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Abstract: The main purpose of this work is to present a robust speed control structure for a two-mass
system. The tested system consists of a PI controller with two additional feedback. The coefficients
of the control system are selected using a pattern-search optimization method in order to obtain
robustness to changes in the system parameters. The control system requires information about
non-measurable state variables. For this purpose, it is proposed to use a multilayer observer. In
order to show the advantages of the MLO system, this article also presents comparative studies with
a classical observer. A number of simulation and experimental tests are carried out. The obtained
results confirmed a much higher quality of control in the system cooperating with a multilayer
observer compared to the system with a classical observer.

Keywords: robust control; elastic connection; two-mass system; state controller; multilayer observer;
full-sized asymptotic observer

1. Introduction

The requirements for the static and dynamic properties of currently used drives are
constantly increasing. The aim is to achieve short rise times, small overshoots, and vibration
damping, also in the case of changing system parameters. With such requirements, all
elements which can influence the drive property should be taken into account during the
design procedure. In the drive, one of the most important factors that can reduce the
performance is the characteristics of the mechanical part of the drive, in particular, the
elasticity of the mechanical connection. Such drives are commonly called two-mass (or in
general multi-mass) systems [1–12]. Classic examples are high-power, large inertia drives
with elasticity resulting from the long connection between the driving motor and load
machine. As an example, systems such as wind turbines, rolling mills, trains, and machines
used in textile and paper industries can be mentioned [1–12]. If the mechanical characteristic
is omitted in the process of designing the control structure, torsional vibrations may occur
during the operation of the drive. They generate additional mechanical stresses in the shaft,
decrease the whole system’s reliability, and shorten the life cycle of the system. Additionally,
the torsional vibrations affect the accuracy of the position/speed control. The progress
in power electronics and control techniques allows for the shortening of the time control
of the driving torque in different motors. This, in fact, excited the torsional vibration in
different types of drive systems. Nowadays, they are recognized in robotic arms, beams,
and servo systems, as well as in the drives of vehicles, drones, and helicopters [1–12]. The
control of torsional vibrations has been a very popular topic for decades, yet new, more
effective control algorithms are sought after in industries.

In order to dampen torsional vibrations, different control strategies have been pro-
posed. It has been shown in many papers that a classic cascade structure with a single
PI controller is not a sufficient solution in this case [13,14]. This system can have large
overshoots and long settling times. In order to increase the damping ability, the insertion

Energies 2023, 16, 6231. https://doi.org/10.3390/en16176231 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en16176231
https://doi.org/10.3390/en16176231
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0002-7095-1384
https://orcid.org/0000-0002-8764-4137
https://orcid.org/0009-0007-1540-6168
https://orcid.org/0000-0002-7487-0610
https://doi.org/10.3390/en16176231
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en16176231?type=check_update&version=1


Energies 2023, 16, 6231 2 of 17

in the control structure of one additional feedback from a selected variable is a standard
solution. The use of two additional feedback allows us to locate the system’s closed-loop
poles independently [15]. The similar properties of the system ensure the state of the con-
troller [16]. The application of forced dynamic control additionally allows for the rejection
of the effects of the load torque [17,18]. The use of a disturbance observer is also a very
popular approach in such drives. There are many papers that describe the implementation
of this technique [19,20]. In recent years, the model predictive control has become popular
in many branches, including power electronics and electrical drives [21–27]. There are
also a number of works describing its application in vibration-damping problems. The
main advantage of the MPC is better dynamics of the drive as well as the possibility of
limiting the system state variables effectively. The mentioned disadvantage of the MPC is
the computational complexity of the algorithm and stability issues.

The control problem becomes more complicated in the case of changeable parameters
of the plant [28–30]. In the case of a two-mass system, the moment of inertia of the load
machine can vary in a wide range. To control such a plant, a robust or adaptive control is
recommended. In the first group, approaches based on H∞ or µ-synthesis can be mentioned.
However, the obtained solution is quite complicated [31]. The sliding mode control is said to
be a robust control algorithm [32]. The system trajectory can be divided into initial reaching
and then final sliding phases where the system is robust against disturbances. However,
the drawback of this approach is a chattering phenomenon. Although there are available
methods for chattering reduction, their implementation decreases the robustness of the
control. The next methods are based on the application of fuzzy or neural controllers [33].
The nonlinear control surface can increase the robustness of the plant, but the computational
complexity of the algorithm increases at the same time. Additionally, tuning problems can
be mentioned. The adaptive control can be separated into two groups. In the first one, the
direct approaches are placed [34,35]. Based on the output of the plant (and reference signal)
the parameters of the controller are calculated to minimize the tracking error. The indirect
adaptive control can be treated as a second approach. The parameter of the controller
is returned according to the estimated value of the changeable parameter(s) [36]. Here,
the significance of the estimation quality influences the properties of the system. The
robustness of the MPC can be ensured in two different ways. The parameters of an internal
model can be updated according to the estimated values. The second way is to use a special
form of a cost function.

In order to implement an advanced (and robust) control algorithm, knowledge of the
plant parameters and system states is necessary. Various algorithms can be used for this
purpose. One of the simplest solutions is a disturbance observer; however, it estimates just
the joint torque of the system, which is not enough for many structures. A commonly used
solution is the full-order observer [37]. It is a fairly simple algorithm; its coefficients can be
determined using analytical formulas, and the required location of closed-loop poles of
the system can be obtained. However, also in this case, the robustness to measuring noise
and interference is limited. A definitely more complex algorithm, recommended especially
for systems with high levels of noise, is the Kalman filter [38]. Also, the moving horizon
estimator can be used in this case [39]. A different approach is represented by neural,
fuzzy, or hybrid estimators, in which artificial intelligence methods are applied [40,41].
However, those systems are not popular in the industry yet. One of the drawbacks of
the above-mentioned methods is the limited robustness to the initial states of the plant,
especially in the case of a system with changeable parameters. Recently, the multilayer
observer (MLO) has been proposed for the control problem of the two-mass system. It
was shown in [42–44] that the MLO can significantly reduce the estimation error of the
system states and parameters in the case of unknown initial values and rapidly changing
disturbances. This, in turn, improves the properties of the control structure.

The application of the robust MLO-based estimation system in electric two-mass
systems is a new approach. To the best of the authors’ knowledge, there are no other works
on this issue (excluding the author’s papers) in the literature. The previous paper [43]
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focused on a detailed analysis of the MLO. The dynamic properties of the estimator are
shown without focusing on the control structure. The main research problem in [43] was a
two-mass system with constant parameters but unknown initial conditions. The presented
research shows that the observer is able to significantly increase the quality of the estimation
in this case.

Contrary to [43], the current work focuses on the problem of controlling a two-mass
system with variable parameters. The robust control approach was chosen, in which the
control structure has constant coefficients that ensure the repeatability of the speed courses
despite changes in system parameters. Since the control structure requires information
about state variables that are not measurable, it is important to provide an accurate and
robust estimation system. This paper proposes the use of an MLO for this purpose. There
are no works presenting this issue in the literature. Robustness is the result of both the
regulator and the estimator. The increased accuracy of the estimator results from the
selection of both its coefficients and the MLO structures. In order to show the effectiveness
of the proposed control structure, the following approaches are presented in this paper. The
first one relies on the application of control structures with direct feedback from all state
variables. The parameters of the control structure are selected with the help of a global
optimization technique with a specially selected cost function ensuring robust transients of
the system states. This is an ideal case, which is a reference point for further research. The
next system relies on the application of a control structure with a classical observer and an
MLO. In both cases, the coefficients are also selected with the optimization algorithm. The
obtained results are compared with a standard solution. The effectiveness of the system is
examined under simulation and experimental study.

This paper is divided into six sections. After the introduction, the mathematical model
of the drive and the considered control structure are presented. Then, the concepts of the
MLO are described. The simulation results showing the design and properties of the robust
control structure tested under simulation studies are placed in Section 4. The laboratory
setup and selected experimental tests are shown in Section 5. In the end, the concluding
remarks are placed.

2. Mathematical Model of Two-Mass System and the Control Structure

Many approaches evident in the literature can be used to model a two-mass system.
Choosing one of them is a compromise between accuracy and computational complexity.
Models based on finite elements allow for a very accurate analysis of phenomena in any
element of the shaft. On the other hand, differential equation-based models are simple
and suitable for the real implementation of control algorithms. Because the proposed
control structure has to be implemented in real-time on the microprocessor system, the
differential-equation-based model is implemented in this paper. It is described by the
following state equations [3]:

d
dt

ω1(t)
ω2(t)
ms(t)

 =

 0 0 −1
T1

0 0 1
T2

1
Tc

−1
Tc

0


ω1(t)

ω2(t)
ms(t)

+

 1
T1
0
0

[me] +

 0
−1
T2
0

[mL] (1)

A schematic diagram of the two-mass system is presented in Figure 1.
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Three basic elements can be distinguished in the presented figure. These are, in turn,
the moments of inertia associated with the driving motor and the working machine, and
the long flexible shaft connecting those two elements. During work, the energy from the
electrical supply system is used to develop an electromagnetic torque in the motor. The
rotation of the motor affects the shaft, which develops the torsional torque, which in the
end acts on the load side.

The classic speed control structure of an electric drive is a cascade control structure
consisting of two loops, internal and external. The inner loop consists of the following
elements: torque controller, power electronic converter, electromagnetic part of the motor,
and current (and voltage) sensors. Depending on the type of motor, the torque regulator
has a different structure. For example, for a DC motor, it is usually a PI controller. However,
for an induction motor, the DFOC structure consists of several regulators. The task of the
inner loop is to adjust the drive torque very quickly. In modern drives, this time is very
short, even below 1 ms. For this reason, the dynamics of the inner loop are very often
neglected when designing the outer loop. This means that the results obtained in this work
can be applied to an electric drive with a different type of drive motor (DC, induction, or
permanent magnet).

The external loop includes the following elements: drive torque control loop, me-
chanical part of the drive (single or multi-mass system), and position/speed sensor. The
dynamics of the outer loop are mainly influenced by the mechanical parameters of the
drive. Mechanical time constants are of primary importance here. Typically, their values
range from several dozen to several hundred times higher than in the internal loop of the
drive. The PI controller is usually applied in this loop.

Controlling a multi-mass system is a difficult issue. The basic task of the control
structure is to effectively suppress torsional vibrations. This is due to their negative
impact on the controlled object. Undamped vibrations can lead to a deterioration of the
speed/position control parameters and, consequently, to variations in the quality of the
manufactured product or to an increase in energy consumption. Torsional vibrations
negatively affect the reliability of the system and, in special cases, can lead to damage.
Another task of the control system is to ensure high dynamics of regulation of individual
variables, usually the speed/position of the working machine.

The basic speed control system is a system with a PI controller without additional
feedback. The controller settings are selected according to the methodology presented in [15]:

KP = 2

√
T1

Tc
, KI =

T1

T2Tc
(2)

A closed control system with a PI controller is a fourth-order system. Since there are
only two parameters in the control structure, it is not possible to freely distribute the poles
of a closed system. This limits the properties of the control structure.

In order to show the properties of the system with the PI controller, simulation tests
were performed. The PI regulator settings were determined for the nominal parameters
of the object. Simulation tests were carried out. Then, the time constant of the working
machine was increased five times without changing the controller settings. Tests were
carried out again. The determined waveforms are presented in Figure 2.

As a result of the analysis of the waveforms presented, in the case of nominal pa-
rameters of the object, the system velocities have a slight overshoot. However, it should
be emphasized that the speed increase time is quite slow. Changing the parameters of
the object degrades the properties of the control structure. In the waveforms of the state
variables, large overshoots and slowly damped oscillations are visible. This means that the
classical control structure is not effective, especially in the case of an object with variable
parameters. There are a lot of control structures that can be applied to dampen torsional
vibrations effectively. As mentioned in the introduction, it can be structured based on the
PI controller supported by different feedback, state controller, MPC, or others. Taking into
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account the properties: the possible ability to design the shape of the speeds of the system
and implementation issues, the control structure with the PI controller with additional
feedback from the shaft torque, and the difference between speeds are selected in this
work. Since the closed control structure is fourth order, it allows the poles of the control
system to be arranged independently. Thus, it is theoretically possible to both effectively
suppress torsional vibrations and achieve the assumed rise time. However, it should be
remembered that the assumption of very high control dynamics will require generating
a large drive torque, which in practical systems may be impossible. Firstly, the control
structure is described, and then the procedure of the robust closed-loop pole locations is
presented.
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The transfer function of the PI controller has the following form (3).

Gr = kp +
ki
/

s (3)

The coefficients of the control system are determined using the pole placement method-
ology described in detail in [15]. The results are the analytical Formulas (4)–(7) that allow
for the pole locations in the closed-loop system.

ki = ω4
0T1T2Tc (4)

kp = 4ξrω3
0T1T2Tc (5)

k2 =
(

ω2
0T2Tc

)−1
− 1 (6)

k1 = T1T−1
2

(
4ξ2

r − k2

)
(1 + k2)

−1 − 1 (7)

In order to implement the analyzed control structure, information on all state vari-
ables of the system is required. Since, in standard drive systems, only the motor speed
and electromagnetic torque signals are available, it is necessary to use an estimator that
determines the remaining state variables. In the present work, this role is performed by
a multilayer observer. A diagram of the considered control structure working with the
estimator is shown in Figure 3.

The presented system has a cascade structure. In the inner loop, the electromagnetic
torque is controlled. In the case of a DC motor, it can be realized with an armature current
regulator, as well as for an induction motor, e.g., the DFOC system. Since the dynamics
of the electromagnetic torque is significantly larger than the dynamics associated with the
mechanical part, it is omitted in the process of selecting the settings of the control system.
In the block diagram, an additional coefficient kL is visible. It is implemented to improve
the reaction of the system to the applied load torque.
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The presented Equations (4)–(7) allow us to obtain the desired transient of the system
states in the case of constant parameters. However, in many drive systems, the parameters
can vary within wide limits. This applies especially to the parameters of the working
machine. For example, a robot arm can be mentioned here. In many cases, its distance from
the axis of rotation changes, and thus the moment of inertia of the working machine changes.
Another example is a wire winder or machines in the paper industry. The moment of inertia
of the working machine changes with the amount of wound material. Another example is
servo drives in machines that process solids of various shapes. The mechanical parameters
of the long shaft change much less frequently. Their change indicates the degradation of
the mechanical connection and indicates the possibility of damage to the drive.

The disadvantage of the presented analytical method is the dependence of individual
expressions on constant (rated) parameters of the drive system. Since the time constant T2
varies over a wide range, it is necessary to find another solution. One approach is to use the
global optimization method. In this case, an important element is to define the objective
function and then to select the coefficient values to achieve its minimum. In the current
work, the following form of the objective function was adopted:

J = ∑
∣∣∣ωre f −ω1U1

∣∣∣+ ∑
∣∣∣ωre f −ω2U1

∣∣∣+∑ |ω1U1 −ω1U2|+∑ |ω1U1 −ω1U3|+∑ |ω2U1 −ω2U2|+∑|ω2U1 −ω2U3| (8)

where ωref—reference speed, ω1U1/U2/U3 and ω2U1/U2i/U3—speeds of the motor and
load machine in cases: U1 where T2 = T20 = 0.203 s, U2 where T2 = 3T20 = 0.609 s, and U3
where T2 = 5T20 = 1.015 s.

The application of the tuning procedure results in robust responses from the drive.
Despite the changes in the system parameters, the speed transients of the working machine
are similar.

3. Classical and Multilayer Observer

To implement the considered control structure, information about the state variables
of the system is necessary. There are several methods to estimate state variables in the
literature. They have different properties. Choosing one of them is a compromise between
the numerical complexity of the estimator and its estimation quality, especially in the case of
a noisy system. In this paper, the full-sized asymptotic observer is chosen. It is characterized
by a relatively simple structure and an uncomplicated method of selecting correction factors.
For this reason, it is used in many industrial applications. An increase in the quality of state
variable estimation was obtained by using a multilayer observer. Below is a description of
the classical full-sized asymptotic observer as well as the multilayer observer.
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The classical full-size asymptotic observers are described in general by Equation (9):

d
dt

^
x(t) = A

^
x(t) + Bu(t) + K

[
y(t)− ^

y(t)
]

^
y(t) = C

^
x(t)

(9)

The original state vector of the plant is extended by the load torque:

x = [ω1 ω2 ms mL]
T (10)

Information about the moment of the load allows the use of additional feedback in the
considered control structure. It improves the properties of the system in case of changes in
the load torque. The electromagnetic torque and the motor speed are the input and output
of the system, respectively.

u = me, y = ω1. (11)

The state, control, and output matrices of the observer are defined as follows (12):

A =


0 0 − 1

T1
0

0 0 1
T2

− 1
T2

1
Tc
− 1

Tc
0 0

0 0 0 0

, B =


1
T1
0
0
0

, C =


1
0
0
0


T

(12)

The matrix K, which contains correction coefficients, is described, in turn, as (13):

K =
[

q1
T1

q3
T2

q2
Tc

q4

]
(13)

The correction coefficients are determined using the following Equations (14)–(17):

q1 = 4apT1 (14)

q2 =
T1

T2
+ 1− T1Tc

(
4a2 + 2

)
p2 (15)

q3 = 4apT1

(
TcT2 p2 − 1

)
(16)

q4 = −T1T2Tc p4 (17)

where p is the resonant frequency of the observer closed-loop poles and a is the damp-
ing coefficient.

The presented equations allow for the arbitrary location of the poles of a closed system
in the complex plane. Consequently, the dynamics of estimation error elimination can be
shaped by the system designer. However, it should be remembered that very large gains
cause additional oscillations in transients in the estimated variables. This is due to the
presence of noise in the real system. For this reason, observer gains should be limited.

The full-sized asymptotic observer has limited resistance to measurements and para-
metric noises. Additional errors cause unknown initial states in the system. To improve
the quality of the estimation, a multilayer observer was used. The block diagram of the
multilayer observer is shown in Figure 4. In the first layer, some estimators (usually two or
three) work in parallel. In this work, there are three full-sized asymptotic observers with
different initial conditions. It should be noted that there is a possibility of changing the
conditions in the observers not only at the beginning but also during the operation of the
system (in the presented system, this occurred after detecting changes in the load moment).
In the second layer, based on the motor speed estimation error (difference between the
measured speed and the value determined by a specific estimator), the weighting factors
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are calculated for each estimator (18). These coefficients are then normalized (19) so that the
sum of the normalized weighting coefficients of all observers equals one (20), which makes
the analysis of the properties of the system easier. Based on weighting factors and output
signals from individual estimators of the first layer, the output signal of the multilayer
observer (21) is determined.

αi = γ

(∫ ∣∣∣ω1 −ωi
1e

∣∣∣)−1
(18)

αi =
αi

n
∑

i=1
αi

(19)

α1 + α2 + . . . + αn = 1 (20)

x = α1x1 + α2x2 + . . . + αnxn (21)

where γ—learning coefficient, ω1—measured motor speed of, ωi
1e—motor speed deter-

mined by the i-th estimator from first layer, αi, αi—weighting factor of the i-th estimator
before and after normalization, xi—output signal of the i-th estimator, and x—output signal
of the multilayer estimator.
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According to the presented relationships, the smaller the estimation error of a given
observer, the greater its weighting factor after normalization, and thus the greater its
contribution to the output signal of the multilayer system. The coefficient ai (18) can be
modified by applying the forgetting factor β, to limit the increase in this coefficient in a
finite time (22).

αi(k + 1) = γ

(∫ ∣∣∣ωi
1 −ωi

1e

∣∣∣)−1
− βαi(k) (22)

where β—forgetting factor.
The classical estimator calculates state variables based only on the current measure-

ment sample. For this reason, it has a finite resistance to changes in the parameters and
initial states of the object. In a multilayer observer, we have a rear-facing window. The
influence of a given observer on the final result is a consequence of not only the current
sample but also several (several dozen) past samples.

The stability of the observer is one of the basic elements that should be investigated.
The MLO consists of two layers. In the first, there are a number of individual systems. The
stability of a single observer can be checked by spreading its poles. In the case of parameter
selection using Equations (14)–(17), this is ensured analytically by placing the poles on the
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left side of the plane. In the case of the selection using the global optimization algorithm,
the arrangement of the poles of the system should be checked. Since all observers in the
first layer have identical settings (they differ only in initial states), the stability of one of
them means the stability of all. In the second layer, there is an aggregation mechanism. It
combines signals from individual observers into one signal. It does not affect the stability
of the system. If the observers in the first layer are stable, then the whole system will be
stable as well.

Another issue of practical importance is the computational complexity of the MLO
system. It depends greatly on the type of single estimator used. It will be different when
using the classical full-sized asymptotic observer than in the case of the Kalman filter.
In this paper, complexity was determined in two ways. In the first one, the number of
basic mathematical operations for the MLO with a different number of layers was counted.
For the second method, it was decided to measure the execution time of a practical MLO
with a different number of individual systems. To eliminate the effect of randomness, the
calculations were performed 100,000 times. Table 1 shows the values obtained.

Table 1. Computational complexity of MLO with different number of single observers.

Number of
LO in the

First Layer
1 2 3 4 5 6 7 8 9 10

Execution
time 6.10 × 10−2 9.32 × 10−2 1.45 × 10−1 1.82 × 10−1 2.36 × 10−1 2.72 × 10−1 3.28 × 10−1 3.68 × 10−1 4.18 × 10−1 4.81 × 10−1

Summation
operations 8 21 34 47 60 73 86 99 112 125

Multiplication
operations 10 20 30 40 50 60 70 80 90 100

Integration
operations 5 10 15 20 25 30 35 40 45 50

Division
operations 1 2 3 4 5 6 7 8 9 10

MLO execution time with a different number of individual observers plotted in Figure 5.

Energies 2023, 16, x FOR PEER REVIEW 10 of 18 
 

 

 
Figure 5. MLO execution time with a different number of individual observers. 

As can be seen from the data contained in Table 1 and the graph above, the compu-
tational complexity of the MLO depends proportionally on the number of individual ob-
servers used in the first layer. On the one hand, increasing their number improves the 
quality of estimation of state variables; on the other hand, it is necessary to increase the 
computing power of the processor. 

4. Simulation Results 
The aim of the research is to design a control system that cooperates with the selected 

estimator and is robust to changes in the mechanical time constant of the working ma-
chine. In the control structure, there are a number of design coefficients related to the 
structure of the controller and the estimator. Since the analytical Formulas (4)–(7) work 
for constant parameters of the object, a different approach is chosen. In this paper, three 
systems are considered. The first one, theoretical, assumes the existence of information 
about all variables of the object’s state. In this case, the parameters of the structure are 
selected using an optimization algorithm in order to make it robust to the change in the 
time constant of the working machine. The second system consists of a control structure 
and a classical full-size asymptotic observer. All system coefficients (control structure and 
observer) are selected using an optimization algorithm. The third considered system is a 
control structure working with a multi-observer. In this case, the parameters of the struc-
ture and the multi-observer are also selected using an optimization algorithm. The use of 
the described procedure makes it possible to obtain optimal properties in each case. 

In this paper, the pattern search algorithm is applied to find optimal values of the 
control coefficients. The initial settings are adopted according to the expressions ω0 = 40 
s−1 and damping factor ξ = 0.7 and for the observers p = 80 s−1 and a = 0.7. In the optimiza-
tion process, the objective function of form (8) is used. The disturbances evident in the 
plant are taken into account. A total of 100 iterations of the pattern-search algorithm is 
assumed. 

The optimization procedure was carried out several times. Similar results were ob-
tained each time. The course of changes in the objective function, in the case of the best 
result for a particular system, is presented in Figure 6. It shows the transients of the cost 
function during the optimization process for a system with direct feedback from the 
model as well as a classical and multilayer full-sized asymptotic observer. In the multi-
layer observer, the following initial conditions are adopted (according to the assumed 
state vector (9)): in system 1 [0,0,2,2], in system 2 [0,0,0,0], in system 3 [0,0,−2,−2], and in 
the model of a two-mass system [0,0,0,0]. 

Figure 5. MLO execution time with a different number of individual observers.

As can be seen from the data contained in Table 1 and the graph above, the com-
putational complexity of the MLO depends proportionally on the number of individual
observers used in the first layer. On the one hand, increasing their number improves the
quality of estimation of state variables; on the other hand, it is necessary to increase the
computing power of the processor.

4. Simulation Results

The aim of the research is to design a control system that cooperates with the selected
estimator and is robust to changes in the mechanical time constant of the working machine.
In the control structure, there are a number of design coefficients related to the structure of
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the controller and the estimator. Since the analytical Formulas (4)–(7) work for constant
parameters of the object, a different approach is chosen. In this paper, three systems
are considered. The first one, theoretical, assumes the existence of information about all
variables of the object’s state. In this case, the parameters of the structure are selected using
an optimization algorithm in order to make it robust to the change in the time constant
of the working machine. The second system consists of a control structure and a classical
full-size asymptotic observer. All system coefficients (control structure and observer) are
selected using an optimization algorithm. The third considered system is a control structure
working with a multi-observer. In this case, the parameters of the structure and the multi-
observer are also selected using an optimization algorithm. The use of the described
procedure makes it possible to obtain optimal properties in each case.

In this paper, the pattern search algorithm is applied to find optimal values of the
control coefficients. The initial settings are adopted according to the expressions ω0 = 40 s−1

and damping factor ξ = 0.7 and for the observers p = 80 s−1 and a = 0.7. In the optimization
process, the objective function of form (8) is used. The disturbances evident in the plant are
taken into account. A total of 100 iterations of the pattern-search algorithm is assumed.

The optimization procedure was carried out several times. Similar results were ob-
tained each time. The course of changes in the objective function, in the case of the best
result for a particular system, is presented in Figure 6. It shows the transients of the cost
function during the optimization process for a system with direct feedback from the model
as well as a classical and multilayer full-sized asymptotic observer. In the multilayer
observer, the following initial conditions are adopted (according to the assumed state
vector (9)): in system 1 [0,0,2,2], in system 2 [0,0,0,0], in system 3 [0,0,−2,−2], and in the
model of a two-mass system [0,0,0,0].
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control structure settings for the system with the direct feedback (a), classical (b), and multilayer (c)
full-sized asymptotic observer.

Analyzing the graphs presented in Figure 6, it can be seen that the theoretical system
with direct feedback from state variables has the lowest target value. This is obvious
because it has no estimator. The control structure working with a multi-observer has the
value of the objective function higher by about 4%. In the case of a system cooperating with
a classical observer, this value is higher by about 18%. This means that the system working
with a multi-observer can provide much better properties than the system working with a
classical observer.

Then, simulation tests of three analyzed systems were carried out. Their goal was to
check how individual systems regulate state variables in the case of rated and changed
object parameters. In the simulation conditions, the start of the system was assumed from
zero to the reference speed and the subsequent application of the load torque. The reference
speed value is chosen to be half of the nominal value, in order to avoid the limitation of the
driving torque. Selected waveforms of the system variables are shown in Figure 7.
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Figure 7. Transients of motor (a,e,i) and load machine (b,f,j) speeds, electromagnetic, load (c,g,k) and
shaft (d,h,l) torques in a system with a robust controller with direct feedback (a–d) and classical (e–h),
and multilayer observer (i–l)—simulation studies.

The first system, with direct feedback from all state variables, is analyzed. The speeds
and torques curves of the system are shown in Figure 7a–d, respectively. Each drawing
contains collective waveforms recorded for three values of the mechanical time constant:
nominal, three times, and five times increased. These waveforms serve as a comparison
for successively analyzed cases. Then, systems with classical and multilayer Luenberger
observer were investigated. The waveforms of individual state variables are shown in
Figure 7e–l, respectively, for the analyzed cases. As before, the figures show cumulative
waveforms for three values of a variable parameter.

Based on the waveforms shown in Figure 7, the following conclusions can be drawn.
All systems work properly. The speed courses of the working machine are similar in all
systems for different values of the time constant of the working machine. This proves
the correctness of the selection of coefficients for the control structure. However, a closer
analysis of the individual variables for different systems reveals some differences. They are
most visible in the waveforms of the system’s moments. For example, for the largest value
of T2, the system with direct coupling forces the maximum value of the torsional moment to
be equal to two. A similar value is reached in the structure working with a multi-observer.
For a system that works with a classical observer, this value is close to 1.5. It is obvious
that these differences must also be present for other variables. For example, speed courses
in the system with a classical observer have the most oscillatory character. It should be
emphasized that the robust controller with a multi-observer is characterized by a smaller
discrepancy in the speed waveforms for different values of the time constant of the load
machine (T2). Based on the waveforms, it can be concluded that the behavior of the system
cooperating with the multi-observer is more similar to the system with direct feedback.

In order to show the differences more precisely, Figure 8 shows the curves of the
differences between the individual state variables of the system with direct coupling and
two subsequent systems: working with a classical and a multi-observer.
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and shaft (d,h) torques between the system with direct feedback from the model and structures with
a classical (a–d) and multilayer observer (e–h)—simulation studies.

The following conclusions can be drawn based on the analysis of error transients
shown in Figure 8. For the system operating with a classical observer, the speed errors
reach the value of 0.14 (Figure 8a,b); they are slightly larger for the load speed and rather
independent of the value of the mechanical time constant of the working machine. For
torque waveforms, these values are greater than 1.25 (Figure 8c,d). In this case, they depend
significantly on the T2 parameter, for its greater value, larger errors arise. In the case of a
system working with a multi-observer (Figure 8e–h), these errors are several times smaller.
The impact of T2 changes on the error waveforms is similar to in the case described above.
For speed errors, it is small (Figure 8e,f) and for moments, it is large (Figure 8g,h).

Subsequently, the error values are determined using the following formula:

∆E =
∑ |v d − vc|m|

N
(23)

where vd—values of samples of variables from a system with direct feedback, vc|m—values
of samples of variables from a system with classical (c) and multilayer observer (m), and
N—number of samples.

The results in Table 2 confirm the conclusions formulated above based on the wave-
forms in Figure 8. The system that works with a classical observer has the largest estimation
errors. For speeds, they are 4-times higher than for the system cooperating with a multi-
observer. Additionally, increasing T2 slightly increases the errors in the classical system. In
the case of a multi-observer, this value is basically constant and does not depend on T2. For
the torque, the error values for the classical system are 3–4-times higher than that for the
multi-observer. In this case, they depend on the value of T2; its increase causes an increase
in errors for the two systems.

Table 2. Error values of individual variables.

T2 = T20 T2 = 3 ×T20 T2 = 5 × T20

Classical Multi Classical Multi Classical Multi

∆ω1 16.99 × 10−3 3.89 × 10−3 17.30 × 10−3 3.87 × 10−3 17.69 × 10−3 3.87 × 10−3

∆ω2 16.89 × 10−3 3.78 × 10−3 17.26 × 10−3 3.76 × 10−3 17.74 × 10−3 3.76 × 10−3

∆me 4.94 × 10−2 1.52 × 10−2 9.43 × 10−2 2.44 × 10−2 15.08 × 10−2 3.66 × 10−2

∆ms 2.46 × 10−2 0.97 × 10−2 6.91 × 10−2 1.81 × 10−2 12.54 × 10−2 3.04 × 10−2
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5. Experimental Results

In the next stage of research, the operation of the developed systems is tested under
laboratory conditions. During the tests, a set of two 500 W DC motors connected with
a long (600 mm) flexible shaft is used. The driving motor is powered by an H-bridge.
Incremental encoders with a resolution of 36,000 pulses are connected to both motors,
while the control structure uses only the signal from the encoder on the side of the driving
motor; the second one is used only to evaluate the estimation system. During the tests, the
operation of the system is checked in the case of changes in the mechanical time constant
of the load machine. These changes are made by attaching additional steel discs on the side
of the load machine. The initial value of T2 (resulting from the parameters of the working
machine itself) is 0.203 s. For systems with additional discs with a thickness of 4, 8 and
16 mm, the T2s are 1.015 s, 0.406 s, and 0.609 s, respectively. The picture of the laboratory
setup is presented in Figure 9.
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Experimental studies are carried out as follows. Two systems are tested, one cooperat-
ing with a classical observer and the other with a multi-observer. The value of the reference
speed is assumed to be at the level of 0.5, similar to that in simulation studies. Tests are
carried out for the nominal value of the mechanical time constant T2 = 203 ms and its 2-, 3-
and 5-times higher value. The transients of the tested system are shown in Figure 10.

Figure 10a,b,e,f shows the waveforms of the velocities and torques recorded for the
two tested systems in the case of the smallest tested constant value T2 = 203 ms. The
following conclusions can be drawn from their analysis. The drive torque is forced more
dynamically in the MLO structure (Figure 10f) than in the classical observer structure
(Figure 10e). In the first case, its value reaches 0.9 of the rated torque and in the second,
about 0.5. This results in different dynamics for the forcing speed (and torque) in the system.
In the case of the MLO system, this speed is forced much faster than in the second case.
It is also necessary to pay attention to the reaction of the system to a change in the load
moment. In the case of the structure with MLO, dynamic torque forcing is visible, which
results in smaller disturbances in speeds. Then, the case of changing the load torque to
the value T2 = 406 ms was tested. The courses of moments and speeds of the system are
shown in Figure 10c,d,g,h. In the case that the system cooperates with the MLO, a large
difference in forcing the drive torque is still visible, both during changes in the set speed
and changes in the load torque (Figure 10h). This results in a more dynamic reaction in the
speed of the system to the change in both signals. In the case of a system cooperating with
a classical observer, this dynamic is definitely smaller. The maximum value of the driving
torque in this case is about one, whereas for the MLO system, it is 1.4. Then, the system
with the time constant T2 increased to 909 ms was tested. The recorded waveforms are
shown in Figure 10i,j,m,n. As before, the dynamics of forcing all variables is faster in the
system cooperating with the MLO than in the system with a classical observer. In addition,
attention should be paid to the noise level in the system with a classical observer. It becomes
more and more visible in this case. The last tested case was a system in which the value
of the time constant T2 was increased five times to 1.015 s. The speed courses of the drive
motor and the working machine, as well as the electromagnetic and torsional torques, are
shown in Figure 10k,o for the system working with a classical observer and Figure 10l,p
for the system working with the MLO. A very high level of drive torque oscillation can
be noticed in the system with a classical observer (Figure 10o). These oscillations are
transferred to the speed of the drive motor (Figure 10k) in the initial period of start-up. The
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change in the load torque causes visible oscillations in this system. The system with the
MLO works much better. There are no visible oscillations in the waveforms of the moments.
In addition, the change in the load torque interferes with the operation of this system to
a much lesser extent. The resulting velocity deformations are much smaller. The speed
returns to the reference value much faster with this system.
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Figure 10. Transients of motor and load machine speeds (a–d,i–l) and torques: electromagnetic, shaft
and load (e–h,m–p), for the system with a classical (a,c,e,g,i,k,m,o) and a multilayer (b,d,f,h,j,l,n,p)
observer, for different time constants of the load machine: T20 = 0.203 s (a,b,e,f), T2 = 0.406 s (c,d,g,h),
T2 = 0.609 s (i,j,m,n), T2 = 1.015 s (k,l,o,p)—experimental studies.

Based on the presented results, it can be concluded that the speed stabilization is much
better in the system cooperating with the multilayer observer. This system reacts faster to
changes in the set speed and load torque. It should also be noted that the level of oscillation
in the electromagnetic torque transients is greater in the case of using a classical observer.
Despite these significant changes in the values of the estimated load torque, the system
cooperating with the multilayer observer also works better in this case than the system
with a classic observer, estimating the correct value of the load torque much faster and
stabilizing the speed at the set value.

6. Conclusions

The article presents issues related to the design of the speed control structure for the
dual-mass system, which is resistant to changes in the system parameters. A system with
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a PI controller and two additional feedback were selected for the tests. Three systems
were tested in the work: one with direct information about state variables (theoretical
case), the second using a classical observer, and the third using an MLO. Based on the
theoretical considerations and the simulation and the practical topics presented, the follow-
ing summary conclusions can be concluded. The method of selecting the parameters of
the pattern-search system allows for designing a system resistant to changes in the time
constant of the working machine. This is confirmed by the waveforms obtained for the
example with direct coupling from the state variables of the machine. Despite changes in
the T2 parameter, the speed runs for the working machine are similar. However, in practice,
the values of these variables (torque, load speed, and load torque) have to be estimated.
The studies performed show that the use of the MLO system ensures significantly smaller
variable estimation errors than with the classical observer. This results in significantly
greater resistance in the control system cooperating with the MLO than in the case of a
classical observer.

In future work, it is planned to increase the number of parameters subjected to change,
as well as to change the type of controller to a more advanced one, e.g., predictive.
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Abbreviations

Designation of a Variable or Parameter Description
ω1 Speed of the driving motors.
ω2 Speed of the load machine.
me Driving (motor) torque.
ms Shaft (torsional) torque.
mL Load torque.
T1 Mechanical time constants of the motor.
T2 Mechanical time constants of the load machine.
kp Proportional coefficient of PI controller.
kI Integrational coefficient of PI controller.
k1 Coefficient of the additional feedback from shaft torque.
k2 Coefficient of the additional feedback from difference in

the speed.
ω The desired pulsation of the system poles (closed loop

control structure).
ξr The damping coefficient of the system poles (closed loop

control structure).
q1, q2, q3, q4 Correction coefficients of the observer.
p The desired pulsation of the system poles (observer).
a The damping coefficient of the system poles (observer).
γ Learning coefficient in MLO.
ωi

1e Motor speed determined by the i-th estimator from
first layer.

αi Weighting factor of the i-th estimator before normalization.
αi Weighting factor of the i-th estimator after normalization.
xi Output signal of the i-th estimator.
β Forgetting factor.
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