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Abstract: The reliability of power converters in photovoltaic systems is critical to the overall system
reliability. This paper proposes a novel active thermal-controlled algorithm that aims to reduce the
rate of junction temperature increase, therefore, increasing the reliability of the device. The algorithm
works alongside a normal perturb and observe maximum power point tracking algorithm, taking
control when certain temperature criteria are met. In conjunction with a neural network, the algorithm
is applied to long-term real mission profile data. This would grant a better understanding of the
real-world trade-offs between energy generated and lifetime improvement when using the proposed
algorithm, as well as shortening study cycle times. The neural network, when applied to 365 days of
data, was 28 times faster than using standard electrothermal modeling, and the lifetime consumption
was predicted with greater than 96.5% accuracy. Energy generated was predicted with greater than
99.5% accuracy. The proposed algorithm resulted in a 3.3% reduction in lifetime consumption with
a 1.0% reduction in the total energy generated. There is a demonstrated trade-off between lifetime
consumption reduction and energy-generated reduction. The results are also split by environmental
conditions. Under very variable conditions, the algorithm resulted in a 4.4% reduction in lifetime
consumption with a 1.4% reduction in the total energy generated.

Keywords: solar PV; lifetime improvement; regression neural networks; active thermal control;
MPPT algorithm; power converter reliability

1. Introduction

In 2021, the Intergovernmental Panel on Climate Change published the AR6 report,
which stated that humans have had an “unequivocal” influence on warming the planet [1]
and predicts the global temperature rise to exceed 1.5 ◦C above pre-industrial levels before
2050 unless action is taken [2]. Presently, there is a virtual certainty that extreme weather
events have increased in both frequency and intensity due to human influence, and there is
high confidence that this trend will be exacerbated with rising temperatures. To curtail the
temperature increase to 1.5 ◦C, it is imperative to achieve substantial emission reduction
across all sectors. In the context of the United Kingdom, the government has made a
commitment to attain a net-zero greenhouse gas emission target by 2050 [3].

The UK’s Climate Change Committee projects that between 50–75% of the UK’s total
energy production will come from variable renewables, including solar photovoltaic (PV)
energy, by the year 2050. The generation capacity of solar PV panels , which was 14 GW in
2022, is expected to grow significantly to a range of 145–615 GW [4,5]. Ensuring solar PV
energy’s substantial contribution to decarbonizing power generation requires continuous
development and improvement in PV technology.

To ensure the maximum energy production from PV panels and offset the manufac-
turing cost, trade-offs are often made at the expense of system reliability [6]. PV arrays
typically endure harsh environmental conditions, including high temperatures, vibrations,
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and high humidity. Among various stressors, thermal factors are deemed most critical for
PV power converters, leading to losses and power cycling [7,8]. According to a survey
involving industry experts, 40% of respondents identified power semiconductors as the key
area for research to enhance power electronics reliability, highlighting their significance in
this context. Notably, a large-scale PV plant operational over five years in Tucson, AZ, USA,
experienced 37% of the unscheduled maintenance events related to inverters, accounting for
59% of unscheduled maintenance costs [9]. The survey respondents expressed a collective
desire for more research into active methods aimed at improving system reliability.

Active thermal control (ATC) is utilized as an active method for reducing the damage
accumulated from thermal cycling, with several techniques being suggested within the
power electronic research [10]. An important part of ATC methods in power electronics
is an accurate estimation of the junction temperature. Andresen et al. [11] give a review
of the current temperature measurement and estimation techniques, and several imple-
mentation possibilities for ATC are described. The ATC methods discussed apply to power
semiconductors in all applications, rather than specifically grid-connected PV panels. The
authors in [12] also provide an overview of the junction temperature measurement and es-
timation techniques. Some of the literature uses temperature-sensitive electrical properties
for temperature estimation [13]. For example, Xu et al. [14] proposed a method whereby
the IGBT current is measured during a short circuit pulse, with the short circuit current
being directly linked to the junction temperature. The results showed a good ability to
predict and calculate temperature; however, this method requires additional hardware for
measurement. In their work, Motto and Donlon [15] incorporated temperature sensing
directly into a power module by utilizing the forward voltage drop across multiple diodes
that were integrated into the semiconductor diode itself. By exploiting the linear relation-
ship between the forward voltage drop and diode temperature, they successfully estimated
the junction temperature. However, this implementation resulted in increased module
complexity as a trade-off.

Analytical electrothermal models are also used widely within the literature to predict
temperature, without the need for measurement hardware [6,16,17]. In [16], the system-
level reliability and lifetime prediction of grid-connected PV systems were discussed, for
which an electrothermal model is employed. A rainflow counting algorithm is used to
find temperature cycles from the electrothermal model, with cycles to failure calculated
using the Coffin–Manson law. This procedure is common and well-documented within
the literature.

A “lifetime-optimized” perturb and observe (P&O) maximum power point tracking
(MPPT) algorithm is proposed in [6], which works to reduce thermal stress during highly
variable conditions and limits the power semiconductor junction temperature in PV systems.
The results showed the lifetime was improved by 13% while sacrificing 3.7% of potential
energy generation when the proposed algorithm was employed. Different parameters
were tested, which demonstrated a direct trade-off between energy generation and lifetime
reduction. However, the mission profile is not field data and was created based upon the
analysis of real irradiance data rather than directly using real irradiance data. Additionally,
simulations were only run on a mission profile lasting 10 min.

A similar concept is also presented in [18]. A look-up table was trained on the
simulation data and then applied to four days of different environmental conditions. The
outcome was an algorithm that improved lifetime by 4.6% while sacrificing 0.02% of total
generation. With an accuracy of 95.3%, it is possible, however, that this result is statistically
insignificant. Additionally, with just one day of data in each environmental condition
category, reliable long term predictions cannot be made. In [19], a statistical approach
for IGBT failure analysis is used after electrothermal modeling of a PV system. This is
based on Monte Carlo simulations, as physical tolerances and operational stresses vary
by component. Probability distribution functions for key electrical and lifetime model
parameters are used to find the sensitivity to the accumulated damage. A statistical lifetime
analysis is then performed, giving a lifetime with a specified confidence level. The paper
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discusses changing the electrothermal parameters, such as thermal resistance as the device
ages, as is carried out in [20].

Peyghami et al. [21] introduces a novel power converter lifetime performance indicator,
employing an artificial neural network (ANN) to replace the detailed electrothermal model.
The paper addresses the lack of easily available long-term reliability performance indicators,
allowing for better reliability-orientated design and maintenance planning. Examples of
the effect of different mission profiles on the lifetime of the converters and their estimation
using the detailed electrothermal-based model and the proposed AI approach are shown in
that paper and also given here in Figure 1 for reference.

Figure 1. The effect of loading profiles on the reliability of the converter and the estimation of
reliability using the conventional electrothermal-based approach and the AI method—from [21].

A Monte Carlo reliability analysis is performed to estimate the B10 lifetime of the
converter, similar to [19]. The use of ANNs decreased the required time for the lifetime
calculation by a factor of 5. Converter electrothermal modeling is used to train the ANN,
and the lifetime predictions are found by applying the neural network to a converter
mission profile. The ANN could accurately predict the lifetime of a converter with less
than a 5% error compared to the traditional stress–strength analysis. However, this paper
considers a general power converter under a given constant load rather than, specifically,
power converters in a PV system. As a result, with a PV system of varying power generation
levels, the same analysis cannot be replicated.

The comparison of the literature studies is shown in Table 1. Upon summarizing
the aforementioned literature, the following observations regarding the limitations in the
previous studies were identified:

• The current research in the area of grid-connected PV power converter reliability
implement look-up tables to shorten computation times. The accuracy of results is
dependent on the size of the look-up table, which is often less than can be achieved
with other methods.

• Furthermore, the current literature often uses mission profile data that are not com-
posed of real environmental data.

• Additionally, simulations of a short duration are used that do not accurately show
the results over a long period of time and do not reflect the true results if the systems
were implemented in the field. As a result, the current research in this area is lacking
reliable, transferable information out of simulations with regard to the design for
reliability studies.

• Although the proposed multivariate-LSTM model showed better reliability predictions
with higher accuracy compared to other deep learning models, there is a need for more
diverse and comprehensive datasets to improve the generalizability of the model.
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• During the comparison of the lifetime of a grid-connected solar PV system in AC
link and DC link configurations, the comparison was based on specific load, mission
profile, and the energy management system. Studies should consider a wider range of
scenarios to provide more comprehensive insights into reliability differences.

• For an ANN-fuzzy MPPT controller for solar PV systems, the introduction of fuzzy
logic increased the complexity of the controller.

• For the reliability assessment models for DC-DC converters, the FIDES model showed
a better reliability performance compared to other techniques; it was noted that FIDES
is complex in terms of computing. The research could focus on simplifying the
computational process without compromising accuracy.

• For a temperature-controlled MPPT algorithm for grid-connected solar PV systems,
there is a need for modifications and improvements to the existing MPPT approaches.

• For the application of machine learning (ML) techniques in solar PV systems, the main
observation is the need for more open datasets with real data from PV systems to
facilitate automatic learning processes.

• For the adoption of intelligent gate drivers for future power converters, there is a need
for the widespread adoption of intelligent gate drivers in industrial practice.

• For thermal performance improvement in multi-megawatt power converters, one
limitation identified is the high thermal stress experienced by the rotor side converter.
The research could explore methods to reduce thermal stress and improve the efficiency
and reliability of RSC.

Table 1. Summary of Recent Research Papers on the Reliability of Power Converters.

Year Ref. Techniques Contributions Limitations Recommendations
/Methods/Applications

2023 [22]
Multivariate-LSTM model,
RUL prediction in
superbuck converter

Provides early warning of
failure and ensures
reliable and safe operation
in mission-critical
applications.

Uses k-fold cross
technique and LTSPICE
simulation for validation.

Explore more diverse
datasets for further
validation.

2023 [23]

Mission Profile Based
Reliability Analysis,
Grid-connected Solar
PV-Battery

Compares lifetime of
whole system in different
configurations and
determines AC link
configuration to be more
reliable.

Lack of real-world data
from extreme conditions.

Further investigations into
the impacts of
environmental factors.

2023 [24] ANN-fuzzy MPPT
controller, Solar PV

Uses AI-based MPPT
algorithms and
outperforms other
controllers in tracking
accuracy.

Limited analysis of
controller robustness
under faults.

Investigate the effect of
uncertainties in weather
forecasts.

2022 [25]
Reliability assessment
models, DC-DC
converters

Provides component-level
and system-level
reliability assessment
using different tools.

Component-level data
availability varies among
manufacturers.

Develop a standardized
method for accelerated
lifetime testing.

2022 [18] MPPT algorithm,
Grid-connected Solar PV

Introduces a
temperature-controlled
MPPT algorithm for
lifetime improvement of
PV converters.

Increased computational
complexity due to lookup
tables.

Optimize lookup table
size for a balance between
accuracy and computation
time.
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Table 1. Cont.

Year Ref. Techniques Contributions Limitations Recommendations
/Methods/Applications

2022 [26]
Machine learning
applications, Solar PV
systems

Explores the use of ML in
various aspects of PV
systems.

Limited real-world
deployment of ML-based
controllers.

Implement ML algorithms
on field-deployed PV
systems for real-world
performance evaluation.

2022 [27] Intelligent Gate Drivers,
Future Power Converters

Introduces intelligent gate
drivers with active
switching control and
sensing capabilities for
safe operation and
thermal management of
power devices.

Requires additional
sensors for sensing
capabilities.

Investigate cost–benefit
trade-offs for the
implementation of
intelligent gate drivers.

2021 [28]
Comparison of Different
MPPT Techniques,
Various PV applications

Compares various MPPT
techniques based on their
performance and
characteristics.

Limited testing scenarios
representing extreme
weather conditions.

Conduct experiments in
harsh environments to
assess performance
robustness.

2020 [29]

Thermal Performance
Improvement,
Multi-Megawatt Power
Converters

Implements a
carrier-based active
thermal control method
for temperature regulation
in power semiconductor
devices.

Focused on a specific
converter type, limited to
other converter
topologies.

Investigate the
applicability of the
proposed method for
other converter
topologies.

2020 [30]
Two-level reliability
framework, Power
converters and systems

Presents a hierarchical
reliability framework
bridging power converters
and power systems.

Limited data availability
for some components.

Collect more data to
improve the reliability
model accuracy.

2019 [31] Design optimization, Solar
PV systems

Provides a comprehensive
overview of design
optimization techniques
for PV systems.

Limited focus on the
impact of module-level
design on system
performance.

Investigate the interaction
between module-level
design and overall system
performance.

2018 [32]
FPGA implementation,
reliability and Unified
power quality conditioner

Proposes an FPGA-based
UPQC system for
reliability and power
quality improvement in
distribution networks.

Evaluation limited to a
specific distribution grid
topology.

Validate the UPQC system
performance on various
distribution grid layouts.

2017 [33]
Comparison of control
techniques,
Grid-connected inverters

Compares various control
techniques for
grid-connected inverters
based on their
performance and
capability.

Limited study on control
strategies’ impact on
inverter efficiency.

Investigate the trade-offs
between control strategies
and inverter efficiency.

Main Contributions

The main contributions of this paper can be summarized as:

• In order to tackle the aforementioned concerns raised in the existing literature, this
paper aims to apply a neural network to a novel active thermal control MPPT algo-
rithm trained using electrothermal models. The novel active thermal control MPPT
algorithm presented in this paper aims to further develop the ideas existing within the
present research, as well as increase lifetime without significantly negatively impacting
power generation.

• The second novel aspect of this paper is to implement a neural network to estimate
lifetime, allowing for long-term environmental datasets to be used without extensive
and time-consuming simulations and without significantly compromising accuracy.
This would grant more reliable data for design for reliability studies, such as a bet-
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ter understanding of real-world trade-offs between energy generated and lifetime
improvement when using the ATC algorithm, as well as shortening study cycle times.

The rest of the paper is organized as follows: in Section 2, the PV electrothermal model
is described, and the theory governing the power converter lifetime is given. Section 3
describes the method whereby neural networks are implemented in a way to circumvent
extensive electrothermal simulations. In Section 4, an active thermal control algorithm is
proposed. Section 5 discusses the implementation and details of the PV electrothermal
model and neural network training. Finally, Section 6 presents the results of the study.

2. Electrothermal Lifetime Modeling

This section details the theory behind simulating an electrothermal PV model and
converting temperature readings into device lifetime consumption values. As shown
in [7–9], power converters are often the most unreliable components in grid-connected
PV systems.

2.1. Electrothermal Modeling

Connecting an inherently DC PV system to the grid can be achieved in many ways [6,20,34].
The differences in implementation result from the level of control and complexity desired.
However, most structures use an MPPT-controlled DC/DC stage, with a DC/AC stage
connected to the grid. This paper considers a simple structure that has been documented
well within the literature.

A 2-stage, single-phase, transformerless grid-connected PV system is used in this
paper. The topology can be seen in Figure 2. The first stage is a boost converter controlled
by an MPPT algorithm for maximum power extraction. The second stage is a full-bridge
grid-connected inverter, which maintains the DC link voltage and exports AC power to the
grid, at the correct voltage and phase angle. An LCL filter ensures the output grid current
reaches a total harmonic distortion of less than 5% [35].

Figure 2. Grid-connected PV array connection topology under study, using a two-stage structure.

The power loss in the IGBT is calculated using Equation (1), where the total power
loss is the sum of the conduction (Pcond) and switching (Psw) losses. The conduction losses
are calculated with collector–emitter voltage Vce, collector current Ic and duty cycle D. The
switching losses are calculated with switching frequency fsw, energy loss during turn on
Eon and turn off Eo f f [36].

Ptotal = Vce · Ic · D︸ ︷︷ ︸
Pcond

+ fsw · (Eon + Eo f f )︸ ︷︷ ︸
Psw

(1)

The power loss in the diode is calculated using Equation (2). Similarly to IGBTs, the
power loss is split into conduction and switching losses. Conduction losses are based on
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the forward bias voltage VF, forward current IF and resistance RD. Switching losses are
calculated with reverse recovery charge QRR and reverse bias voltage VR [37,38].

Ploss = VF · IF,avg + RD · I2
F,rms︸ ︷︷ ︸

Pcond

+
fsw ·QRR ·VR

3︸ ︷︷ ︸
Psw

(2)

The semiconductor junction temperature is the temperature of the semiconductor
material within the transistor. In this paper, the junction temperature is analyzed as it is a
direct contributor to device degradation and failure. However, measuring this temperature
is non-trivial. Section 1 gives an overview of the current temperature measurement tech-
niques. For the analysis in this paper, a Foster thermal model is employed to find junction
temperatures, with the structure shown in Figure 3 [39]. The Foster thermal models have
been applied multiple times within the literature, and while they may not provide a direct
link to reality as the Cauer thermal models, they are much easier to implement [6,16,17].

Figure 3. Foster thermal model used for predicting junction temperatures. IGBT and diode foster
thermal parameters are statistical fits for the measured thermal data with no physical significance [39].

IGBT and diode Foster thermal model values are provided by the IGBT manufacturer.
Thermal interface material (TIM) and heatsink values are taken from parts.

2.2. Lifetime Consumption Estimation

This section details the procedure used for estimating the device lifetime consump-
tion based on the junction temperature data. This method has been well documented in
literature, especially in conjunction with an electrothermal model [6,10,19,20].

Figure 4 shows short term temperature cycling. It is primarily due to the line frequency,
a result of the sinusoidal currents flowing through the inverter; therefore, it typically occurs
on a scale less than 1 s. Long-term temperature cycling, on the scale of a few seconds and
greater, generally results from irradiance or ambient temperature changes.

The junction temperature samples from the electrothermal model are first analyzed by
finding the peaks and valleys, as seen in Figure 5. This removes a lot of the unnecessary
data, reducing the required computation for the next stage. A rainflow counting algorithm
is then used, which will extract the temperature cycle amplitude, average cycle temperature
and cycle count. These data can be used in estimating the number of cycles to failure,
described by Equation (3). This equation, described in [40], encompasses many IGBT
failure mechanisms.

N f = K · ∆Tβ1
j · exp(

β2

Tj + 273
) · tβ3

on · Iβ4 ·Vβ5 · Dβ6 (3)
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where K is a constant term, ton is the heating time, I is the current per bond wire, V is the
voltage class of IGBT, and D is the diameter of the bond wire. The temperature swing ∆Tj,
absolute temperature Tj and ton can be seen in Figure 5. The model parameters β1 to β6
used in this paper are given in [40].

Figure 4. An example of short term junction temperature cycling. Cycles occur at 60 Hz due to
inverter loading. The peak to peak junction temperature cycle amplitude changes depending on
inverter power output. Due to the number of cycles over a day, these cycles form the bulk of the
lifetime consumption.

Figure 5. Short term line-frequency temperature cycle with isolated peaks and valleys shown. Some
of the key variables in Equation (3) are labeled.

The accumulated lifetime consumption (LC) of the power converter can then be
calculated using the Miner’s rule [41]:

LC = ∑
i

ni
N f i

(4)
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where ni is the number of thermal cycles, and N f i is the expected cycles to failure, calculated
in Equation (3). The output, lifetime consumption (LC), is the sum of the damages from
each cycle. When LC surpasses 1, the device is predicted to have reached the end of its
life. This model does not take into account statistical failure mechanics or the increase in
thermal resistance Rth with device degradation.

Using the procedure outlined in this section, Section 3 describes the implementation
of a regression neural network for the prediction of lifetime consumption values, removing
the requirement for the electrothermal modeling described in this section.

3. Neural Network Regression of Lifetime Consumption

Neural networks are mathematical abstractions that mimic the human brain. Their
structure can be adjusted to optimize various computational tasks, such as numerical
prediction or classification. Regression neural networks, commonly used for making
numerical predictions, are prevalent tools in handling non-linear functions. In the context
of similar lifetime predictions, neural networks have been successfully applied [21]. An
alternative method for estimating lifetime involves the use of look-up tables. However, the
accuracy of such an approach is limited by the size of the look-up table [6]. To address this
limitation, neural networks are proposed as a method for lifetime consumption prediction.
This approach reduces the need for extensive long-term electrothermal modeling while
achieving higher accuracy compared to look-up tables.

For this work, regression networks were implemented in MATLAB using fitrnet.
Fitrnet trains a feed-forward, fully connected neural network designed for regression.
Two separate neural networks were used, estimating energy generation (EG) and lifetime
consumption (LC). A single multiple output neural network was found to be inaccurate, as
network training performance metrics could not train a network accurately for multiple
outputs as energy generation is comparatively easier to predict than lifetime consumption,
which biased the performance metric. The structure of the neural networks used can be
seen in Figures 6 and 7.

The environmental data used are sampled at a rate of once per minute. A moving
window is used that predicts the energy generation and lifetime consumption within the
next minute. This is shown in Figure 8. This allows the network to be applied to days
of any length, days of interrupted data, as well as reducing the total amount of inputs,
consequently reducing computation.

Figure 6. Visualization of the neural network structure used for predicting energy generation. The
hidden layer structure [5, 3] is not final. Weights, biases and activation functions are not displayed
here. Details about the activation function for the hidden layers can be found in Section 5. The
activation function for the output layer is linear.
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Figure 7. Visualization of the neural network structure used for predicting lifetime consumption. The
hidden layer structure [5, 3] is not final. Weights, biases and activation functions are not displayed
here. Details about the activation function for the hidden layers can be found in Section 5. The
activation function for the output layer is linear.

Figure 8. Irradiance values applied to the neural networks, showing the window from t min to
t + 1 min in which LC and EG values are considered.

Energy generation in the next minute is predicted using the current irradiance value
and cell temperature. Lifetime consumption in the next minute is predicted using the cur-
rent irradiance, ambient temperature, as well as irradiance values for the minutes on either
side. The reasoning for lifetime consumption inputs is focused on the junction temperature.
The heat capacitance of the device and heatsink means the junction temperature is not only
a function of the current irradiance but also the previous and next irradiance values.

The hidden layer structure was found through trial and error. Other network pa-
rameters such as regularization, standardization and activation function were found
through hyperoptimization.

The workflow for the data, showing the process of training and applying neural
networks, is shown in Figure 9, with a simplified diagram in Figure 10. The training
data represent a selected sample of the long term mission profile data used to train the
networks. The training of the networks requires input and target values. The target values
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are the output of the electrothermal model. The input values are the same inputs to the
electrothermal model. Once the networks are trained, they can be applied to long term
mission profile data directly, skipping the electrothermal modeling step.

Figure 9. Workflow showing electrothermal model and lifetime consumption estimation being used
to train networks, with the trained networks later being applied to the long-term data.

Figure 10. Chronological application of networks. Feedback from network testing allowed for trial
and error changes to layer structure.

Now that the tools for the prediction of long-term lifetime consumption and energy
generation have been described, Section 4 proposes an algorithm for reducing lifetime
consumption.

4. Novel Active Thermal Control Algorithm

Active thermal control algorithms have become a more important area of research
as the industry aims to maximize energy capture and approach device limits [10]. This
paper proposes a novel ATC algorithm that works alongside an unchanged P&O MPPT
algorithm. The novel ATC aspect takes control when certain temperature criteria are met.

Under normal conditions with no large fluctuations in average junction temperature,
the standard P&O MPPT algorithm applies. Once the average junction temperature rise
exceeds a defined threshold, the boost converter duty cycle is reduced according to the
junction temperature rise, using Equation (5). The algorithm flowchart is seen in Figure 11.

D(i) = D(i− 1)− ∆D · K ·
∆Tj(i)

L
(5)

This equation is designed to decrease the current duty cycle by a value proportional to
the ratio that the temperature rise ∆Tj exceeded the set limit L. L represents the temperature
rise limit in ◦C/s. A constant term K allows for more control over the magnitude of duty
cycle adjustments. The influence of K is shown in Figure 12. ∆D is the magnitude change of
the duty cycle per time-step in the standard P&O MPPT algorithm and is used as a scaling
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factor. With K · ∆Tj/L = 1, the ATC algorithm reduces the duty cycle by the same amount
as an unchanged P&O algorithm.

Figure 13 shows the reduction in temperature rise when a step irradiance is applied.
The temperature rise rate seen is larger than the set limit. This is due to the increase in
irradiance, which causes a rise in power generation.

Figure 11. Flowchart for proposed active thermal control algorithm.

Figure 12. Reduction in average junction temperature gradient when using proposed algorithm with
differing K parameter under constant L, with a step irradiance change from 150 W/m2 to 1000 W/m2.
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Figure 12 shows the algorithm results with consideration of different K values. The
rate limit L is the dominant parameter for the rate of junction temperature increase where
the effect of K is not as pronounced.

Figure 13. Comparison of average junction temperature gradient reductions using the proposed
algorithm with different L and K parameters, in response to a step irradiance change from 150 W/m2

to 1000 W/m2.

Figure 13 demonstrates the effectiveness of the proposed algorithm, whereby the rate
of junction temperature increase is decreased from 13.4 ◦C/s using an unchanged MPPT
algorithm to 4.1 ◦C/s. As expected, decreasing the rate limit L and increasing the constant
parameter K correspond to making more common and dramatic changes to the duty cycle,
shown by the decreasing rate of junction temperature increase. The different parameters
show that tuning is capable of adjusting the rate, which is related to the trade-off between
MPPT speed (and, therefore, energy generation) and transistor damage accumulated. The
slight variation in the temperature is a consequence of having the limit term L, such that the
algorithm is cycling between on and off as the temperature rise fluctuates around the limit
value. A lower limit is seen to cause a larger amount of variations as it is more frequently
switching between active and inactive states.

The average rate of junction temperature increase is higher than the set limit L for
both cases in Figure 13. With a dramatic increase in irradiance such as the one used from
150 W/m2 to 1000 W/m2, the power flow will correspondingly increase dramatically. This
means that, in effect, the temperature rise due to this increased power flow cannot be
compensated or slowed sufficiently by the algorithm. As a result, the temperature rise rate
will exceed the set limit. With smaller or slower increases in irradiance, the algorithm is
capable of achieving the set rate limit.

5. Simulation and Network Training

With the infeasibility of calculating lifetime consumption in an experimental setup,
as shown in the current literature [8,10,18,21], a MATLAB/Simulink approach was taken.
The electrothermal model was implemented into Simulink using the specialized power
systems library.

The electrical design parameters and components of the studied system are shown in
Table 2. The PV array is connected with 2 parallel strings with 9 series-connected panels
on each string, with an array total open circuit voltage, Voc, of 342.90 V and short circuit
current, Isc, of 37.12 A, assuming identical panels.



Energies 2023, 16, 6071 14 of 24

Table 2. System electrical design parameters and components.

Quantity Value

Rated power 10 kW
RMS grid voltage 240 V

Grid frequency 60 Hz
DC link voltage 450 V

DC link capacitor 2100 µF
PV capacitor 2100 µF

Inverter switching frequency 7.5 kHz

Boost converter
Switching frequency 7.5 kHz

Inductor value 1.5 mH

LCL filter
Inverter side inductor 8 mH

Capacitor 5 µF
Grid side inductor 4 mH

Datasheet components
IGBTs Infineon IKW40N60H3

PV panels Trina Solar Vertex DE19 555W

The data used in this study are from the Baseline Measurement System dataset from
the National Renewable Energy Laboratory’s Solar Radiation Research Laboratory (SRRL)
in Golden, CO, USA [42]. For measuring total solar irradiance, a CMP22 pyranometer
inclined at 40-South is employed. The ambient temperature is taken from the instrument
deck. The cell temperature uses data from IKS-M 40-South, part of the SRRL PV Resource
study, located on the same site. While temperature data are available for the CMP22
pyranometer, it is believed that using PV cell temperatures would be a more realistic
temperature representation for the electrical model in this study. Figure 14 shows an
example of the raw environmental data source from one particular day, with the cell
temperature more closely correlated to irradiance than ambient temperature.

Figure 14. An illustrative example of the mission profile data employed in this paper, sourced from
NREL data dated 31 March 2021 [42].

Starting 1 January 2021, 365 days of data are used. The irradiance data below 1 W/m2

were removed as these do not contribute significantly to energy generation and provide
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very minimal lifetime consumption while greatly increasing the amount of time required
for simulations.

The training data were carefully chosen to encompass a diverse set of conditions
related to irradiance and temperature at this specific location. Meanwhile, the testing
data were randomly selected. The training dataset consisted of six days, amounting to
3726 data points, while the testing dataset included seven days, comprising a total of
4762 data points.

Figure 15 illustrates examples from four subsets of environmental conditions: clear,
overcast, variable and very variable. The data were sorted manually, taking into account
peak irradiance and irradiance changes. Table 3 shows the number of days in each subset.
By applying the trained neural networks to each subset, it can be seen how the proposed
algorithm performs under different conditions.

Figure 15. Plots illustrating an example irradiance curve over a day categorized into four groups.

Table 3. Number of days in each subset.

Day Subset Number of Days

Clear 108
Overcast 30
Variable 136

Very variable 91

For the ANN, three hidden layers were used, with each bracketed value in Table 4
denoting layer size. The layer structure can be seen in Figures 6 and 7. It was found that the
hidden layer structure was not critical for accuracy provided the layers were sufficiently
large. For example, the accuracy of a network with a structure of [10, 30, 1] had very little
difference from that of [5, 40, 1]. The hidden layer activation functions were tanh for both
LC and EG networks. The larger hidden layer sizes increase training computation time. No
regularization was used. Network inputs were standardized. Network target values were
scaled to a range of 0 to 1.
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Table 4. Neural network parameters.

Network Predictor Hidden Layer Structure

LC [10, 30, 1]
EG [5, 20, 4]

Due to the statistical nature of network training, it was repeated five times in total.
The training was repeated five times to account for the statistical variability in neural
network training, as each run can yield slightly different results due to random initialization
and optimization processes. The optimal number of repetitions depends on factors such
as model complexity, dataset size, and available computational resources. Generally,
conducting multiple repetitions (e.g., five) provides a more robust estimate of the network’s
performance. However, there are diminishing returns with increasing repetitions, and the
choice of the optimal number should strike a balance between statistical confidence and
practical considerations. Each trained network was then applied to the testing data. The
best performing network on the testing data was selected and applied to the long-term
data. The network performance was measured with the error percentage of total LC or EG
to the simulated values, as can be seen in Equation (6). The networks chosen using mean
squared error (MSE), the performance metric used in fitrnet, proved to be less accurate,
particularly in LC values. Using error percentages also gives a better understanding of
accuracy, whereas MSE requires further context or comparison to understand.

Error % = 100 · |1− ∑ Predicted LC or EG
∑ Simulated LC or EG

| (6)

Two sets of ATC parameters were tested to show the trade-off between energy genera-
tion and lifetime improvement. The context for the relevant parameters is found in Section 5.
The algorithms using the parameters from Table 5 are referred to as ATC no. 1 and 2. The
∆D value was a constant of 3× 10−7 for the P&O and ATC algorithm. The reduction in
junction temperature gradient for both of these sets of parameters can be seen in Figure 13.

Table 5. ATC parameters used.

ATC No. L K

1 2 1
2 1 3

6. Results and Discussion

In both simulation time and total data storage space requirements, the neural network
method proposed in this paper is an overwhelming improvement on traditional electrother-
mal models for long-term analysis. Where long-term analysis is required, using neural
networks would significantly speed up development processes, meaning more effective
and time-efficient designs for reliability studies can take place. The speed improvements
seen in Figure 16 and Table 6 when using the neural networks can be further improved by
optimizing the amount of training and testing data. The time required for either long-term
simulation or neural network training is dominated by the electrothermal model simula-
tions, taking 99.8% and 98.3% of the total time, respectively. However, reducing the amount
of training data too far results in low accuracy.

It is only economical to use neural networks as outlined when the amount of data
required to predict exceeds the amount of training and testing data. Otherwise, standard
electrothermal models are sufficient. Using the example of this study, with 13 days of
combined training and testing the simulation, the benefits of using a neural network begins
when 14 days or more are required.
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Table 6. Estimated time and storage needed for simulating 365 days of data using an electrothermal
model normalized to a neural network regression approach.

Simulation Type Total Time Storage Requirements

Electrothermal model 27.6 28.0
Proposed Neural Network 1 1

Figure 16. Estimated time taken to simulate 365 days worth of data using solely an electrothermal
model normalized to the proposed neural network regression method, also showing breakdown into
categories. Time taken to apply the neural network to the data is negligible.

Long-term data of any length could be used with no further electrothermal simulations
required. However lifetime consumption values become less accurate with larger timescales
as degradation becomes more prominent, and no feedback metric for degradation is
applied in this paper. One year of data are used here for a balance of maintaining accurate
electrothermal properties, while also ensuring a mixture of conditions, and long-term
performance is still analyzed.

Due to the small sample size of electrothermal modeled days, and with training data
being cherry-picked, the results in Table 7 may not be representative of the long-term trends.
Additionally, small trends may be present in the electrothermal results, but in such limited
quantity to appear insignificant in the results. As a result, long-term simulations show a
better approximation of how it would operate if placed in the field.

Table 7. LC and EG percentage change using the proposed ATC algorithm from training and testing
electrothermal model data relative to an unchanged P&O algorithm.

MPPT Algorithm LC (% Change) EG (% Change)

ATC no. 1 −1.34 −0.33
ATC no. 2 −5.42 −1.61

When examining the accuracy of the neural network, it can be seen that it performs
to a high standard. Figure 17 shows the lifetime consumption estimations for a full day
for both the electrothermal model and the neural network. Figure 18 shows a scatter plot
of the accuracy in network predictions on the testing set for all the available data. Ideally,
the predictions and simulated results would be equal, therefore, producing a linear line
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of slope 1. As a result, deviation from the line demonstrates errors in the predictions.
The plots clearly show that the neural networks remain reasonably accurate for high
lifetime consumption value predictions, even with relatively few observations. There is an
increasing amount of error in LC with the increasing value, possibly due to the decreasing
availability of training data for higher values. Furthermore, 72% of the simulated LC values
were below 0.1× 10−5. EG can be seen as relatively easier to predict, with lower deviations
from the ideal case. Energy generation, majoritively a function of irradiance, naturally
sweeps through almost all the values between 0 W/m2 and its peak twice per day, whereas
lifetime consumption, a more complex function, does not present such an easy target for
training. This means that selecting accurate training data in the aim of optimizing lifetime
consumption training is non-trivial and is the limiting step in overall network accuracy.
This is demonstrated numerically in Table 8, where the percentage LC error is up to C
higher than for EG.

Table 8. Neural network regression accuracy in predicted values against the testing data.

MPPT Algorithm Total Testing Error (%) Correlation (%)

LC EG LC EG

Unchanged 2.57 0.15 99.2 99.6
ATC no. 1 3.39 0.51 98.8 99.5
ATC no. 2 3.07 0.52 98.8 99.5

Figure 17. An example comparison of the predicted and electrothermal model lifetime consumption
using the testing data.

In this study, the proposed neural network was used to predict LC and EG values, with
the later intention of comparing the outputs to determine the effectiveness of the proposed
ATC algorithm. However, the neural network demonstrated in this paper can be easily
applied to any PV system. While network training still requires an electrothermal model, it
has demonstrated effectiveness in predicting values for the long-term data. Neural network
predictions modeling PV systems could be used in the design and analysis stage of novel
PV system designs or integration. Neural networks have already been applied to energy
forecasting; however, this paper also demonstrates the use for reliability studies [43–45].

The results shown in Table 9 agree with the electrothermal simulations with a demon-
strated trade-off between lifetime improvement and energy generation, as shown by ATC
no. 1 and 2. The parameters for the algorithm described in Section 4 can be tuned for any
compromise level between lifetime improvement and energy generation. There is a small
decrease in LC change compared to Table 7. This could be explained by the cherry-picked
data and small sample size, as noted previously. However, these could also be explained
by network inaccuracy.
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Figure 18. Neural network predictions against simulated target values for both LC and EG for the
unchanged algorithm (a,b), proposed ATC algorithm no. 1 (c,d) and proposed ATC algorithm no. 2
(e,f). The accuracy and correlation values can be found in Table 8.

Table 9. LC and EG percentage change when using the proposed ATC algorithm when applied to a
year-long dataset relative to an unchanged P&O algorithm.

MPPT Algorithm LC (% Change) EG (% Change)

ATC no. 1 −1.08 −0.47
ATC no. 2 −3.26 −0.98

While reducing the energy generation seems counter intuitive, it is offset by increasing
the lifetime of the system. The aim is to minimize the total cost of the system over its entire
life; therefore, the trade-off between lifetime improvement and energy generation demon-
strated by the proposed algorithm can be used to find the optimal point. As mentioned, PV
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is set to play a large role in the decarbonization of energy generation globally, and reducing
the levelized cost of energy is key to this role.

The results of [20] showed a significant decrease in device lifetime models when a model
for degradation feedback was included. Therefore, it is suspected that if these feedback
models were applied to the ATC algorithm shown in this paper, the lifetime improvements
over an unchanged algorithm would increase above those shown in this section.

Table 10 presents the data split by environmental conditions. The high variation in LC
seen for overcast days is due to the lower absolute LC values. This causes network inaccura-
cies to become more prevalent on a percentage basis. Very variable days result in 39.2 times
more lifetime consumed on average than overcast days; therefore, in absolute value, im-
provements to overcast days are not critical. Clear days, on average, have 4.9 times greater
peak solar hours compared to overcast days, where peak solar hours are equivalent to hours
at an irradiance of 1000 W/m2. This means, on average, there is approximately 4.9 times
more energy generation over a clear day than overcast. Additionally, overcast days occur at
a rate 3.6 times less frequently than clear days. Consequently, sub-par energy performance
on overcast days does not significantly reduce total energy generation over a year.

Table 10. LC and percentage change when using the proposed ATC algorithm split by day type
relative to an unchanged P&O algorithm.

MPPT Algorithm LC (% Change) EG (% Change)

Clear
ATC no. 1 −1.14 −0.23
ATC no. 2 −1.59 −0.55

Overcast
ATC no. 1 327.84 −7.13
ATC no. 2 −73.503 −5.77

Variable
ATC no. 1 −2.08 −0.30
ATC no. 2 −4.26 −0.90

Very variable
ATC no. 1 −1.09 −0.46
ATC no. 2 −4.43 −1.35

Table 11 shows the advantage of this paper over the existing literature. The LC and EG
percentage changes for this paper are approximately a factor of four less than those of [6] ,
suggesting similar results could be achieved with careful consideration of the algorithm
parameters. With a much longer analysis duration, more confidence can be given to the
results, and a better understanding of the benefits over real-world implementation can
be ascertained. As mentioned previously, there are dramatic differences in the conditions
over a year. Consequently, to suggest that the results seen in [6] could hold throughout a
year of mixed conditions would be incorrect. Using real irradiance data means that the
results in this paper represent a more reality-true picture of the algorithm benefits [18]
presents favorable improvements at face value. However, with an accuracy of 95.3% for
lifetime consumption compared to the above 97% accuracy in this paper, this difference
in results between papers may be statistically insignificant. Additionally, while four days
total of testing data are an improvement over [6], with only one day from each cloud cover
category, it can be said to not be demonstrative of long-term trends, as some aspects of
the small dataset may be amplifying results. Consequently, there is low confidence in the
results until long-term data are used.

The techniques and results in this paper are intended for the improvement of the
design for reliability studies by making economical the use of long-term datasets, allowing
more reliable study insights. Compared with the existing literature, in which datasets are
often at most a small number of days, the datasets used in this paper can be described as
long-term as they total a full year.
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Table 11. Comparison of LC and EG percentage change when using the proposed ATC algorithm
when applied to a year long dataset relative to an unchanged P&O algorithm.

Paper LC (%) EG (%) Analysis Duration

This paper −3.3 −1.0 365 days
Andresen et al. [6] −13.0 −3.7 10 min

Tapia et al. [18] −4.6 −0.02 4 days

7. Conclusions

This paper details the theory, implementation and results for a novel active thermal
control MPPT algorithm utilizing neural networks for long-term analysis. The current
literature uses short analysis durations and non-real irradiance data, limiting the analysis
of the effectiveness under real-world conditions. In contrast, this paper implements long
term analysis techniques and uses real meteorological data.

The proposed algorithm functioned as desired, reducing lifetime consumption values.
A trade-off between lifetime improvements and energy generation was demonstrated. The
algorithm parameters can be tuned to the designer’s specifications.

The neural networks were utilized to great effect for predicting lifetime consumption
and energy generation values. Lifetime consumption was more difficult to accurately
predict than energy generation. The results proved that this prediction method can be used
for accurately modeling any PV system. Due to the requirement of electrothermal modeling
for generating the training and testing data, the time and storage benefits of using neural
networks are only present when long-term predictions are needed.

Further work could include using a higher resolution dataset, such as data sampled
every second. One such dataset is available from the National Renewable Energy Labo-
ratory. This could potentially increase neural network accuracy, as it would increase the
amount of training data by a factor of 60. Additionally, it would better represent real-world
conditions, which could change on a second by second basis.

The authors also envision several other promising future research directions for active
thermal control MPPT algorithms utilizing neural networks in the renewable energy do-
main. First, efforts should focus on enhancing prediction accuracy by exploring advanced
neural network architectures. Integrating real-time data into the algorithms would also
enable real-world performance monitoring and dynamic adaptation, leading to improved
overall efficiency and reliability. To optimize the trade-offs between lifetime improvements
and energy generation, the research can investigate novel cost–benefit analysis frameworks
and consider factors such as component aging, maintenance costs and environmental im-
pact. Furthermore, expanding the application of active thermal control MPPT algorithms to
other renewable sources, such as off-shore grid-connected wind farms, presents a promis-
ing avenue for research. Wind power converters face unique challenges related to harsh
environmental conditions and variable wind patterns, and thus, customized approaches
tailored to the specifics of wind energy systems are essential. Moreover, the research could
focus on optimizing computational efficiency, reducing model complexity and exploring
edge computing or hardware accelerators to enable real-time implementations of these
algorithms in resource-constrained environments.
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Abbreviations

ANN Artificial neural network
ATC Active thermal control
EG Energy generation
IGBT Insulated-gate bipolar transistor
LC lifetime consumption
MPPT maximum power point tracking
MSE Mean squared error
P&O Perturb and observe
RUL Remaining useful life
SRRL Solar Radiation Research Laboratory
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