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Abstract: In light of the carbon neutrality goals set post-Paris Climate Conference (COP21), this study
delves into the relationship between green technology innovations, energy consumption, and CO2

emissions in China, spanning the period of 1990 to 2021. The objective of this paper is to creatively
present the idea of a low-carbon digital economy from the viewpoint of digital technology. Utilizing
the Stochastic Impacts by Regression on Population, Affluence, and Technology (STIRPAT) model,
we scrutinize this relationship, employing unit-root testing to verify the integrative attributes of the
variables, inclusive of structural break data. Further analysis using the bootstrap Autoregressive
Distributed Lag (ARDL) bound testing method corroborates the relationship between these key vari-
ables. The study reveals unidirectional co-integration over time among green technology innovations,
renewable and non-renewable energy, per capita income, population, and CO2 emissions as per the
Granger causality test. Interestingly, our findings suggest that while green technology innovation, per
capita income, and renewable energy contribute to the reduction of CO2 emissions, non-renewable
energy consumption and population growth exacerbate them. These insights offer valuable guidance
for policymakers in formulating comprehensive strategies to enhance environmental quality through
the promotion of renewable energy and green technology innovations, with a specific emphasis on
the Chinese context.

Keywords: energy consumption; green technology; CO2 emissions; BARDL; China

1. Introduction

Every country must consistently allocate energy resources and develop socially fair
technology with the least negative environmental impact [1]. However, the unacceptable
natural environmental degradation brought on by the burning of fossil fuels can only
be stopped by slowing down both economic expansion and fossil fuel consumption [2].
Su et al. [3] have been educated on various economic choices about energy technology
and resources to achieve low-level carbon green economic development. In addition,
the world economy experienced a catastrophic economic shutdown as a result of unsafe
lending practices by US banks [4,5]. The recession’s repercussions cause a considerable
decline in foreign trade and a drop in pricing [6]. Almost all countries were desperate
to escape recession [6]. Since then, implementing green technology has presented a win-
win situation because not only are they green, but most of them are not utilized [7]. They
provide a valuable argument on combining green technology innovation, energy production
policies, and policy incentive timing for countries based on their socio-economic and
biological conditions.

Advances in Green technology are critical to meeting sustainable development goals
while having the least harmful impact on the normal environment [8,9]. Carbon neutrality,
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or achieving net-zero CO2 emissions, is a hot topic among legislators, researchers, and
other environmental sectors. The phrase CO2 emissions, on the other hand, refers to the
discharge of carbon into the environment from various types of energy consumption and
trade-associated sources. At the moment, there is a series of conversations regarding green
innovation technology (GTIs) in which the phrase “environmental sound technologies
(ESTs)” is regarded to be the first conception [10]. But the traditional green technology con-
cept has been transformed into completely sustainable solutions considering the economy,
the environment, and society.

Different countries have implemented various techniques to promote green devel-
opment. For example, the Chinese government has proposed that Green Technology
appropriately be implemented according to the United Nations (UN) 2030 agenda [11].
The Chinese government and commercial banks provide unconditional financial loans for
green investment and environmentally friendly industries [12]. The idea of green technolo-
gies was first introduced by Braun and Wield [13], believing it has to include ecological
treatment, pollution management, recycling, monitoring, purification, and other evaluation
procedures. Moreover, environmental considerations should be considered during the
invention of the manufacturing process; hence a novel GTIs system established on the
classic linear model technological innovations has been established. The necessity for GTIs
is seen in every country worldwide. As a result, the transformation of green technology
is critical for environmental conservation. This is because developing countries continue
to struggle to gain access to modern green technology. Approximately 66.7% of countries
still seek appropriate green technology to stabilize their economy and environment [14].
The UN Framework Agreement on Climate Change (UNFCC) has initiated a program
concentrating on climate-changing technologies, with the participation of 85 nations [15].
The success and efficiency of GTI in terms of green economy development can decrease air
pollution and preserve energy sources.

According to some researchers, the GTI’s performance is the association between input
and output during all operations of GTIs. Three basic methods for estimating the efficiency
of local GTIs have been observed [16,17]. The first method utilizes the patent indications
for green technology innovation, particularly based on GTI accomplishments. Given an
instance of such practices, show the number of patent applications received by firms,
and analyze when the stock of green and global green technology knowledge influenced
technological development. But one of the major drawbacks of this technique is that GTI
is a broad concept that a single indication cannot present. The second way to assess GTI
performance is through main element analysis across many locations, organizations, and
economies [18]. This strategy was evaluated by the people who created GTI’s index system.
A third strategy uses parametric and non-parametric techniques to determine GTI input
and output proficiencies [19].

With expanding financial and economic demands, emerging economies confront
numerous issues since increased economic activity increases energy demand, primarily
from conventional resources such as coal, gas, and oil [20]. Renewable energy sources
(RE) are strategic energy services for long-term development [2]. Solar energy, waste,
wind, and biomass are considered environmentally friendly and cost-effective because they
reduce pollution, improve energy safety, reduce the harmful effects of climate changes,
and ultimately, provide low costs energy to remote areas [21,22]. Most of the previous
literature outcomes about the renewable energy role in the environment are significant and
positive [23]. In the evaluation, some research shows that renewable energy has little effect
on energy production or CO2 emissions concentration [24,25]. On the other side, the lack
of green technology innovations and inefficient gearing structures are among the elements
that prove the harmful effect of renewable energy on environmental quality [26]. This will
propose that such technological developments can limit REC’s harmful environmental
effects [17].

The Chinese economy is the fastest-growing economy globally, and greenhouse gas
(GHGs) emissions are increasing rapidly. Its economy is disconnected from energy con-
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sumption, air pollution, water usage, and garbage production. However, due to the Chinese
economy’s high resource intensity and fossil fuels dependence, environmental pressures
will increase in absolute terms [27,28]. Currently, the results of the GHG inventory show
that total GHG emissions as CO2 equivalent increased by 0.34% in 2021 relative to the previ-
ous year; with the energy sector accounting for GHG emissions it is a big part. Furthermore,
total GHGs emission per capita were found to be 1.9 metric tons CO2 eq. in 1990-, 8.39- and
8.73-tons CO2 eq. in 2020 and 2021, respectively (see Figure 1). Fined particulate matter
emissions from the power sector and transportation pose major health risks currently.
Around 660 major Chinese cities generate solid waste, approximately 190 million tons
each year; 29% of the world’s MSW is generated each year. Environmental protection,
energy savings, pollution control, water conservation, recycling, low carbon, emission
reduction, environmental protection, and ecology are also examples of inventions. All the
numbers above provide sufficient justification for examining the Chinese’s economy while
monitoring trends in CO2 emissions based on factors of interest such as green technology
innovation, energy consumptions, and numerous other macro-economic dynamic forces.
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The objective of this paper is to add the existing literature in the following ways:
(1) Its concept uses annual data on the Chinese economy from 1990 to 2021 to compare CO2
emissions, GTI, NREC, REC, POP and PI with the significance of GTIs. (2) This present
study explores the characteristics of unit root all variables such as GTIs, NREC, REC,
POP, PI, and CO2 emissions using ADF and ZA tests. (3) The bootstrapping ARDL bound
analysis approach is used in this work to validate co-integration association aimed variables
for co-integration analysis. Several advantages have been noticed in the present literature
when using the BARDL technique for data analysis. For example, the BARDL test increases
the lagged values significance of selected variables, indicating a better understanding of the
model’s Co-integration status than some classic models such as OLS and the basic ARDL
test. Other advantages of utilizing BARDL include the absence of inconclusive intervention
with a bound test. Furthermore, there is strong evidence about the indigeneity difficulties
with the size of the ARDL bound testing structure and its small effect on power dynamics
when utilizing the bootstrap ARDL test.

In addition, we used the Granger causality method to investigate the causality rela-
tionship between the research variables. Pragmatic evidence suggests that developments
in green technology and energy reduce both long-run and short-run CO2 emissions. How-
ever, China’s CO2 emissions are increasing due to an increase in energy consumption and
population. The causality test indicates a significant relationship between GTIs and CO2
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emissions, NREC and CO2 emission, REC and CO2 emissions, POP and CO2 emissions,
and PI and CO2 emissions.

The remaining part of the paper is organized as follows: Section 2 examines the
pertinent literature. The data, technique, and models are all described in Section 3.
Section 4 contains the findings and discussion, while Section 5 has the conclusion and
policy recommendations.

2. Literature Review
2.1. Green Technological Innovations and Environmental Quality

Numerous studies have investigated the pragmatic relationships between green tech-
nology innovations and environmental Quality [29,30]. Ali et al. [31], for example, studied
the association between urbanization, income level, technological innovation, and CO2
emissions. According to the study’s outcomes, technological innovation, growing urban-
ization, and money per capita significantly impact environmental quality. Their study
determined that technological innovation introduces innovative technology in the country,
which inclines to lower CO2 emissions [6,8]. The negative association between green tech-
nology advancement and environmental quality was demonstrated. The study determined
that technological innovation progress results in energy production and efficient technology,
which are less harmful to the environment.

Ganda [32] investigated the association between technological development, REC,
and environmental pollution and determined that REC and technological progress signifi-
cantly reduce pollution, finally improving environmental quality. Simultaneously, several
other studies contended that technological innovation did not help much to decrease CO2
emissions in emerging nations. For example, Bai et al. [33] concluded that technological
advancement increases energy consumption, increasing greenhouse gas emissions. The
study also indicated that emerging countries primarily rely on traditional energy sources,
significantly contributing to environmental quality. Thus, rather than CO2 emissions, tech-
nical improvements in developing economies tend to increase them. Similarly, Ganda [32]
found that green technology innovation increases pollution in low-income nations. With
these contradicting outcomes in mind, scholars have begun working on green technology
breakthroughs [2].

Töbelmann et al. [34] examine the relationship between GTIs and environmental degra-
dation in N11 economies from 1995 to 2017. Their research re-examined chosen economies’
technological policies, environmental quality, economic development, and clean, inex-
pensive energy production. Based on the Environmental Kuznets Curve, they studied
the influence of technological advancement, renewable energy, and other macroeconomic
dynamics on pollution using bootstrap regression analysis [34]. Using the generalized
method of moments and panel settings, they examined the remarkable impact of carbon
emissions on environmental quality in EU-27 member states from 1990 to 2014. Environ-
mental innovations are thought to have contributed to lower carbon dioxide emissions,
although general innovation does not affect such CO2 emissions. GTIs are synonymous
with environmental innovation, an effective technique that minimizes pollution while
positively contributing to economic growth [35]. Many researchers have claimed that GTIs
favor lowering CO2 emissions or improving environmental quality [36]. For example,
Miao et al. [37] investigated the impact of green technology research and development on
environmental quality and determined that green technology research and development is
useful for environmental quality. The role of green technology in improving environmental
quality has also been mentioned [38]. Lee and Min [39] investigate the impact of green inno-
vations, REC, and economic growth in reducing carbon emissions in the Chinese economy
from 1990 to 2018. The QARDL technique reveals that technological innovation, renewable
energy, and economic growth have a major impact on Chinese CO2 emissions [11].

For the COP 21 agreements, we examined the relationship between financial develop-
ment, renewable energy, technological innovations, and CO2 emissions. The unit root test
improved the mean groups, and commonly correlation impact mean group approaches
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were used for data analysis [40]. The researcher’s finding shows a significant positive
connection between financial development and CO2 emissions. Furthermore, a negative
relationship exists between CO2 emissions and green technological innovations [1]. Con-
sider using a panel model with slope heterogeneity and a cross-sectional test to examine
the intensity reduction in CO2 emission and technological innovation in China from 2001
to 2016. According to the data, when technological innovations increase one percent,
the renewable energy reduces carbon intensity by 0.051 percent. Other studies have also
found a trend in CO2 emissions in many economies [41]. Kone and Buke [27] have exam-
ined the GTIs on the Turkish environment while keeping an eye on trends in GTI. They
go on to say that green technology has a bright future. As a result, the Turkish econ-
omy has seized the lead in producing electrical automobiles for the international market.
Lee and Min [39] have investigated the influence of clean energy, GTIs, and militarization
on economic growth in China’s green perspective.

According to the study’s conclusions, clean energy is an essential dynamic force in
developing a green economy in the Chinese economy. On the other hand, technological
innovations promote green economic development in the selected country [42]. In defining
the green construction industry, the Chinese economy was also considered to study the
environmental valuation based on social, economic, political, and green technological
considerations. According to the study, the impact of macro-environmental factor industries
was determined to be medium to high. According to the above mentioned materials, the
resulting hypothesis was proposed:

H1. Green technology innovation (GTI) is important in determining China’s CO2 emissions.

2.2. Energy Consumptions and Environmental Quality
2.2.1. Non-Renewable Energy Consumption (NREC) and Environmental Quality

Previous research has focused on the energy and environmental nexus. Numerous
studies have investigated the impact of traditional energy sources on environmental qual-
ity. Simultaneously, others investigated the contribution of renewable energy sources to
environmental quality. Previous research has shown that NREC resources increase carbon
emissions. According to Saboori and Sulaiman [43], the impact of energy use on Malaysian
environmental pollution was that NREC increases environmental degradation. As a re-
sult, environmental degradation occurs. The researchers conducted the same research
for SAARC countries and discovered a positive association between traditional energy
usage and environmental quality [44]. Research also demonstrated the positive benefits of
traditional energy sources to environmental quality reduction in Pakistan [31]. In the same
way, the research of Sharif and Raza [45] shows that conventional energy plays a positive
impact on worsening the environment quality. Liu et al. [46] investigated the impact of
home energy consumption on environmental quality and demonstrated the relevant rela-
tionships between such factors. Because energy sources are the most important engine of
every nation’s economic growth, this hopeful association between traditional energy and
the environment is becoming a threat to the economy. As a result, researchers have been
looking for an alternative measurement of traditional energy to develop environmental
quality and boost green economic growth. The next hypothesis is proposed based on the
above literature.

H2. Non-renewable energy consumption (NREC) is essential in determining China’s CO2 emissions.

2.2.2. Renewable Energy Consumption (REC) and Environmental Quality

Consumption of renewable energy is an alternative approach that recovers envi-
ronmental quality while contributing considerably to green economic growth [47]. By
consuming renewable energy sources, total energy can be produced to meet household
energy needs. These forms of energy can generate electricity without compromising envi-
ronmental quality. Experts have been exploring the relationship between unconventional
energy sources and environmental quality while considering renewable energy sources.
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The impact of REC and NREC sources on the reduction of CO2 emission was investigated
in South Africa and revealed a strong connection among the factors. According to the
study, increasing NREC by 1% also increased CO2 emissions by 10,235 kt. A 1% increase in
REC decreased carbon emissions by 2855 kt. According to the study, NREC is less strongly
associated with CO2 emissions [48]. From 2000 to 2011, the effect of Chinese economic
growth and poor air quality are studied, counting the production and utilization of REC.
The study also found that although renewable energy production and consumption can
positively contribute to economic growth, they are not significantly associated with water
and air pollution in the selected country.

In the study conducted by Wang and Wang [49], “renewable energy resources” were
explored as “cleaner energy sources” and suggested their beneficial role in enhancing
the efficiency of the environment. Wind energy was considered an important source and
production of renewable energy [50]. As a result, the author examined wind energy’s con-
tribution to environmental pollution and discovered that energy generated from renewable
sources of wind has a beneficial effect on environmental quality. Tsoutsos et al. [51] noticed
that solar energy has been proven to impact environmental quality directly. Sharif et al. [52]
have re-examined the environmental footprints of REC and NREC in Turkey. From 1965
until 2017, they used the QARDL method for this purpose. Under all of the study quantiles,
it is seen that the REC function effectively reduces the environmental footprint. In the
meantime, the study’s results have approved the existence of the environmental Kuznets
curve (EKC). Kalmaz and Kirikkaleli [53], using innovative quantile modelling, attempted
to examine the association between REC and environmental quality from 1990 to 2019.
The study results show a two-way connection between REC and environmental quality.
This contributes empirically to estimating CO2 emissions in emerging economies using
energy use, economic development, and other macroeconomic parameters. Findings from
Sharif et al. [54] suggest that CO2 emissions, energy consumption, and other macroeco-
nomic factors have long-term equilibrium relationships.

Based on the discussion so far, it is possible to conclude that the literature has effec-
tively explored the relationship between GTIs, REC, NREC, and environmental quality.
However, according to the authors, there is a widespread lack of agreement when it comes
to investigating the role of GTIs, REC, NREC, and environmental quality within the frame-
work of the STIRPAT model. Given this study’s theoretical and empirical value, it would
be reasonable to support its inclusion in the existing literature. Another methodological
gap occurs, as we have learned that the researcher provides limited literature when using
the BARDL technique to determine tendencies in environmental sustainability, particularly
in the environment of China. As a result, the current work has addressed methodological
and theoretical gaps in the literature. Alola and Kririkkaleli [55], used wavelet quantile
and gradual-shift causality techniques to study the relationship between REC and en-
vironmental quality in the immigration and healthcare sector in the United States. The
1999–2008 study outcomes revealed a significant feedback connection between REC and
CO2 emissions at various scales. Short-run estimates show a favorable association between
the research variables.

H3a. Renewable energy consumption is important in deciding China’s CO2 emissions. In addition,
the following assumptions were investigated in our study.

H3b. per capita income plays a key effect in influencing China’s CO2 emissions.

H3c. China’s population plays a crucial effect in determining CO2 emissions.

3. Materials and Methods

Earlier studies offered support for the IPAT model in calculating CO2 emission vari-
ables [33,56]. More work has been added to the IPAT concept by Dietz and Rosa [57].
Recently, the model has been adapted to a stochastic variation known as stochastic effects
Regression on Population, Affluence, and Technology. An important advantage of the
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STIRPAT model is that it can empirically test hypotheses. As a result, we formulate the
following equation for empirical investigation:

CO2EMit = f(POPit, NRECit, PIit, RECit, GTIit) (1)

In this Equation (1), CO2EM is the function of population, non-renewable energy
consumption, income per capita, renewable energy consumption, and Green Technology
Innovation, respectively. The model was derived from the study contributions of Alam
et al. [58] and Paramati et al. [40]. The model has recently been transformed into a stochastic
variant called the Stochastic Impacts by Regression on Population, Affluence, and Technol-
ogy. The STIRPAT model has the advantage of being able to test assumptions empirically.
As a result, for the pragmatic inquiry, we constructed the following equation:

Data and Empirical Modelling

From 1990 to 2021, data on the role of GTI, REC, NREC, POP, PI, and CO2 emissions
in China were collected for empirical study. CO2 emissions are quantified per capita, while
the number of registered environmental patents assesses green technical innovation; data
for both variables are obtained from the OECD statistics website. Moreover, renewable
energy includes geothermal, hydro, sun, wind, and tide, whereas non-renewable energy
includes using petroleum, gas, coal, and other fossil fuels to generate energy. Figure 2
exhibits the methodology flowchart of this study.

In conclusion, REC and NREC data were obtained from an Energy Information Ad-
ministration (EIA) databank. The data are logarithmically transformed to produce a more
accurate estimate. According to McNown et al. [59] and Sohag et al. [60], the current
study makes use of “The Bootstrapping ARDL Co-integration method” to assess the Co-
integrating relationship between the intended set of selected variables. Furthermore, when
compared to the previous ARDL approaches of Pesaran et al. [61] and Perron [62], one of the
primary benefits of using the bootstrap ARDL method is the capability to deal with power
attributes and the low side. According to the most recent Co-integration test, its bootstrap-
ping ARDL Co-integration can strengthen both the “T-test” and the “F-test.” According
to this viewpoint, Pesaran et al. [61] provide two criteria for identifying a similar Co-
integration system, the first which describes their major outcomes with an error-correction
co-efficient. On the other hand, the second criterion requires the coefficients of variables
with significant lagged values. More specifically, Pesaran et al. [61] state that for the other
case, “the upper and lower critical limitation should be utilized during co-integration”.
However, for initial possible examples, the bound test and their limitation are not required.
This test can also address the first requirement mentioned previously (coefficient for error
terms and their significant outcomes), provided that the dimensions 1 model incorporates
research factors. However, as stated by Goh et al. [63], common “unit-root” tests can be
confusing due to low specificity and strength characteristics. The problem is handled
fairly [64]. ARDL performs a bound test while providing a bootstrap. The superiority
of its bootstrapping bound ARDL test may be seen due to its vulnerability in order of
“parameters integration properties.” For the time being, it is an appropriate solution in the
situation of “ time-series complex analysis,” determining such problems as ample examples
related to usual ARDL bound estimation [42]. An alternative advantage of bootstrap ARDL
bound analysis is generating “measured values” by eliminating the possibility of unknown
areas and cases (which exist in traditional bound testing techniques). Figure 3 exhibits the
dependent and independent variable of the study. Also, it shows how these variables have
positive and negative relationships in the previous literature.

yt =
p

∑
i=1

aiyt−i +
q

∑
j=0
βJxt−j +

r

∑
k=0

γkZt−k +
s

∑
j=1
τjDt,1 + µt (2)
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Equation (2) above shows the mathematical technique for the conventional bootstraps
ARDL bound test. In the 1st Equation, representations like i, j, k, l are identified as lag terms.
For example, i = 1, 2 . . . p; j = 0, 1, 2 . . ... q; k= 0, 1, 2, R; l = 0, 1, 2 . . .. s and t denote the time.
Furthermore, yt is a responsible variable, while xt and zt are defining factors in the study.
The parameters of the lagged descriptive variables are denoted by Coefficient in the model.
In addition, t represents the zero (0) mean error term with determinate variance. In the
model above, the error-correction form is represented by Equation (3), which is as follows:

∆yt = ϕyt−1 + γx1 + Ψzt−1 +
p−1

∑
i=1

πiyt−i +
q−1

∑
j=1

δjxt−j +
r−1

∑
i=1

πkz−k +
s

∑
i=1

ωiDt,1l + µt (3)

In the preceding Equation (2)

∅ =
p

∑
i=1

ai,γ =
q

∑
i=1
βi, and Ψ =

r

∑
i=0
γi

At this stage, the symbols i, j, k, and I denote the functions associatied with Equation (2).
Equation (3) is approximated. In the following model, a constant term designated by the
letter c is used:

∆yt =
∼
c + ϕyt−1 +

∼
γx1 +

∼
Ψzt−1 +

p−1

∑
i=1

∼
λiyt−i +

q−1

∑
j=1

∼
δ ixt−j +

r−1

∑
i=1

∼
πizt−k +

s

∑
i=1

∼
ωiDt,1l +

∼
µt (4)

To confirm Co-integration among the variables of the analysis “yt, tx, and zt,”
Equation (4) has three null hypotheses to be rejected, which can be addressed below:

I. The F1 test, as related to all appropriate error-correcting terms.

H0 : ∅ = Ψ = 0 Compare to H1 : ∅ 6= Y 6= Ψ

6=0, which is notice that any of ∅,y, and ψ are not equal to zero.

II. The quality of F2 based on the response of variable settings.

H0 : ∅ = Ψ = 0 alongside H1 : ∅ 6= y 6= Ψ

= 0 denotes that either y or Ψ is not equivalent to zero.

III. A T-test with an emphasis on lagged forecaster variable estimations

H0 : ∅ = 0 in contradiction of H1 : ∅ 6= 0, meaning that Ψ is not equal to zero

An important assumption is that the general ARDL model produces significant bound
test values in the F1 and T-tests. Nonetheless, it rejects the test score based on the irregular
variables, The F2 examination. It is possible to have critical values for all three metrics
by using the BARDL approach given by McNown et al. [59]. Finally, we used the key
values that they tabulated to produce some robust logical results. Furthermore, all Co-
integration tests require a static test. However, previous research used the ADF unit
root technique to check the data aspect, which is inappropriate for data with structural
breaks that significantly impact the study outcomes. As a result, Zivot and Andrews [65]
have significantly supported the current literature by allowing the possibility of structural
hypothesis breakdowns in data without specifying a breakpoint time. This technique
allows the structural breakpoint to be correctly identified; leaving aside the breakpoint
issue. In addition, this can support the idea that the choice of the endogenous breakpoint
greatly affects the yield of the unit root. As a result, the current study also used the ZA and
ADF unit root test for better comparison. Figure A1 shows the recursive estimation of all
variables. The study data soureces are mentioned in the Table A1.
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4. Results and Discussion

Table 1 displays descriptive statistics for the findings. Regarding mean scores, we
discovered that POP is the most valuable, followed by PI, NREC, and REC. This would
support the claim that the targeted economy’s average POP is higher, but Personal Income
trends are higher than Renewable Energy. Furthermore, we find that CO2 emissions are
more volatile than NREC. Conversely, PI has a higher deviation than REC, GTI, CO2
emissions, NREC, and POP. In the current literature, Jarq-B is the direct measurement of
goodness-of-fits used to determine whether or not the data confirm a normal distribution,
as indicated by skewness and kurtosis. However, the Jarq-B results are positive, with the
value remote from zero indicating that the variables of interest have a normal distribution.
The same findings were discovered using [66]. The Jarq-B results reveal that CO2, GTI, PI,
REC, NREC, and POP are normally distributed.

Table 1. Descriptive statistic.

LNCO2 LNGTI LNNREC LNPI LNPOP LNREC

Mean 0.533575 0.960359 1.829364 3.42743 6.11876 2.717955
Med 0.640506 0.965996 1.868094 3.485112 6.120149 2.664451
Max 0.819934 1.075912 2.126988 4.098828 6.15444 3.37328
Min 0.031709 0.808886 1.493179 2.562841 6.068364 2.089905

Std. Dev. 0.283756 0.075208 0.225783 0.510382 0.026513 0.423897
Skew −0.40931 −0.40732 −0.14323 −0.17038 −0.24013 0.144333
Kurt 1.493327 2.032314 1.389685 1.582919 1.871102 1.602751

Jarq-Bera 3.920268 2.133407 3.566899 2.832308 2.006749 2.714178
Prob 0.14084 0.344141 0.168057 0.242645 0.36664 0.257409

Note: CO2: CO2 emissions, GTI: green technology innovation, REC: renewable energy consumption, NREC:
non-renewable energy consumption, PI: personal income. POP: population. Source: Author Estimation.

The pragmatic results of pair-wise correlations in (Table 2) show significant associa-
tions between CO2 emissions and REC, population and CO2 emissions, CO2 emissions,
and PI. CO2 emissions and POP, on the other hand, are found to be adversely associated
with GTIs and NREC. In addition, REC, PI, and pop are positively connected. During the
study period, there was a substantial relationship “between the variables” and a negligible
link between “population and RE.” in the Chinese region. The variables variance inflation
factor (VIF) and threshold as 1/VIF are shown in Table 2. The singular value and Mean
of VIF for the variables of interest is less than 5, indicating that multi-collinearity is not
an issue. The variable’s values are more than 0.10, indicating the variables are connected
within an acceptable range.

Table 2. Estimations of correlation analysis.

LNCO2 LNGTI LNNREC LNPI LNPOP LNREC

LNCO2 1
LNGTI −0.77401 *** 1

LNNREC −0.58173 *** 0.216973 1
LNPI 0.38751 ** 0.453051 *** 0.288723 1

LNPOP 0.687239 *** 0.352844 ** 0.489001 *** 0.494725 *** 1
LNREC 0.986504 *** 0.75523 *** 0.987168 *** 0.398992 *** 0.21927 1

Variables VIF 1/VIF
LNGTI 1.849523 0.024096

LNNREC 1.232772 0.048118
LNPI 1.384842 0.029397

LNPOP 1.599988 0.528927
LNREC 1.371023 0.00484

Means VIF 1.61734
Note: Whereas: *** p < 1%, ** p < 5%.

The unit root test applies to the small data size. In the same way, as demonstrated by
Phillip and Perron [67] and Dickey and Fuller [68], due to insufficient explanatory power,
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typical unit root tests might reject the null hypothesis issues. On the other hand, the ADF
unit root reflects these problems through its better explanatory control and provides some
stable pragmatic evidence about the existence of structural breaks. Table 3 shows unit root
test results with structural breaks. CO2 emissions, GTI, REC, NREC, POP, and PI, have all
been discovered to have the unit root problem at a level. As previously indicated, reliable
tests for unit roots in structural breakdowns may provide misleading results, particularly
in time-series data. The ZA test, which takes into account one structural break as suggested
by Zivot and Andrews [65]—ZA after this—solves this problem. Table 3 also includes
the results of the ZA tests. Furthermore, ADF (∆) and ZA (∆) demonstrate variables are
stationary at 1st difference.

Table 3. Unit-root test.

Variables ADF
(Level) ADF (∆) ZA (Level) Break Year ZA (∆) Break Year

LNCO2 −1.296433 −2.940861 −5.266215 2009 −8.095561 2000
Q3 Q2

LnGTI −1.440102 −6.434796 −3.425299 2005 −7.523634 1995
Q2 Q1

LNNREC −1.144383 −5.481820 −3.878664 2001 −6.997140 2015
Q1 Q2

LNPI −0.872587 −3.577986 −4.410252 2002 −6.163395 2013
Q2 Q3

LNPOP 0.980725 −5.760702 −3.301945 2016 −6.079257 1993
Q2 Q1

LNREC 0.079889 −6.440344 −2.877119 2002 −7.492728 2002
Q1 Q4

The ADF and ZA test statistics.

Table 4 shows the results of the Bootstrapped ARDL Co-integration analysis. The
F-test values and T-test show that ARDL rejected the H0 of Co-integration between the
variables. We also reject the H0 because CO2 emissions are a significant dependent variable.
The Reciprocal F-test and T-test will be used on multiple lagged values of all variables to
verify the presence of co-integration vectors in the Chinese CO2 emission system. Moreover,
distinctive CO2 concentrations, GTIs, REC, NREC, POP, and PI, have a long-run association
in China from 1990 to 2021. The value of R2 is 0.967, indicating that all variables describe
CO2 emissions at the same time. In conclusion, the JB results demonstrate the existence of
a normal residual distribution for the model.

Table 4. Co-integration based on ARDL.

Bootstraps ARDL Co-Integration Analysis Diagnostic Tests

Estimated
Models

Lag Length
Criteria

Break
Year FPSS TDV TIV R2 Q-stat LM(2) JB

Model 1, 2, 2, 2, 2, 2 2007 Q2 7.750 *** −2.932 * 7.946 *** 0.967 4.498 1.051 1.728

Model: CO2t = f (GTIt, NRECt, REt, POPt, PIt). Nota bene: *** p 1%, and * p 10%.

The Akaike Information Criterion (AIC) was used to estimate the optimal lag time. The
F-statistic is based on the bootstrap process’s critical asymptotic bounds. The dependent
variable TDV is the t-statistic, and the independent variable, the t-statistic, is TIV. LM
measures the Langrage Multiplier test, and the approximation term for JB is the Jarq-B
test. Table 5 depicts the long-run study findings, demonstrating that green technology
innovation significantly and negatively influences CO2 emissions.

The short-run empirical findings are shown in Table 6. We find that GTI consider-
ably reduces CO2 emissions. This will support the claim that increased advancement in
green technology will cut carbon dioxide emissions in the short run. At a 1% level of rele-
vance, renewable energy is negatively and strongly associated with CO2 emissions. This
demonstrates how REC helps to shift the typical energy pattern, reducing CO2 emissions
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in the Chinese economy. PI and REC are negative and significant with CO2 emission; this
is typically the pattern of personal income and energy sources reducing CO2 emission.
However, NREC and POP are positively related to CO2 emissions by 1%, implying that
these are key factors in increasing CO2 emissions. The ECMt-1 estimation value is (−0.497),
which is negatively significant at 1% at the level. The model short-run has also confirmed
diagnostic tests that show normality, autoregressive heteroscedasticity, serial correlation,
and homoscedastic variance in the study data. The short-run parameters’ stability is
confirmed by CUSUM and CUSUMsq, showing that the short-run dimension model is
objectively designed.

Table 5. Bootstrapped ARDL co-integration (long-run) analysis.

Variables Co-Efficient Std. Error t-Statistic Prob

LNGTIt −0.475344 *** 0.131852 −3.60513 0.0014
LNNRECt 0.326949 ** 0.32653 1.920033 0.0428

LNPIt −0.44764 *** 0.144665 −3.094331 0.0050
LNPOPt 0.021231 *** 1.960909 4.600536 0.0001
LNREt −0.261724 ** 0.105181 −2.488328 0.0202

C −54.38687 *** 11.86316 −4.584516 0.0001
R2 0.995435

Adj-R2 0.994294
Durbin-Watson 1.732422

Stability analysis Test F-Stat P-V

X2 Normal 0.35341 0.7064
X2 Serial 0.87322 0.6037
X2 Arch 0.76858 0.8362

X2 Hetero 0.74889 0.2473
X2 Reset 0.36013 0.2687
CUSUM Stable

CUSUMsq Stable
Note: *** p < 1%, ** p < 5%.

Table 6. Bootstrapped ARDL co-integration (short-run) analysis.

Variable Co-Efficient Std. Error t-Statistic Prob.

C −61.21319 *** 10.6776 −5.73286 0.0000
LNGTIt −0.409602 *** 0.117934 −3.473129 0.0021

LNNRECt 0.956586 *** 0.308773 3.098024 0.0051
LNPIt −0.502818 *** 0.128371 −3.9169 0.0007

LNPOPt 10.09867 *** 1.76105 5.734459 0.0000
LNREt −0.272036 *** 0.092345 −2.945855 0.0073
ECMt-1 −0.497867 0.066471 −7.48995 0.0000

R2 0.993575
Adj-R2 0.992339

Durbin-Watson 1.335798

Stability analysis Test F-Statistics p-Value

X2 Normal 3.508969 0.0744
X2 Serial 0.353413 0.7064
X2 Arch 0.24356 0.8362

X2 Hetero 1.360131 0.2687
X2 Reset 0.508969 0.8291
CUSUM Stable

CUSUMsq Stable
Note: *** p < 1%.

Finally, the VECM Granger causality method is used to investigate a causal association
between the study variables, and the results exist in Table 7. The importance of Granger



Energies 2023, 16, 6184 13 of 18

causality in time series analysis literature cannot be overstated as it helps decide whether
the time series is suitable in anticipating others. Table 7 shows that the F-statistics value
for the first null hypothesis is significant at 5%, indicating that GTI Granger causality is
positively unimportant. CO2 is positively caused by NREC but not by Granger, whereas
NREC is positively caused by CO2. The PI-CO2 relationship shows significant evidence
that PI does not cause CO2 and CO2 causes PI, with an F-statistic of 10.2084. Furthermore,
the study’s alternate theory is supported by the fact that the population does not produce
CO2, and CO2 causes POP. Finally, we discover that REC does not cause CO2 granger and
that CO2 granger causes REC significantly by 1% at the level.

Table 7. Granger causality.
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5. Discussion

The results of this study indicate that a 1% increase in green technology is associated
with a 0.47% decrease in g CO2 emission, indicating their inverse relationship. These results
are related to those of Umar et al. [69] and Jordaan et al. [70]. The NREC and CO2 emissions
are substantial and positive, implying that NREC is a boon for increasing CO2 emissions
in the Chinese region. All else being equal, a 1% increase in the value of NREC increases
CO2 emissions by 0.33%. This confirms the positive result of increased CO2 emissions from
NREC. This pragmatic finding is consistent with Adamas and Acheampong [71]. Similarly,
even at a 1% at level, REC is highly positively associated with CO2 emissions. This suggests
that personal income is beneficial for China’s low CO2 emissions. If everything else
remains constant, a −0.45% reduction in CO2 emissions is accounted for by a 1% increase
in personal income. This pragmatic result is dependable on the findings of Khan et al. [72].
The association between POP and CO2 emissions is significant statistically, implying that
POP frequently plays a vital role in hastening CO2 emissions, such as energy consumption.
By holding all variables constant, a 1% increase in labor increases the CO2 emissions by
0.021%. These results are supported by Yeh and Liao [73].

Renewable energy has a tangible and negative link with CO2 emissions, showing that
renewable energy is a boon for reducing CO2 emissions in China. Keeping everything
else unchanged, a 1% change in REC reduces CO2 emissions by 0.26%. This validates the
positive result for rising CO2 emissions from renewable energy during the period. Taiwan’s
population growth rate has a substantial impact on carbon emissions. At 5%, the impact of
per capita CO2 emissions is significant. This would indicate that the Chinese economy had
higher per capita CO2 emissions. According to historical data, China’s per capita wealth has
expanded dramatically over the last few decades, resulting in rising CO2 emissions. The
long-term explained variation in CO2 emissions through all variables is 0.994%. Altogether,
autocorrelation is identified using DW statistics and detected as no auto-correlation in the
model data. The model approved all stability tests and had no problems in normality, serial
Co-relation, heteroscedasticity, autoregressive conditional heteroscedasticity, or description.
The Parameter constancy can be observed using CUSUM and CUSUMsq, which reflect
long-run parameter stability. In a nutshell, all the hypotheses of this study are accepted.
Table 8 shows the summary of hypothesis results:
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Table 8. Hypotheses Summary.

Hypothesis Results

H1 Green technology innovation (GTI) is important in determining China’s CO2 emissions. Supported

H2 Non-renewable energy consumption (NREC) is essential in determining China’s CO2 emissions. Supported

H3a Renewable energy consumption is important in deciding China’s CO2 emissions. In addition, the
following assumptions were investigated in our study. Supported

H3b Per capita income plays a key effect in influencing China’s CO2 emissions Supported

H3c China’s population plays a crucial effect in determining CO2 emissions. Supported

6. Conclusions

China begins to make progress toward its carbon neutrality objective following the
Paris Climate Conference (Conference of the Paris COP: 21). The goal of this research was
to examine the association between CO2 emissions, GTI, NREC, REC, POP, and PI in the
Chinese economy from 1990 to 2021. Co-integration can be seen in GTIs, NREC, REC, POP,
PI, and CO2 emissions. GTI, REC, and PI negatively influence CO2 emissions, but NREC
and POP have long-term positive impacts. Similarly, in the short run, REC, GTIs, and PI
all negatively and significantly impact CO2 emissions, while the remaining drivers have a
positive impact.

The pragmatic results of the causality reveal unidirectional causation between GTI
and CO2 emissions, NREC and CO2 emissions, REC and CO2 emissions, population and
CO2 emissions, and PI and CO2 emissions. GTI, REC, and PI negatively influence CO2
emissions in terms of policy implications. This would mean that more policies should be
devised to stimulate increased GTIs, PI, and the usage of REC while achieving long-term
environmental development. Our findings show a link between GTI, PI, REC, and CO2
emissions. Improved economic trends towards more GTIs advancements, REC, and PI will
directly impact natural carbon emissions in such situations.

Policy Recommendation

The Chinese government must develop policies encouraging GTIs, REC, and the CO2
emission triangle. In addition, our empirical data show that NREC, POP, and CO2 levels
are all rising. To get positive results, the local government should develop encouragement
programs to promote REC sources. Appropriate measures are also required to limit the
growing population expansion hazard, leading to increased carbon emissions. Furthermore,
such empirical research has demonstrated that the government and policymakers confront
extra challenges in implementing proper macroeconomic changes to address the direct
association between REC, POP, and CO2 emissions. Based on this distressing reality, our
research highlights the significance of designing and implementing serious policies to
control the direct and significant effect of elements more strategically such as REC, POP,
and PI on CO2 emissions.

Finally, this study has several drawbacks. The present study looks at tendencies in
carbon neutrality and the role of GTIs and RECs in the Chinese economy. This means that
the rest of the Asian countries are not considered in the analysis. Second, the economic
expansion role in the influence of environmental quality is generally recognized in the
present literature, according to the theoretical assumption known as the Environmental
Kuznets Curve (EKC). However, the existing analysis needs to be refined to analyze this
trend in CO2 emissions on the EKC theoretical basis. Future studies should include these
barriers to improve race and policy implications.
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