(h)) - - 0.5004 0.9956 1.0000
VPO-OPF 25 0.2222 0.3479 0.9959 1.0000
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Figure 9. Demand coefficients and mean values with VPO probabilities.
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Figure 10. Irradiance coefficients and mean values with VPO probabilities.

4. Discussion

For the I33 system, it could be observed from the results that the averaged probabilities
during the day are increased by around 1.4% (RPO) and 35% (VPO) for demand, and by
around 1.1% (RPO) and 20% (VPO) for irradiance, compared to the deterministic case. The
location of the PV unit changed from node 8 to nodes 17 and 12 under RPO and VPO,
respectively. Its capacity was kept near the upper bound in the deterministic and VPO cases,
while it suffered an 11% reduction with the RPO, suggesting that even under uncertainty,
DER units should be located in the most congested branch (the active power load is
distributed to 11.57% in branch 2-6, 28.93% in branch 7-18, 9.69% in branch 19-22, 25.03% in
branch 23-25 and 24.76% in branch 26-33). The minimum power loss was achieved in the
deterministic case, followed by a 37% increase for RPO and a 85% increase for the VPO,
approximately, showing how sensitive the analysis can be to uncertain values. Although
demand and irradiance profiles suffered small deviations compared to the expected values,
the system losses were affected much more negatively compared to the improvements
gained in probabilities, even when deploying DER optimally.

The results for the VPO can be interpreted as an approximation to the worst-case
scenario, since, as observed in Figures 5 and 6, the obtained demand and irradiance
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coefficients are considerably higher and lower than the mean values, respectively, and
both probabilities (to have lower demand and greater irradiance coefficients) are very high
(>80% for demand and >70% for irradiance on average). In other words, the probability
of the losses being less than 1.91 MWh/day is, on an hourly average, greater than 70%,
compared to the 50% on hourly average that resulted from estimating the random variables
to the mean values. In contrast to the RPO analysis, a drastic increase in power losses was
accompanied with increases in probabilities compared with the deterministic case.

These results also allow for the analysis of other operating constraints, such as voltage
magnitudes. It could be observed that the operational voltage limit constraint might be
violated (especially the lower bound) when considering scenarios with worsened condi-
tions, as in VPO, i.e., if the demand coefficients from VPO were considered for power
flow analysis (without PV), the lower 10% bound would not be complied (see Table 3).
However, the installation of the PV unit kept voltage magnitudes within the lower 10%
bound. Evidently, tighter bounds in voltages might take the problem to infeasibility regions
or, in a practical scenario, make the grid noncompliant to operative constraints under
uncertainty, which might represent economic losses due to penalties.

For the J23 system, results were somewhat similar to the I33 ones. RPO and VPO
probabilities increased by 1.4% and 38% for demand and by 0.9% and 21% for irradiance,
respectively, compared to the deterministic case. This indicates that probabilities are not
very affected by the system even though the random variables affect directly the power
losses, which at the same time depends on the grid’s configuration and its parameters
(size, redundancy, line impedances, load distribution, voltage level). As in the I33, the PV
units were located in the most congested branch, in contrast to the deterministic case, in
which they were located it in the second most congested branch (the active power load is
distributed to 20.12% in branch 2-11, 35.71% in branch 12-25, 26.69% in branch 26-43 and
17.46% in branch 28-32). Regarding PV capacity, an important reduction happened when
comparing both systems. In the I33 system, the PV capacity was kept capped, but in the
RPO case, where it was reduced 11%, yet in the J23, PV capacity reached near the 40% of
the maximum capacity in the deterministic case, and decreased under uncertainty to the
12% of the maximum with both RPO and VPO approaches.

Similar to the results for the I33 system, the J23 system gathered the minimum energy
losses from the deterministic case, and progressively worsened under uncertainty (26%
and 30% increases for RPO and VPO, respectively). Probabilities were increased likewise,
as in the analyses for I33.

Regarding voltages, the J23 system had significantly lower losses than the I33 system
in the power flow analysis (PF). This was also reflected in the voltage envelopes shown in
the different OPF analysis, where the minimum voltage remained almost unaltered within
the 1% range even in cases with greater demand and lower irradiance (VPO). This explains
that the J23 grid has the capability to sustain greater loads under uncertainty, possibly with
greater hosting capacities, while operating safely.

In Figures A1 and A2 for I33, and Figures A3 and A4 for J23 on the Appendix A, it
is possible to observe how the probability of coefficient profiles under RPO and VPO is
compared with the probability under the opposite approach, i.e., the probability of the
demand and irradiance profiles obtained from RPO compared with the probability of those
profiles under VPO, and vice-versa. The illustrations show that probabilities are greater
when calculated with the profiles obtained from their respective analysis than with the
opposite. However, for irradiance profiles, the differences between the probabilities are
noticeable, especially when comparing VPO probabilities, indicating that RPO irradiance
coefficients and mean values are overestimated, whereas the VPO profiles show lower
RPO probabilities but establish a case with higher probabilities of being more favorable,
since the range in which the random variable could fall is much wider. To summarize,
mean value estimations have lower probabilities, resulting in important power loss un-
derestimations, whereas under the RPO approach, a better estimation is obtained, even
though the irradiance is clearly overestimated. Under the VPO approach, an even more
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probable case is defined by estimating worsened conditions for the objective, showing that
both deterministic and RPO approaches underestimate the losses with conditions that are
less likely.

Finally, the formulation of the proposed convex stochastic programs allowed us to
obtain global optimal solutions. Although most of the variables in the proposed stochastic
programs are integer, the problem size (directly related to the grid’s size) did not have
any considerable impact on the solving time. On the contrary, for the I33 stochastic AC-
OPFs, it took longer to find the solution. An explanation for this is that variations in the
variables within the PCI (which contains the majority of integer variables and has the same
dimensions for each test case), produce greater effects in power losses due to line lengths
(impedance) and distribution of greater demands, requiring more intensive branch-and-
bound steps, until the difference between the objective upper and lower bounds, set by the
improvements in root relaxation and the incumbent solution,respectively, lies within the
parameterized relative gap. On the other hand, the lower power loss levels present in the
J23 system would indicate that a DC-power flow analysis can be a more adequate tool to
analyze the system.

5. Conclusions

In this article, two alternatives are proposed to handle uncertainties on convex AC-
OPF formulations, whose random variables are based on real measurements of demand
and irradiance fitted to the logistic distribution. The effective PV power capability is related
to the irradiance and to its capacity, by means of a nonlinear expression. To linearize it, a PV-
capacity-irradiance (PCI) interface was implemented using piecewise linear approximations.
One of the proposed approaches is called range probability optimization (RPO), and is
used to maximize the probability of occurrence for random variables within a range of
uncertainty, which is defined as a parameter (ε = ±0.1). The second approach is called
value probability optimization (VPO), in which the values of the random variables are
optimized along with the maximization of their probabilities. For the VPO to make sense,
and to avoid trivial solutions, random variables and the probability functions are assigned
following the sense of the main objective (minimize power losses). Thus, the demand is
minimized while maximizing the probability of having lower or equal demand, and the
irradiance is maximized while maximizing the probability of having greater irradiance.
The proposed approaches were implemented for two distribution networks: The IEEE
33-bus test system and the modeled distribution network in the “Juan 23” neighborhood in
San Andres Island (Colombia), and tested against the deterministic case, whose parameters
follow the expected values of the distribution. The problem of allocating DER in distribution
networks was modified to include uncertainty under RPO and VPO approaches, and as
a result, it was possible to observe the problem’s sensitivity to uncertainty. With the
RPO, although the variation in the averaged probabilities for the demand and irradiance
coefficients was very small, and the location of the PV unit remained in the most congested
branch, the capacity of the PV unit was decreased due to overestimated irradiance and
underestimated demand, resulting in increased losses compared to the deterministic case.
Meanwhile, with the VPO approach, by increasing the probabilities, the resulting profiles for
demand and irradiance coefficients showed negative behaviors towards the minimization of
power losses, suggesting that VPO approximates the problem to an scenario with worsened
conditions without being the worst-case scenario, which provides robust information for
stochastic decision making without underestimating (or overestimating) random variables,
or over-sizing DER installations, as the worst-case scenario would suggest.

Regarding computational efficiency, the proposed stochastic formulations resulted
in the collection of global optimal solutions due to convexity, and the inclusion of mixed-
integer expressions hadn’t the expected impact on computation times for combinatorial
problems, since systems with bigger size, i.e., J23, were actually solved faster, which is
explained by a greater sensitivity of the objectives to the integer variables in systems
with greater base losses and deviations in bus voltages, such as in the I33. This presents
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a disadvantage when implementing linearized formulations based on piecewise linear
approximations, because, even though the problem is convex, the formulation is combina-
torial, compromising scalability by requiring additional computation power. The trade-off
between accuracy and computation times should be regarded when considering such
implementations.

As future work, it is proposed to perform different RPO analyses varying the range
width (ε), and test the VPO probability of the resulting irradiance profiles to see if the
differences between both approaches can be narrowed. Considering that Energy Storage
Systems (ESS) are usually implemented in power systems to overcome uncertainties in
DER, it is proposed to test both VPO and RPO approaches in the allocation of DER and
ESS resources, and test if ESS has effects on probabilities. Additionally, it can be interesting
to assign different demand profiles following geographic demand characteristics in the
network, to consider the implementation of demand response schemes or curtailment in
the probabilistic model of the demand, and to fit the demand and irradiance data to other
distribution functions to see its impact on the convexity of the formulations and on results
themselves. Since the proposed formulations are convex MI-SOCP formulations, it can be
interesting to find solutions using meta-heuristic techniques for each system, with convex
and non-convex formulations, and see the differences in solution quality and computation
times. Additionally, it is proposed to test the approaches on networks similar to the J23
(low losses) constrained to DC-power flow equations.
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HHO Harris Hawks Optimizer
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IoT Internet of Things
IT Information Technologies



Energies 2023, 16, 5566 20 of 27

J23 Juan 23 Distribution Network
MIGWO Mutation Improved Grey Wolf Optimizer
MI-SOCP Mixed-Integer Second Order Conic Program
PCI PV-Capacity-Irradiance interface
PDF Probability Density Function
PF Power Flow
PV Photovoltaic Energy
QCQP Quadratically Constrained Quadratic Problem
RPO Range Probability Optimization
SOC Second Order Conic
SOS2 Special Ordered Set 2
VPO Value-Probability Optimization

Appendix A

Table A1. Fitted parameters of logistic distribution for demand and irradiance.

h µD σD µI σI

1 0.1196 0.0567 0 0
2 0.1165 0.0551 0 0
3 0.1152 0.0541 0 0
4 0.1138 0.0534 0 0
5 0.1151 0.0541 0 0
6 0.1181 0.0573 0 0
7 0.1321 0.0704 0 0
8 0.2111 0.1248 0.0197 0.0082
9 0.4919 0.2152 0.1228 0.0311
10 0.8634 0.1519 0.3214 0.0646
11 1.0000 0.1208 0.5064 0.0963
12 0.9578 0.1064 0.6537 0.1102
13 0.7464 0.1427 0.7540 0.1243
14 0.5029 0.1902 0.7804 0.1315
15 0.6278 0.1950 0.7478 0.1304
16 0.8580 0.1220 0.6398 0.1256
17 0.8989 0.1170 0.4761 0.1060
18 0.8428 0.1346 0.2965 0.0713
19 0.6953 0.1918 0.1180 0.0370
20 0.5249 0.1938 0.0135 0.0068
21 0.2884 0.1268 0 0
22 0.1706 0.0833 0 0
23 0.1397 0.0669 0 0
24 0.1237 0.0592 0 0

Table A2. J23 distribution network model data.

i j Rij[Ω] Xij[Ω] Pj [MW] Qj [MW]

1 2 0.16715 0.10971 0.03129 0.01425
2 3 0.03768 0.02472 0.03129 0.01425
3 4 0.01704 0.01118 0.03129 0.01425
4 5 0.02891 0.01897 0.02086 0.00950
5 6 0.01808 0.01186 0.03129 0.01425
6 7 0.02551 0.01674 0 0
7 8 0.01723 0.01130 0.04694 0.02138
8 9 0.02391 0.01569 0.03129 0.01425
11 10 0.01067 0.00700 0 0
7 11 0.02905 0.01906 0.03129 0.01425
10 12 0.01181 0.00775 0.03129 0.01425
12 13 0.01027 0.00674 0.04694 0.02138
13 14 0.01506 0.00988 0.04694 0.02138
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Table A2. Cont.

i j Rij[Ω] Xij[Ω] Pj [MW] Qj [MW]

14 15 0.02613 0.01715 0.03129 0.01425
15 16 0.00610 0.00400 0 0
16 17 0.00528 0.00346 0.03129 0.01425
17 18 0.00278 0.00182 0 0
18 19 0.01193 0.00783 0.04694 0.02138
19 20 0.00741 0.00486 0.04694 0.02138
16 21 0.00827 0.00543 0.04694 0.02138
23 22 0.21027 0.13798 0.04694 0.02138
18 23 0.03503 0.02298 0.04694 0.02138
23 24 0.01012 0.00664 0.03129 0.01425
24 25 0.00371 0.00243 0 0
25 26 0.02282 0.01497 0.02086 0.00950
26 27 0.01808 0.01186 0 0
25 28 0.01047 0.00687 0.04694 0.02138
28 29 0.01921 0.01261 0.04694 0.02138
29 30 0.00544 0.00357 0.01877 0.00855
29 31 0.00751 0.00493 0.06259 0.02850
31 32 0.00699 0.00459 0.04694 0.02138
27 33 0.00699 0.00459 0.04694 0.02138
27 34 0.03341 0.02193 0.03129 0.01425
37 35 0.00931 0.00611 0.03129 0.01425
35 36 0.01037 0.00680 0.03129 0.01425
34 37 0.01782 0.01169 0 0
37 38 0.00618 0.00405 0.03129 0.01425
38 39 0.01395 0.00915 0.02086 0.00950
39 40 0.00917 0.00602 0.04694 0.02138
40 41 0.02503 0.01643 0 0
41 42 0.01629 0.01069 0.04694 0.02138
41 43 0.01463 0.00960 0.03129 0.01425
10 43 0.01384 0.00908 0.03129 0.01425

Table A3. Operation coefficients and probabilities for mean profiles (Table A1) according to
Equations (19) and (22) for demand and irradiance, respectively.

h p(a ≤ X ≤ b)
x = µD

p(X ≤ x)
x = µD

p(a ≤ X ≤ b)
x = µI

p(X > x)
x = µI

1 0.1050 0.5000 1.0000 1.0000
2 0.1052 0.5000 1.0000 1.0000
3 0.1060 0.5000 1.0000 1.0000
4 0.1061 0.5000 1.0000 1.0000
5 0.1059 0.5000 1.0000 1.0000
6 0.1026 0.5000 1.0000 1.0000
7 0.0935 0.5000 1.0000 1.0000
8 0.0843 0.5000 0.1195 0.5000
9 0.1137 0.5000 0.1950 0.5000
10 0.2766 0.5000 0.2436 0.5000
11 0.3915 0.5000 0.2570 0.5000
12 0.4219 0.5000 0.2882 0.5000
13 0.2556 0.5000 0.2943 0.5000
14 0.1314 0.5000 0.2888 0.5000
15 0.1596 0.5000 0.2790 0.5000
16 0.3375 0.5000 0.2493 0.5000
17 0.3662 0.5000 0.2209 0.5000
18 0.3031 0.5000 0.2050 0.5000
19 0.1792 0.5000 0.1580 0.5000
20 0.1346 0.5000 0.0990 0.5000
21 0.1131 0.5000 1.0000 1.0000
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Table A3. Cont.

h p(a ≤ X ≤ b)
x = µD

p(X ≤ x)
x = µD

p(a ≤ X ≤ b)
x = µI

p(X > x)
x = µI

22 0.1020 0.5000 1.0000 1.0000
23 0.1040 0.5000 1.0000 1.0000
24 0.1040 0.5000 1.0000 1.0000

∑
h∈H

p 4.3037 12.0000 2.8975 * 6.5 *

µp 0.1793 0.5000 0.2228 * 0.5 *
* When irradiance is zero, its probability is not accounted for in the sum or the average.

Table A4. Operation coefficients and probabilities according to Equation (19) obtained from the
RPO-OPF on the I33.

h D(h) p(a ≤ X ≤ b)
x = D(h) I(h) p(a ≤ X ≤ b)

x = I(h)

1 0.1613 0.1240 0 1
2 0.1570 0.1242 0 1
3 0.1547 0.1248 0 1
4 0.1528 0.1249 0 1
5 0.1546 0.1248 0 1
6 0.1608 0.1219 0 1
7 0.1875 0.1141 0 1
8 0.310 0.1063 0.0253 0.1368
9 0.6238 0.1314 0.1375 0.2064
10 0.9001 0.2839 0.3473 0.2528
11 1.0184 0.3960 0.5436 0.2656
12 0.9745 0.4262 0.6917 0.2958
13 0.7914 0.2642 0.7946 0.3018
14 0.6166 0.1474 0.8229 0.2959
15 0.7236 0.1731 0.7921 0.2869
16 0.8848 0.3436 0.6886 0.2583
17 0.9207 0.3714 0.5224 0.2310
18 0.8734 0.3097 0.3333 0.2157
19 0.7701 0.1910 0.1388 0.1718
20 0.6282 0.1500 0.0186 0.1188
21 0.3736 0.1311 0 1
22 0.2323 0.1214 0 1
23 0.1890 0.1232 0 1
24 0.1674 0.1232 0 1

∑
h∈H

p 4.6529 3.0383 *

µp 0.1938 0.2337 *
* When irradiance is zero, its probability is not accounted for in the sum or the average.

Table A5. Operation coefficients and Probabilities according to Equations (25) and (22) (for demand
and irradiance, respectively) from the VPO-OPF on the I33.

h D(h) p(X ≤ D(h)) I(h) p(X > I(h))

1 0.2731 0.9373 0 1
2 0.2675 0.9391 0 1
3 0.2645 0.9403 0 1
4 0.2620 0.9411 0 1
5 0.2644 0.9404 0 1
6 0.2726 0.9366 0 1
7 0.3054 0.9212 0 1
8 0.4319 0.8542 0.0181 0.5472
9 0.7025 0.7268 0.0990 0.6821
10 1.0613 0.7862 0.2553 0.7355
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Table A5. Cont.

h D(h) p(X ≤ D(h)) I(h) p(X > I(h))

11 1.1890 0.8269 0.4025 0.7462
12 1.1455 0.8537 0.5164 0.7765
13 0.9625 0.8196 0.5910 0.7876
14 0.7426 0.7790 0.6072 0.7885
15 0.8557 0.7628 0.5844 0.7776
16 1.0581 0.8373 0.5064 0.7430
17 1.0912 0.8380 0.3819 0.7086
18 1.0395 0.8115 0.2395 0.6899
19 0.8941 0.7381 0.0996 0.6214
20 0.7339 0.7461 0.0135 0.4977
21 0.5057 0.8471 0 1
22 0.3584 0.9049 0 1
23 0.3079 0.9251 0 1
24 0.2810 0.9343 0 1

∑
h∈H

p 20.5486 9.1023 *

µp 0.8561 0.7001 *
* When irradiance is zero, its probability is not accounted for in the sum or the average.

Table A6. Operation coefficients and probabilities according to Equation (19) obtained from the
RPO-OPF on the J23.

h D(h) p(a ≤ X ≤ b)
x = D(h) I(h) p(a ≤ X ≤ b)

x = D(h)

1 0.1615 0.1240 0 1
2 0.1572 0.1242 0 1
3 0.1549 0.1248 0 1
4 0.1530 0.1249 0 1
5 0.1548 0.1248 0 1
6 0.1611 0.1219 0 1
7 0.1879 0.1141 0 1
8 0.3157 0.1063 0.0253 0.1368
9 0.6415 0.1317 0.1374 0.2064
10 0.9149 0.2846 0.3333 0.2503
11 1.0295 0.3968 0.5419 0.2657
12 0.9820 0.4267 0.6904 0.2958
13 0.7985 0.2644 0.7946 0.3018
14 0.7209 0.1383 0.8888 0.2804
15 0.7338 0.1733 0.7777 0.2861
16 0.8925 0.3439 0.6666 0.2566
17 0.9294 0.3720 0.5208 0.2310
18 0.8849 0.3103 0.3286 0.2159
19 0.7902 0.1916 0.1385 0.1718
20 0.6448 0.1503 0.0186 0.1188
21 0.3773 0.1312 0 1
22 0.2332 0.1214 0 1
23 0.1894 0.1232 0 1
24 0.1677 0.1232 0 1

∑
h∈H

p 4.6490 3.0180 *

µp 0.1937 0.2321 *
* When irradiance is zero, its probability is not accounted for in the sum or the average.
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Table A7. Operation coefficients and probabilities according to Equations (25) and (22) (for demand
and irradiance, respectively) from the VPO-OPF on the J23.

h D(h) p(X ≤ D(h)) I(h) p(X ≤ I(h))

1 0.2790 0.9431 0 1
2 0.2732 0.9447 0 1
3 0.2700 0.9457 0 1
4 0.2673 0.9464 0 1
5 0.2698 0.9458 0 1
6 0.2786 0.9425 0 1
7 0.3137 0.9293 0 1
8 0.4536 0.8745 0.0181 0.5477
9 0.7675 0.7825 0.0986 0.6850
10 1.1220 0.8457 0.2221 0.8227
11 1.2378 0.8773 0.3968 0.7572
12 1.1827 0.8922 0.4444 0.8698
13 1.0004 0.8556 0.5554 0.8316
14 0.7765 0.8081 0.6667 0.7035
15 0.9014 0.8026 0.5850 0.7769
16 1.0970 0.8762 0.5019 0.7498
17 1.1335 0.8813 0.3767 0.7186
18 1.0912 0.8634 0.2221 0.7395
19 0.9682 0.8057 0.0989 0.6259
20 0.7985 0.8040 0.0135 0.4983
21 0.5322 0.8722 0 1
22 0.3701 0.9163 0 1
23 0.3159 0.9329 0 1
24 0.2874 0.9406 0 1

∑
h∈H

p 21.2298 9.3271 *

µp 0.8845 0.7174 *
* When irradiance is zero, its probability is not accounted for in the sum or the average.
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Figure A1. RPO probabilities for profiles obtained from RPO and VPO analyses for the I33. (Left)
Demand. (Right) Irradiance system.
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Figure A2. VPO probabilities for profiles obtained from RPO and VPO analyses for the I33 system.
(Left) Demand. (Right) Irradiance.
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Figure A3. RPO probabilities for profiles obtained from RPO and VPO analyses for the J23. (Left)
Demand. (Right) Irradiance system.
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Figure A4. VPO probabilities for profiles obtained from RPO and VPO analyses for the J23 system.
(Left) Demand. (Right) Irradiance.
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