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Abstract: Saving energy from domestic appliances is a focus in the effort to combat energy challenges.
Linear compressors are a more efficient alternative to the traditional compressors used in refrigerators,
which account for 20–40% of all residential electricity use. This article investigates the new topology
of the moving magnet (MM), dual-stator single-mover linear oscillating actuator (DSSM-LOA) for
linear compressor application. Both the stators were C-shaped, with coils looped across their end
sides. Two permanent magnets (PMs) that were axially magnetized were housed on the mover.
The PM structural shape significantly affected its fabrication cost and magnitude of magnetic flux
density (B). The DSSM-LOA makes use of axially magnetized rectangular-shaped PMs because
they are inexpensive and generate high electromagnetic (EM) force density. End ferromagnetic core
materials were used to improve the magnetic flux, linking from the stator to the mover. All the
design parameters were optimized through parametric analysis using the finite parametric sweep
method. Parameters present within the three primary parameters (length, height, and depth) that
were assumed constants were optimized, and the optimal dimensions were selected based on the EM
force. The investigated DSSM-LOA was contrasted with traditional LOA designs, and they showed
significant improvement in EM force per ampere, generally named motor constant (MC), MC per PM
mass, MC density, cogging force, and stroke. Additionally, the proposed DSSM-LOA had a simple
structure and low cost, and it operated in a feasible range of strokes for linear compressor application.

Keywords: actuator; dual stator; electromagnetic force; linear oscillation; planar structure

1. Introduction

Linear compressors use linear motors instead of the traditional rotary motors found in
conventional compressors. This technology allows for better control of compression and
refrigerant flow, resulting in improved efficiency. It minimizes energy waste by eliminating
the frequent on–off cycling that occurs with traditional compressors. They can maintain
a more stable temperature inside the refrigerator, which reduces energy consumption
and enhances efficiency. Manufacturers can significantly reduce energy consumption
by incorporating linear compressor technology into refrigerators. Numerous modern
refrigerators already use these energy-efficient compressors, contributing to reducing
residential electricity consumption and combating energy challenges.

LOA is an electromechanical device that produces a regulated linear oscillating EM
force in a predetermined stroke range [1]. The frequency of the oscillations of the EM force
is controlled by varying the frequency of the alternating input loading. LOA typically
functions on a resonance frequency. The mover mass and stiffness of the springs associated
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with the mover can be used to calculate the LOA’s operating frequency [2]. Due to design
restrictions, mover mass cannot be reduced so far, while spring stiffness can be altered.
However, by applying specialized optimization techniques, mover mass can be lowered to
a certain level while preserving performance indices, such as EM force and stroke [3]. When
an actuator comes to functionality, resonance frequency operation performs efficiently. At
the resonance frequency, the voltage difference between the applied voltage and the back
EMF is at its lowest value, which results in the least amount of current passing through
the coil. The input power to the LOA determines the mover extreme point of oscillation,
known as the stroke of the LOA. The consequence of the high input power is more copper
loss, which further reduces the efficiency of the LOA [4,5].

There are two parts of the LOA; one is static (stator), and the other is moving (mover).
The stator produces a controlled magnetic field, and the active part of the mover aligns
itself with it. The mover adjusts its position, due to the alignment of its active parts. Linear
oscillation is produced by employing mover position adjustment [6,7].

The LOA’s geometry is often either planar- or tubular-shaped. The tubular shape is
well compacted, has no end-winding effect, and provides a high EM force [8]. In contrast,
the PM price of a tubular shape is higher than the rectangular PM because of additional
fabrication costs and material waste. Furthermore, a rectangular PM structure of the needed
size is simple to acquire, whereas a tubular PM structure of the required dimension cannot
be accomplished by attaching numerous small-dimensioned PMs [9]. Additionally, more
consequences of the tubular shape arise when manufacturing the core materials lamination.
Conventionally, rotary motors are laminated axially, while LOAs are laminated radially
to reduce core losses. The consequences of radial lamination of LOA are a small stacking
factor and reduced air-gap flux density. A new method was analyzed in [10], which focused
on enhancing the stacking factor and air-gap flux density by designing the stator pole end
and back iron in separate formations. To reduce the mover core losses, a scheme of making
groves was investigated in [11]. This formation scheme reduced the mover core losses
significantly. In addition, by increasing the number of groves, the response of the linear
actuator in terms of mover core losses decreased linearly. Therefore, the mover structure of
the rectangular LOA is feasible for making more lamination sheets.

LOAs are categorized according to the components of the mover: moving coils, mov-
ing iron, and moving magnets [12–14]. Regarding cost, moving coil LOA is better but
challenging when the moving part is electrically loaded. Furthermore, the LOA of a mov-
ing coil does not result in the same EM force as that of a moving magnet. Moving iron LOA
is cost-effective, since their mover is not composed of PM or winding. There is a greater
mass associated with the mover of moving iron LOA. On the other hand, the advantages
of moving magnet LOA include good EM force, high magnetic field density, and greater
efficiency. Additionally, on account of the lower value of the mover mass, the operating
resonance frequency is high, generating a greater output power, and the mass flow rate is
high as well [15].

A two-stator, one-mover-dual-stator modular topology was examined [16]. Due to the
placement of the second stator inside the tubular mover and the encapsulation of the one
stator surrounding it, a high thrust force density was achieved. Detent force, the sum of the
cogging force, and the end force were comprehensively analyzed in [17]. This unwanted
factor of the LOA was minimized significantly by using the finite parametric sweep method.
PMs positioned at the mover end of an LOA design have the disadvantage of being PMs
exposed to the air because of the LOA open structure. A tubular-shaped LOA with a
Halbach array configuration of the PMs placed at the mover ends was analyzed in [18],
and its performance was improved using end ferromagnetic poles. LOA can be utilized for
a variety of fast-moving applications, including robotics, electric hammers, bio-medical
equipment, and compressors [19,20].

This article presents a moving magnet planar topology called DSSM-LOA devel-
oped for a linear compressor application. A brief explanation of mechanical design and
illustrations of its two- and three-dimensional (3-D) structures are given. Details of the
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operating principles are discussed. A single-stator single-mover (SSSM) LOA was initially
constructed, and its design parameters were optimized by parametric analysis utilizing
the finite parametric sweep approach. The second stator was built on the other side of the
mover using optimized parameter dimensions. The performance of the proposed DSSM-
LOA was presented, including the contribution of the end ferromagnetic core material in B.
Additionally, output parameters, such as EM forces and cogging forces of the conventional
dual-stator (Con-DS) LOA, proposed SSSM-LOA, and DSSM-LOA, were compared to
demonstrate the superiority of the proposed DSSM-LOA. Finally, the performance of the
proposed DSSM-LOA was compared with the state-of-the-art designs of the LOA regarding
MC, stroke, MC density, and MC per PM mass.

2. Mechanical Design and Principle of Operation

The two-dimensional (2-D) structures of the presented SSSM-LOA and DSSM-LOA
are depicted in Figure 1a,b, respectively. The stator part of the investigated LOA comprised
coils and core materials. Coils were looped across the ends of the C-shape. To improve
the flow of magnetic flux, pole shoes were attached to the C-shape’s ends. The mover of
the investigated LOA was composed of two PMs and core materials. PMs were axially
magnetized, and their magnetization directions were opposite to one another. Core materi-
als were placed between the PMs, which provided the least reluctance path for magnetic
flux to flow from one stator pole to the corresponding stator poles. Core materials at the
mover ends helped to reduce leakage flux and provided ease to the magnetic flux, linking
from the stator to the mover. Figure 1a demonstrates SSSM-LOA, which was composed of
one stator and a mover. A stator with exact parameter dimensions was constructed on the
opposite side of the first stator, as shown in Figure 1b. Figure 1b demonstrates DSSM-LOA,
where the mover was placed between the two stators.
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Figure 1. The 2-D design topology of the investigated LOA. (a) SSSM-LOA; (b) DSSM-LOA.

The proposed DSSM-LOA coils of each stator pole were excited in the opposite direc-
tions of the current to provide uni-directional magnetic flux in the stator core. Similarly, the
direction of the current through the second stator was opposite to that of the first stator.
Magnetic flux flowed in the direction indicated by the arrows when the coils were powered
up with the direction of the current depicted by the symbols, as seen in Figure 2. The mover
oscillated between two extreme points along the x-axis. The −x extreme position of the
mover is shown in Figure 2a. The mover moved to the maximum negative position (−x)
when the stator coil current flowed in the direction depicted in Figure 2a. The phenomenon
of the magnetic flux passing through the path, encountering the least reluctance, caused the
EM force to be applied to the mover. As a result, the mover received an EM force along the
−x direction to produce the least reluctance route. Similar phenomena happened when the
current direction was altered, as illustrated in Figure 2b. In the opposite direction of the cur-
rent, the mover displaced to the +x extreme position. The proposed DSSM-LOA operated
on a single-phase alternating current (AC): during the first half-cycle of the current, the
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mover shifted to the one extreme position, and during the second half-cycle, it shifted to the
other extreme position. Hence, the mover oscillation frequency became equal to the input
loading frequency. The three-dimensional (3-D) structure of the investigated DSSM-LOA
is shown in Figure 3, where Figure 3a illustrates the compact view, and Figure 3b demon-
strates the cut view to show the inner structure (sections) of the DSSM-LOA. To reveal
the 3-D structure of each part of DSSM-LOA, the exploded view is shown in Figure 3c.
The optimum dimensions of each parameter of the investigated DSSM-LOA are shown in
Table 1. Materials assigned to different regions of the proposed design during FEM are
illustrated in Figure 4 and Table 2. The regions of the PMs that were represented by R21
and R23 were initially air; then, a specified condition of using the remanent flux density of
magnitude 1.3 T was used in the magnetic field module. The direction of the magnetic flux
of PM region R21 was set along the −x-axis, and the direction of R23 was defined along the
+x axis.
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Figure 2. The 2-D design topology of the examined LOAs at their end points of the mover. (a) +x
end point; (b) −x endpoint.

Energies 2023, 16, x FOR PEER REVIEW 5 of 17 
 

 

  

(a) (b) 

Spring assembly

Side supporting parts

Front supporting parts

LOA

Sliding 

channel

Aluminium 

brush

 

(c) 

Figure 3. The 3-D views of the DSSM-LOA. (a) Compacted view; (b) cut view; (c) unpacked 

(exploded) view. 

R1

R2

R3

R4 R5 R6 R7

R8 R9 R10 R11

R12 R13 R14 R15

R16 R17 R18 R19

R20 R21 R22 R23 R24

X

Y

 

Figure 4. The 2-D view during FEM analysis. 

Table 1. Optimum dimensions of the DSSM-LOA. 

Parameter Description Symbol Value (𝐦𝐦) 

Height of DSSM-LOA 𝐻 90 

Depth of the DSSM-LOA - 120 

Stator length of DSSM-LOA 𝑆𝐿 110 

Coil width 𝐶𝑤 22 

Coil height 𝐶𝐻 32 

Stator core length 𝑆𝐶𝐿 66 

Stator tooth width 𝑆𝑇𝑊 11 

Height of the pole shoe 𝐻𝑃𝑆𝐻 10 

Length of the pole shoe 𝐿𝑃𝑆𝐻  10 

Mover height 𝑀𝐻 8 

Mover center core length 𝑀𝐶𝐶𝐿 24 

Figure 3. The 3-D views of the DSSM-LOA. (a) Compacted view; (b) cut view; (c) unpacked (ex-
ploded) view.



Energies 2023, 16, 5758 5 of 17

Energies 2023, 16, x FOR PEER REVIEW 5 of 17 
 

 

  

(a) (b) 

Spring assembly

Side supporting parts

Front supporting parts

LOA

Sliding 

channel

Aluminium 

brush

 

(c) 

Figure 3. The 3-D views of the DSSM-LOA. (a) Compacted view; (b) cut view; (c) unpacked 

(exploded) view. 

R1

R2

R3

R4 R5 R6 R7

R8 R9 R10 R11

R12 R13 R14 R15

R16 R17 R18 R19

R20 R21 R22 R23 R24

X

Y

 

Figure 4. The 2-D view during FEM analysis. 

Table 1. Optimum dimensions of the DSSM-LOA. 

Parameter Description Symbol Value (𝐦𝐦) 

Height of DSSM-LOA 𝐻 90 

Depth of the DSSM-LOA - 120 

Stator length of DSSM-LOA 𝑆𝐿 110 

Coil width 𝐶𝑤 22 

Coil height 𝐶𝐻 32 

Stator core length 𝑆𝐶𝐿 66 

Stator tooth width 𝑆𝑇𝑊 11 

Height of the pole shoe 𝐻𝑃𝑆𝐻 10 

Length of the pole shoe 𝐿𝑃𝑆𝐻  10 

Mover height 𝑀𝐻 8 

Mover center core length 𝑀𝐶𝐶𝐿 24 

Figure 4. The 2-D view during FEM analysis.

Table 1. Optimum dimensions of the DSSM-LOA.

Parameter Description Symbol Value (mm)

Height of DSSM-LOA H 90
Depth of the DSSM-LOA - 120

Stator length of DSSM-LOA SL 110
Coil width Cw 22
Coil height CH 32

Stator core length SCL 66
Stator tooth width STW 11

Height of the pole shoe HPSH 10
Length of the pole shoe LPSH 10

Mover height MH 8
Mover center core length MCCL 24

Mover end core length ECL 12
PM length PML 31
PM height - 8

Air gap - 1

Table 2. Materials used during FEM for different regions of the proposed design.

Region LOA Part Material

R1 Environment Air
R2, R3 Stator core Low carbon steel 1010

R4, R5, R6, R7, R8, R9, R10, R11 Pole shoe Low carbon steel 1010
R12, R13, R14, R15, R16, R17, R18, R19 Coils Copper

R20, R24 Mover end core Low carbon steel 1010
R22 Mover center core Low carbon steel 1010

R21, R23 PMs Air plus remanent flux density
(1.3 T) condition

3. Parametric Analysis

The proposed LOA was optimized through magneto-static conditions using the direct
current (DC) and the finite element parametric sweeping method, and the optimum value
of the parameter under investigation was selected based on the EM force. The optimum
value was verified for both DC directions of value 5A. SSSM-LOA, shown in Figure 1a, was
initially designed, and its parameter dimensions were optimized using the finite parametric
sweep method. SSSM-LOA comprised one stator, placed to the side, and a mover. While
designing DSSM-LOA, the parameter dimensions of the second stator were selected equal
to the optimized parameters of the stator of SSSM-LOA. The DSSM-LOA’s stator length



Energies 2023, 16, 5758 6 of 17

(SL), height (H), and depth (D) were kept constant to maintain a constant volume, while
parameters inside the geometry were kept varied. The mover length was kept constant,
and its value was kept equal to the stator length (SL). EM force was analyzed at a mover
mid-position and extreme position as well.

The parameters of the LOA for which the parametric optimization was accomplished
and discussed briefly are illustrated in Figure 5. Coil height (CH) was optimized by
changing its value toward the back core height, as shown by the cyan color in Figure 5. The
arrow of this line shows the direction toward which the coil height value was changed. Coil
width (CW) value was varied toward the stator tooth width (STw), as shown by the blue
arrow. Permanent magnet length (PML ) was also varied toward the center core, which is
illustrated by the green color. Similarly, all the other parameters were optimized by using
the parametric sweep methodology. The effects of CH , STw, and PML on EM force and the
dimension of the corresponding other parameter will be discussed in the coming section.

The investigated design of DSSM-LOA produced an EM force, due to the interaction
of the PM magnetic field with the magnetic field produced by the coils. Since the magnetic
field of the coil depended on the number of turns in the coil, the number of turns was kept
updated by using the mathematical relation:

Nt =

[(
CH × CW

TD
2

)
− 1

2

(
HPSH × LPSH

TD
2

)]
CFf (1)

In (1), Nt is the turns number, CH is the coil height value, CL is the length of the coil,
TD is the single wire diameter, HPSH is the pole shoe height, LPSH is the pole shoe length,
and CFf is the coil filling factor.

In Figure 6, the coil height (CH) was optimized in terms of EM force and back core
height. By increasing the value of CH , the back core height dimension was reduced; hence,
the back core height value was also optimized. Figure 6a demonstrates the impact of
CH on the EM force and back core height at a mean position of the mover. The impact
of the CH value on the EM force at the extreme position of the mover is illustrated in
Figure 6b. Figure 6a shows that at the mover’s mean position, the CH , was optimum at
33 mm, whereas the coil height was optimum at 32 mm at the mover’s extreme positions,
as illustrated in Figure 6b. In a further investigation of the proposed design, the CH value
of 32 mm was selected to design the LOA for high stroke value.

Stator tooth width was optimized in terms of EM force and coil width (Cw), as shown
in Figure 7. To maintain the overall length at a constant and develop an effect of Cw on
the stator tooth width STw, a specified mathematical condition was used in the parameter
definition portion, which was:

SL = 2(Cw + STw) (2)

Cw = 1/2(55[mm]− STw) (3)

A parametric sweep was used on STw, which affected the value of the Cw, and there
was no effect on the value of SL. In this analysis, with the change in the value of Cw, the
number of turns changed as well. Figure 7a shows how altering the values of the parameters
affected the EM force at a mover mean position, which demonstrates that the optimal value
of the STw was 8 mm. Figure 7b illustrates the EM force response of the proposed design at
the mover extreme position for different values of Cw and STw. Figure 7b reveals that the
optimum STw and Cw values were 11 mm and 22 mm, respectively. The overall length of
the LOA was kept constant, and the value of the STw was made dependent on Cw. Hence,
both STw and Cw were optimized in this optimization approach.
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Regarding EM force and stroke, the PM’s end position and the length of the core mate-
rials between the PMs were also crucial. Therefore, an optimization approach regarding
PM length (PML) and mover center core length was accomplished and is illustrated in
Figure 8. The response of the parameter alteration in terms of average EM force through
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overall stroke is shown in Figure 8. Figure 8a demonstrates the effect of PML on EM force
toward the +x axis. For the opposite direction of the current, the impact of PML on EM
force is illustrated in Figure 8b. This optimization approach revealed that PML of value
31 mm gave the optimum value, where the mover center core length was 24 mm.
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4. Mechanical Structures Comparison

The masses of several sections, including the ferromagnetic core materials, copper
coils, and PMs materials, were compared between the proposed DSSM-LOA and the
conventional one (Con-DS-LOA) investigated in [9]. Mechanical designs of Con-DS-LOA
and the proposed DSSM-LOA are depicted in Figure 9a,b, respectively. The major difference
between these designs was the DSSM-LOA coil was split and placed at the ends of the
C-shaped stator core. Additionally, the proposed DSSM-LOA had pole shoes attached to
both sides of the stator core, whereas the Con-DS-LOA used the pole shoe attached to one
side of the stator core. Notably, the proposed DSSM-LOA had ferromagnetic materials
attached to the ends of the mover, but the Con-DS-LOA did not have any end ferromagnetic
core materials. The effects of the end ferromagnetic materials will be addressed in the
section that follows. Calculated values of the masses used in different sections of the
Con-DS-LOA and proposed DSSM-LOA are listed in Table 3.
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Table 3. Mass comparison of different parts of the proposed DSSM-LOA and the Con-DS-LOA [9].

Design Materials Description Mass (Kg)

Con-DSLOA [9]
Core 2.254

Copper 5.128
PM 0.384

Proposed DSSM-LOA
Core 1.885

Copper 5.410
PM 0.298

5. FEM Results and Discussion

The proposed DSSM-LOA-simulated view at their extreme mover positions is shown
in Figure 10. Figure 10a represents the mover’s left extreme position (−10 mm stroke),
where the right upper and lower stator coils were magnetized toward the −y and +y
directions, respectively. Additionally, the left upper and lower stator coils were magnetized
toward the +y and −y directions, respectively. The mover was displaced toward the
−x direction, and the mover center core was aligned with the stator core, due to which
the magnetic flux lines completed their routes following the least reluctance path. Simi-
larly, Figure 10b shows the proposed DSSM-LOA-simulated view, where the mover was
displaced to the extreme right position (+10 mm stroke). The configuration of the coil
magnetization direction in Figure 10b shows that the left upper and lower stator coils
were magnetized toward the −y and +y axes, respectively. Similarly, the magnetization
directions of the right upper and lower stator coils were opposite to the left stator coils.
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Figure 10. Magnetic flux flow view. (a) Mover shifted toward the extreme left position; (b) mover
shifted toward the extreme right position.

The magnetic flux linking the stator core to the mover-centered core is depicted in
Figure 11. The proposed DSSM-LOA contained two stators, and each stator had two poles.
The coil’s magnetic flux lines entered the mover-centered core through one stator pole
and then entered the other stator pole. Figure 11a represents the DSSM-LOA topology,
where each pole was labeled based on its location. The magnetic flux lines entering the
left upper and lower stator poles when the direction of the magnetic flux lines through the
mover-centered core was from right to left are depicted in Figure 11b. Moreover, for the
opposite direction of the stator coil current, the magnetic flux lines entering the right upper
stator pole and right lower stator pole are also presented in Figure 11b.
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Figure 11. Magnetic flux linking the mover core to the stator poles. (a) Representation of the LOA
part where the magnetic flux density was measured. (b) Line graph of B in the air gap, measured in
front of the stator pole.

The proposed LOA contained end ferromagnetic materials at both sides of the mover.
Contribution in terms of magnetic flux lines, entering from the stator core to the mover end
core and then entering to the PM south pole, was measured along a line and illustrated in
Figure 12. The location of the line, along which B was measured, is shown in Figure 12a.
The direction of the magnetic flux lines through the mover portion at this time was from
the left to the right. Figure 12b depicts the magnetic flux lines entering the PMs from the
left side with and without the presence of the core materials. Because of the ferromagnetic
materials coupled to the mover, substantial magnetic flux was entering the PM south pole,
as illustrated in Figure 12b.
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Figure 12. Contribution of end ferromagnetic core materials in terms of B through the left mover end.
(a) Representation of the LOA part, where B was measured. (b) Line graph of B with and without
end ferromagnetic materials.

Similar to the previous analysis, the same investigation of magnetic flux, entering the
mover from the right end, was accomplished and is presented in Figure 13. At this instant,
the direction of magnetic flux lines through the mover part was from the right to the left.
Magnetic flux due to the right-end ferromagnetic core part added to the magnetic flux of
the PM. For ease of comprehension, Figure 13a shows the location where B was measured.
A quantitative assessment of B in the presence and absence of core materials is depicted in
Figure 13b. This analysis concluded that the end ferromagnetic core materials significantly
reduced the leakage flux, which is the primary concern of planar topology.
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The EM force responses of Con-DS-LOA, proposed SSSM-LOA, and DSSM-LOA for
different values and both directions of DC are depicted in Figure 14. The EM force displayed
in the first quarter portion of Figure 14 displaced the mover from the mean position to the
+x extreme position. In contrast, the EM force plotted in the third quadrant shifted the
mover from the mean position to the −x extreme position. Since SSSM-LOA contained one
stator component, its EM force value was less than that of DSSM-LOA. The slope of the line,
representing the EM force for different input current values, demonstrated the actuator’s
motor constant (MC). EM force per ampere current of Con-DS-LOA was 120N/A, while
the proposed SSSM-LOA and DSSM-LOA provided EM forces with MC values 64N/A and
132N/A, respectively.
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Figure 14. EM forces of Con-DS-LOA, proposed SSSM-LOA, and DSSM-LOA for different values
and directions of input currents.

The EM forces of Con-DS-LOA and the presented DSSM-LOA at various mover
positions within the intended stroke are depicted in Figure 15. Figure 15 is divided into four
quadrants for ease of comprehension. The EM force shown in the second quadrant pushed
the mover from the extreme −x final point to the mid position, whereas the EM force shown
in the first quadrant drove the mover even more to the extreme +x position. As seen in
the fourth and third quadrants of Figure 14, altering the current’s direction caused the EM
force’s direction to reverse. In the fourth and third quadrants of Figure 15, the mover was
shifted by EM forces from the final +x point to the mean point and then to the extreme
−x point. Due to the bi-directional nature of single-phase alternating loading, the mover
changed extreme points during the first half-cycle and returned to its original position
during the second half of the cycle. This figure summarizes the EM force responses of the
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proposed DSSM-LOA and Con-DSSM-LOA, which indicate a significant improvement in
terms of EM force.
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Figure 15. EM forces of Con-DS-LOA and proposed DSSM-LOA at different mover positions.

The cogging forces of Con-DS-LOA, proposed SSSM-LOA, and DSSM-LOA were
examined and are shown in Figure 16. Because SSSM-LOA had only one stator and
a mover, a strong attraction existed between the stator and mover. Con-DS-LOA and
DSSM-LOA both had two stators that were offset from the mover. As a result, some force
components canceled one another, resulting in lower cogging force values.
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Figure 16. Cogging forces of Con-DS-LOA, proposed SSSM-LOA, and DSSM-LOA at different
mover positions.

The SSSM-LOA time-dependent EM force response was examined at distinct peak-
to-peak magnitudes of an alternating current (AC) and is illustrated in Figure 17. An AC
was energized to the stator coils during time-dependent EM force investigation. The mover
position was kept fixed at the mean position. The response of the SSSM-LOA with regards to
EM force was directly related to the AC peak-to-peak value. Similarly, the time-dependent
EM force of DSSM-LOA was also examined for distinct values of the peak-to-peak AC.
DSSM-LOA also showed a linear increase in EM force, which was analyzed for 1 A, 3 A,
5 A, and 7 A, as depicted in Figure 18. DSSM-LOA gave an EM force almost double that of
SSSM-LOA. The time-dependent EM forces of Con-DS-LOA, SSSM-LOA, and DSSM-LOA
were compared using 5 A peak-to-peak AC and are shown in Figure 19. The proposed
DSSM-LOA provided a better EM force, compared to Con-DS-LOA and SSSM-LOA.
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The FEM analysis of Con-DS-LOA and DSSM-LOA revealed that the EM force response
of the proposed design was better than Con-DS-LOA. The MC of the Con-DS-LOA was
120N/A, while the proposed DSSM-LOA produced an EM force with an MC value of
132N/A. Moreover, the cogging force, which is an unwanted factor of an electric motor,
was less in the proposed topology of DSSM-LOA. Furthermore, the time-dependent EM
force of the proposed DSSM-LOA was also better, compared to the time-dependent EM
force of Con-DS-LOA.
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6. Thermal Analysis

Better thermal characteristics of an electric motor play a significant role in their fault-
tolerance capabilities and life spans. Heat in an electric motor is generated due to copper
and core losses. There has been significant improvement regarding the thermal manage-
ment of electrical motors, such as liquid water-cooling methods, air-cooling methods, oil
spray-cooling methods, etc. [21]. Another approach regarding thermal management is
using insulating materials with a high thermal conductivity, better insulation ability, and
capability to withstand high temperatures. A novel material with better heat conduction
ability was introduced in [22]. Upon using this novel material, the power density of the
motor was enhanced up to 50 percent with a normal range of temperature.

The thermal characteristics of the proposed DSSM-LOA were analyzed and are shown
in Figure 20, where Figure 20a presents a front view, and Figure 20b illustrates a tilted view.
This image presents the temperature distribution of the proposed DSSM-LOA after being
placed under 10 h of operation. As seen in Figure 20, the coil and stator core, which had a
temperature of around 76.5 ◦C, experienced the highest temperature increases.
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The temperatures of different DSSM-LOA components at various time intervals are
shown in Figure 21. The components that were most affected by heat were the stator
coils and core. The temperatures of all parts exhibited stable behavior after four hours of
operation, and this stability was examined for up to ten hours. This analysis concluded that
the temperature of the proposed design stabilized after a four-hour operation and reached
76.5 °C.
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7. Performance and Topology Comparison of Investigated DSSM-LOA with
Traditional Designs of LA

Evaluation and comparison of the proposed DSSM-LOA with the state-of-the-art
structures of linear actuators (LAs) with regards to performance and topology structure are
accomplished in this section. First, the topological structure and moving type of the designs
are elaborated on. Following that, a precise comparison is made between the proposed
DSSM-LOA and the traditional MM-LAs. Furthermore, the parameters representing output
parameters, such as MC and stroke, are contrasted. Following that, the MC per PM mass of
the suggested DSSM-LOA and traditional LA designs are compared. Finally, a comparison
concerning MC density and MC per overall volume of the LA is provided to elaborate on
in-depth information and critical aspects of the proposed design.

Calculated and measured values of the parameters of the proposed DSSM-LOA and
already built and examined topologies of LA are mentioned in Table 4. The stroke of the
examined DSSM-LOA was 20mm, which was feasible for compressor application and quite
a lot better compared to the other designs of LA, as shown in Table 4. Due to the less
PM usage in the suggested design, the MC of the DSSM-LOA was lower than the design
explored in [2], but the value of MC per mass of the recommended design was relatively
better. Knowing that PM was the utmost costly component of LA designs, the proposed
DSSM-LOA’s MC per PM mass was superior to the other designs and higher than those
indicated in Table 4. The design volume significantly impacted the actuator cost and motor
constant, and the proposed DSSM-LOA had a higher MC density value, highlighting the
significance of the proposed design.

Table 4. Mass comparison of different parts of the proposed and conventional of linear actuators.

Con-LA Topology Moving
Type

Moving
Mass (Kg)

Stroke
(mm)

Peak
Current

(A)

Peak
Force
(N)

MC
(N/A)

MC per
PM Mass

(N/Kg.Amp)

MC Density
(N/mm3.Amp)

[2] Tubular MM 0.9836 12 5 1000 200 263.744 2.95 × 10−4

[7] Tubular MM 0.68 8.8 0.23 8 38 146.957 1.948 × 10−5

[9] Planar MM 0.5462 12 5 600 120 312.500 1.016 × 10−4

[18] Tubular MM 0.3482 14 1.75 99.02 56.6 254.799 2.08 × 10−4

[23] Tubular MM 1.561008 10 5 215 48 147.761 6.23 × 10−5

Proposed Planar MM 0.5372 20 5 660 132.2 443.500 1.12 × 10−4

The investigated topology of DSSM-LOA used rectangular-shaped PMs and cores,
which made the proposed design simple and low-cost. Rectangular PMs can be easily
constructed with many small-dimensional components, and their proportions can be easily
adjusted. Tubular LA fabrication is most challenging when making the laminations to lower
the losses, due to the eddy current. DSSM-LOA was configured with rectangular parts that
made laminations easy to assemble. A further advantage of the proposed DSSM-LOA was
its open structure, which contributed to the improved thermal aspect of the actuator and
the substitution of defective components.

8. Conclusions

This paper investigated rectangular-shaped DSS-MLOA, which provided linear oscil-
lation in a feasible stroke range. The mover of the researched design was composed of end
ferromagnetic materials, and axially magnetized PMs were sandwiched between the core
materials. The investigated design had two coils within each stator that were magnetized in
opposite directions to one another and the other stator coils. The optimal dimensions were
selected based on the EM force after all the geometric parameters were optimized using the
finite parametric sweep methodology. The end ferromagnetic materials’ contributions were
analyzed concerning magnetic flux lines linking to the mover from the stator. Mechanical
design parameters of the investigated design and conventional design were compared in
terms of the masses of different parts of the structure. The performance of the investigated
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design was examined and compared with a single stator design of the proposed design and
with the conventional rectangular structures of the LA regarding static EM force, dynamic
EM force, and cogging force. Finally, the DSSM-LOA was evaluated in terms of stroke,
motor constant, motor constant per PM mass, and motor constant per overall volume of the
actuator, and it showed a considerable improvement over conventional moving-magnet
designs of LA. The performance indices, such as motor constant, motor constant per PM
mass, and motor constant per overall volume of the suggested DSSM-LOA, were raised by
10.166 percent, 41.92 percent, and 10.23 percent when compared to the base design, namely
Con-DS-LOA. According to the results of the FEM study, the suggested DSSM-LOA output
parameters are suitable for compressor applications while maintaining sample structure
and low cost. Furthermore, the experimental validation of the proposed design is the future
direction of our study.
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