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Abstract: This paper presents the effect of drying control agents on the physicochemical and thermal
properties of hydrophobic silica aerogels derived via the ambient pressure drying (APD) method by
a surface silylation using a TMCS/n-hexane mixture. The structural and physicochemical properties
of synthesized DMF-modified and unmodified hydrophobic silica aerogels were characterized using
Brunauer–Emmett–Teller (BET) analysis, thermo-gravimetric analysis, FT-IR, and Raman spectro-
scopic techniques. Based on the obtained results, the differences in structure between samples before
and after a surface silylation and the effect of drying control agents were documented. The structural
measurements confirmed the efficient silylation process (TMCS/n-hexane), as well as the presence of
DMF residues of hydrogen bonded with unreacted Si-OH silanol groups within the silica backbone
after surface modification. Based on TG analysis, it was found that DMF addition improves thermal
resistance (up to 320 ◦C) and hydrophobic character of prepared aerogel. Modification of the silica
aerogel synthesis process by DMF also resulted in a significant increase in BET—the specific surface
area, for the unmodified aerogel was ~828 m2/g, and for the DMF-modified aerogel more than
1200 m2/g—much higher than the value of silica aerogels available on the market.

Keywords: silica aerogels; sol-gel method; drying control agents; N,N-dimethylformamide (DMF);
silylation; ambient pressure drying

1. Introduction

Silica aerogels are a unique class of highly porous materials (80–99.8%) with large
specific surface area (500–1200 m2·g−1), low thermal conductivity (0.004–0.03 W·m−1·K−1),
low density (0.003–0.5 g·cm−3), low refraction index (~1.05), and low dielectric constant
(1.0–2.0) [1–6]. Due to their remarkable properties, silica aerogels have become an ob-
ject of widespread interest in many branches of industry over the past few years, with
particular interest in acoustic barriers [7], adsorbents (for oil and organic liquids) [8],
sensors [9], catalyst supports [10], and drug delivery systems [11] or aeronautic and as-
tronautic applications [12,13]. Moreover, silica aerogels (even thin layers) are excellent
insulating materials compared to traditional insulations, e.g., mineral wool. The super-
insulating properties of silica aerogel are due to the air trapped inside the pores within
the silica backbone, and the use of silica aerogel-based insulation in the construction in-
dustry makes it possible to significantly reduce the thermal conductivity coefficient of
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building envelopes and significantly reduce the energy required to maintain buildings.
This is extremely important since the construction sector is responsible for nearly 40% of
energy consumption, and new innovative insulation materials appear to be one of the key
directions to counteract these adverse effects [14–21].

The synthesis of silica aerogels consists of three significant steps, including the sol-gel
reaction (1◦), gel aging (2◦), and drying (3◦); the most crucial is the last step because drying
type as well as its efficiency determine the final structural and physical properties of fab-
ricated materials. Generally, there are three approaches to the drying step to synthesize
aerogels: supercritical drying (SCD), freeze-drying, and ambient pressure drying (APD).
The SCD method, usually performed with supercritical carbon dioxide, prevents the pores
from collapsing and receiving high-quality aerogels [5,22–24]. Nevertheless, the consider-
able disadvantages of this drying process include high-cost processing and huge labor risk,
which significantly limits the large-scale production of aerogels and their exploitation in
commercial applications. Moreover, SCD aerogels are hydrophilic due to the presence of
–OH groups on the silica surface, and therefore the structure can collapse and transform into
xerogels even in a moderately humid atmosphere [5,23,25–28]. The freeze-drying pathway
may damage the porous structure, which results in obtaining macroporous materials [5].
To overcome these inconveniences, an alternative and more practical APD method via
solvent-exchange step using low surface tension solvents, LSTS, and silylating agents is
implemented [5,24].

Among various organic compounds, hexamethyldisiloxane (HMDSO) and
trimethylchlorosilane (TMCS) are frequently used for silylation. Such a process involves
a replacement of the –H hydrogen atom from the hydrophilic Si-OH silanol group on hy-
drophobic –SiR3 (e.g., Si(CH3)3) trialkylsilyl one, which successfully prevents the structure
collapse provoked by capillary forces and deterioration in a humid environment [29,30].
Due to the above arguments, a significant interest in aerogels synthesis via APD method was
observed in recent years, which could be confirmed by a growing number of publications
in this field [26,30–36].

The structure of silica aerogels can be successfully controlled by introducing some
organic solvents during the preparation process, commonly known as drying control
chemical additives, DCCAs [37]. Among the drying control chemical additives that have
so far been used in modifying the structure of silica aerogels, the most common were
formamide (FA), N-methyl formamide (NMF), N-N-dimethyl formamide (DMF), acetamide
(AA), glycerol (GLY), and oxalic acid (OXA). There have also been recent publications in
which oxalic acid and glycerol were used as a modifier for aerogels synthesized from water
glass and methyltrimethoxysilane (MTMS), respectively [38–40].

A study by Parvathy Rao et al. showed that the type of DCCAs used significantly
affects the gelation rate, density, and shrinkage during drying of silica aerogels made
from TEOS; for example, the gelation time shortened in the following order: FA > NMF
> AA > GLY > OXA > DMF, while volume shrinkage was about 20% lower for DCCAs
modified aerogels than for unmodified ones, and decreased in the order: OXA > GLY >
DMF > AA > NMF > FA, which was associated with an increase in pore size in the same
order: OXA > GLY > DMF > AA > NMF > FA. The above parameters significantly affected
the final bulk density of aerogels, which decreased in order: FA > NMF > AA > DMF
> GLY > OXA [38]. By analyzing the results of the study by Parvathy Rao et al., it can
be seen that DMF, as aprotic DCCAs, promotes the development of a porous structure
of aerogels, which translates into a relatively low aerogel density and, at the same time,
allows a shorter gelation time. These parameters favor the excellent properties of silica
aerogels, i.e., a high specific surface area, which is a decisive factor for the insulating
properties of this material and the broader use of silica aerogel as an insulating material in
construction. There are currently two trends in the construction industry, the first leading
to the synthesis of hydrophobic mats and the second to the use of aerogel granules, either
as an insulating layer for glazing or as a filler in paints, plasters, or mortars and concretes.
The latter is currently under development, and many research centers are investigating
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these materials as potential solutions for construction. Nevertheless, they generally use
commercially available silica aerogel granules with average specific surface areas between
600 and 900 m2/g as granules [41–46].

In contrast to commercial products, in the study presented here, we introduced aprotic
DMF as a modification of the gelation stage. In the second stage, we applied silylation with
TMCS to obtain a granulate with the highest possible specific surface area. Both processes
counteract the collapse of the silica aerogel structure, leading to a more durable and
hydrophobic structure.

The influence of DMF on aerogels’ structure, and thus on their properties, is described
below. Due to DMF molecules’ relatively strong dipole moment, they can interact with
H2O and Si-OH (e.g., from hydrolyzed TEOS) via hydrogen bonds. Since the polarity of
the O-H bond in H2O is stronger than in the silanol Si-OH group, DMF mainly combines
with H2O and slightly with Si-OH. Such interactions can only be observed if the addition
of DMF into the reaction system is relatively small. On the other hand, if the amount of
introduced DMF agent is greater, the increasing part of DMF molecules can also attach
–OH moieties from a hydrolyzed precursor. As a result, a part of the hydrogen-bonded
Si-OH groups is efficiently blocked during the condensation reaction, and finally, the
gelation step is elongated compared to native silica aerogels. As was reported in the
available literature, the hydrogen bond between DMF and –OH groups could be destroyed
during the high-temperature silylation and drying step in the APD procedure. Then,
the previously hydrogen-bonded –OH groups condense, and consequently, the porous
structure collapses [30,47].

Generally, the synthesis of DMF-modified silica aerogels from water glass, tetraethoxysi-
lane (TEOS), and ‘methyl silicate 51’ via APD [30,47–49] and SCD [37,50,51] methods have
been presented in the literature. Nevertheless, there is still a gap in the interpretation of
the effect of DMF on the physicochemical properties of silica aerogels, including the lack
of description of aerogels synthesis where DMF molecules are still present in silica porous
structure after an efficient surface modification process. These observations became the
motivation for investigating silica aerogels modified with drying control agents presented
in this article. Therefore, in the present paper the structural and physical properties of
DMF-modified silica aerogel obtained via the ambient pressure drying method (APD) using
a TMCS/n-hexane silylation solution were outlined. The influence of drying control agent
additive through hydrogen bonding with silica backbone on the final aerogel’s properties
was discussed in detail. Determined parameters: BET specific surface area (SBET), average
pore diameter, total pore volume per unit mass, density, and thermal stability of fabricated
silica aerogels were considered in the context of DMF chemical modification. Moreover,
the changes in functional groups were identified using scanning electron microscopy and
Fourier-transformed infrared (FT-IR) and Raman spectroscopic techniques.

2. Materials and Methods
2.1. Chemicals and Reagents

All reagents used in the preparation were of analytical grade and used without further
purification. The precursor used for the preparation of alcogels, tetraethoxysilane (TEOS),
was supplied by Sigma-Aldrich (St. Louis, MI, USA), similar to N,N-dimethylformamide
(DMF) used as a chemical modifier. Ethyl alcohol (EtOH), ammonium hydroxide 25%, and
hydrochloric acid 35–38% were purchased from POCH Co, Gliwice, Poland. The silylation
process was performed by a mixture of trimethylchlorosilane (TMCS) (from Sigma-Aldrich)
and n-hexane (from POCH Co.). Prepared aerogel samples without DMF addition and
with DMF modifier were denoted as AG1 and AG2, respectively.

2.2. Samples Preparation Procedure

The procedure of silica aerogels synthesis involved three stages: synthesis of silica
alcogels by a two-step acid-base catalysis (1), surface modification using TMCS/n-hexane
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solution (2), and drying of wet gel at room temperature (3). Each stage was carried out
as follows:

(1) A mixture of TEOS in ethyl alcohol was prepared, and an appropriate amount of
hydrochloric acid (at a concentration of 0.1 mol/L) was added to achieve pH ≈ 2. In
the case of AG2 sample, DMF was introduced simultaneously with TEOS and ethanol.
The obtained mixtures were sealed and vigorously stirred for 30 min. Next, the
ammonium hydroxide solution (0.5 mol/L) was added dropwise into initial mixtures
to adjust pH ≈ 6 and stirred for a few minutes until gelation occurred. The volume
ratios of the components used during samples preparation equaled: TEOS: EtOH = 1:1
(AG1) and TEOS: EtOH: DMF = 1:1:0.5 (AG2).

(2) Obtained silica gels were aged in ethyl alcohol for seven days to strengthen the gel
network and exchange the pore fluids with a volatile liquid.

(3) Obtained silica alcogels were treated with a mixture of TMCS and n-hexane (1:5 volume
ratio) at 50 ◦C for two days for surface modification. After the silylation process, the
prepared samples were dried under ambient pressure to remove all liquids from the
porous structure.

The synthesis pathway of studied silica aerogels is presented in Figure 1. Moreover,
the analogous silica xerogels were prepared via (1) synthesis step and dried without
TMCS/n-hexane surface modification. Xerogel samples were denoted as XG1 and XG2,
respectively, and their structural properties were compared with AG1 and AG2 aerogels.
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2.3. Material Characterization

The structural and physical characterization of synthesized aerogels was performed
using adsorption isotherms and thermo-gravimetric analysis, scanning electron microscopy
(SEM), FT-IR, and Raman spectroscopic techniques. The surface area and pore volume of
silica aerogel materials were estimated based on adsorption isotherms in low-temperature
nitrogen sorption at 77 K (ASAP 2010, Micrometrics, Ottawa, ON, Canada). The average
diameters of the pores were calculated based on nitrogen adsorption isotherms with the
BET method, based on the 4 V/Å formula, where V stands for total pore volume determined
in a single point of adsorption isotherm with p/p0 = 0,99. The specific surface areas were
calculated using the Brunauer–Emmett–Teller (BET) equation. Thermo-gravimetric analysis
of aerogels was performed in an argon atmosphere using NETSCH apparatus, type TG
209 F3. During measurements, the following parameters were used: flow rate of inert gas
(Ar) 150 mL/min, speed of sample heating 10 ◦C/min, and temperature range 30–1000 ◦C.
Micrographs of the investigated samples surfaces were taken using a high-resolution
scanning electron microscope Mira 3 (Tescan). The FT-IR spectra were registered on the
Nicolet iS50 ATR spectrometer in 500–4000 cm−1 frequency region to identify the functional
groups on the surface. The Raman scattering was excited by DXRxi Raman Imaging
Microscope using the 532 nm laser line with an output power of 10 mW in 250–3250 cm−1

spectral range. The experiments were performed with a confocal 50x objective.

3. Results and Discussion

The FT-IR and Raman spectroscopic techniques were used to investigate the presence
of appropriate functional groups and chemical linkages formed within silica structures. The
FT-IR spectra registered for prepared xerogels: XG1 and XG2 were presented in Figure 2.
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All IR bands (also for aerogels, see in Figure 3) were assigned based on literature
data [52–58]. Registered FT-IR spectra reveal weak bands at ~2980 cm−1 and ~2931 cm−1,
corresponding to symmetric (νs) and asymmetric (νas) C-H vibrations derived from ethanol
residues. Moreover, other IR bands registered for XG1 and XG2 samples were easily
identified as stretching vibrations originating from the silica backbone. The strongest peak
near ~1042 cm−1 was assigned to asymmetric vibrations (νas) within Si-O-Si siloxane
bridges. Other bands, which are located at the following frequency regions: ~950 cm−1,
~787 cm−1, and ~550 cm−1, were assigned to: Si-O vibrations, Si-O-Si stretching, and
bending vibrations (δ) from O-Si-O groups, respectively. The IR spectrum registered for
XG2 xerogel sample reveals some bands, which confirm the presence of DMF molecules
within a sol–gel structure. A relatively intense IR band located at ~1655 cm−1 is related
to C=O stretching in formyl groups, but it may also be derived from Si-OH vibrations.
Moreover, the following peaks: 1391 cm−1, 1419 cm−1, 1439 cm−1, and 1470 cm−1 could be
assigned to different types of C-H vibrations within DMF molecules. It should be noticed
that the IR band corresponding to H3C-N stretching from DMF (~2775 cm−1) is covered by
a wide O-H band located between ~2690 cm−1 and ~3710 cm−1 frequency region.
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An intense IR band originated from O-H stretching vibrations within Si-OH silanol
groups with a maximum of ~3350 cm−1 was detected for both xerogel samples. The
free silanol groups on the XG1 sample’s surface undergo a condensation reaction, and
in consequence, neighboring Si-OH groups create new Si-O-Si linkages. The described
effect leads to structure collapse. In the case of DMF-modified xerogel XG2, the hydrogen
bond with Si-OH groups can be created, and therefore, Si-OH groups are partially blocked
from the condensation reaction, and the structure is collapsed. Moreover, numerous
silanol Si-OH groups in both prepared xerogels are responsible for the hydrophilic nature
of resulting structures. Due to the above arguments, further surface modification with
TMCS/n-hexane is justified; therefore, a hydrophobization process was performed during
aerogels preparation.

Figure 3 presents the FT-IR spectra measured for prepared silica aerogel samples after
the silylation process.
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The registered IR spectra display a few bands within 2350–3250 cm−1 and 500–1300 cm−1

frequency regions, specific to C-H and silicate network vibrations, respectively. The peaks
at ~2967 cm−1 and ~2904 cm−1 were registered for both prepared samples, which could be
assigned to symmetric (νs) and asymmetric stretching (νas) modes of C-H in –CH3 groups.
Furthermore, the weak peak near ~1410 cm−1 spectral range corresponds to asymmetric
deformation vibrations (δas) within the C-H moiety. The presence of such bands in FT-IR
spectra confirms the effective surface modification via conducted silylation process.

In the 500–1300 cm−1 region, a signal that appears at ~1250 cm−1 as a shoulder could
be assigned to deformation vibrations of Si-CH3 groups. The presence of this IR band
confirms the successful attachment of non-polar –Si-(CH3)3 groups from TMCS molecules,
and then, the silica surface becomes hydrophobic. Other IR signals which are related to
the hydrophobic nature of studied aerogels (induced by Si-C vibrations) are located at
~840 cm−1 and ~752 cm−1. The registered spectra also exhibit some bands originating
from the silica network: ~1044 cm−1 (asymmetric vibrations (νas) of Si-O-Si linkages) and
~550 cm−1 (bending vibrations (δ) from O-Si-O bridges).

The presence of residual DMF molecules within the silica porous structure after the
silylation process could be confirmed by the IR peak located at ~2773 cm−1, which is
related to H3C-N stretching vibrations. The broadband with the maximum at 3418 cm−1,
as well as the weak peak at 1655 cm−1 registered for AG2 aerogel sample, suggest the
presence of residual hydrogen-bonded unreacted Si-OH silanol groups, which are still
present after the performed silylation process. These results can also be confirmed by
thermo-gravimetric analysis.

The Raman spectra were also registered and studied to further investigate the structure
of prepared aerogel samples (Figure 4).
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Figure 4. Raman spectra registered for prepared silica aerogels: (a) pure silica aerogels AG1 and
(b) DMF-modified silica aerogels AG2.

Each Raman spectrum was recorded on a sample surface, and the characteristic Raman
peaks appeared from 250 cm−1 to 3250 cm−1. The registered Raman lines were identified
based on literature data [23,59–63]. A band registered for each sample at ~616 cm−1 is
a defect line attributed to Si-O stretching within (SiO)3-ring breathing mode. Another
Raman band located at ~694 cm−1 could be interpreted as rocking vibrations from Si-CH3,
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which confirms that the performed silylation process was efficient. Therefore, obtained
materials are hydrophobic. Finally, the Raman signals located at ~1250 cm−1, ~1412 cm−1,
~2905 cm−1, and ~2960 cm−1 could be identified as C-H stretching in –CH3 groups.

The micrographs presented in Figure 5 show that both investigated aerogel samples
are formed by relatively highly packed grains with an isometric shape with diameters
below 100 nm.
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The finer pores were identified between the grains, and the observed effect is con-
sistent with the well-known fact that the pore diameter is any fraction of the diameter of
closely stacked grains of a mono-fraction. The dimensioning of the pores allowed us to
conclude that the dominant contribution to the samples’ microstructures has pores with
diameters from a few to thirty nanometers. However, for the DMF-modified AG2 samples,
the observed pore fraction has a noticeably wider range compared with AG1 samples.
Moreover, based on the topography of prepared aerogels, the AG2 samples’ surface seems
more folded. It could also be concluded that high specific surface areas characterize both
types of prepared aerogels. However, such a value should be higher for modified AG2
samples. Generally, the microstructure observations from the SEM method are consistent
with BET analysis.

Figure 6 shows the adsorption/desorption isotherms obtained for pure unmodified
(AG1) and DMF-modified (AG2) aerogels, and simultaneously, the pore size distribution
(PSD) was demonstrated in Figure 7.
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For the prepared aerogels, the shape of adsorption/desorption isotherms corresponds
to the mesoporous structure. According to the classification of porous materials made by
de Boer in 1958, the shape of the desorption hysteresis loop indicates the pore structure
with both cylindrical capillary pores open at both ends and cylindrical pores closed at
one end with a narrow neck at the other, like an ink bottle. The average pore diameters
for both materials are the same and equal to 13.2 nm. The differences appear only in the
shape of curves depicting the PSD. On the PSD curve for pure silica aerogel (AG1), there
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are two visible peaks: the main broad peak corresponding to the pores with the diameters
between 104 Å and 672 Å and the smaller one, not completely created, corresponding
to the pore diameters in 51–104 Å range. For DMF-modified aerogel, the PSD profile is
quite similar. The broad peak is observed in a range from 105 Å to 761 Å, and the smaller
one in a range from 43 Å to 95 Å. Therefore, as shown in Figure 7, the DMF-modified
sample exhibits a slightly broader size distribution. Generally, as was described in the
available literature, the uniformity of pore size distribution is strictly related to the amount
of introduced DMF additive during the synthesis procedure. If a moderate amount of DMF
is added during preparation (nSi:nDMF > 1 (molar ratio)), in that case, the PSD should
be narrow due to the perforation of condensation reaction in some well-organized way
compared to unmodified analogous samples, where condensation is quick and disordered.
However, the PSD is wider if DMF excess is introduced during synthesis. This is because
the hydrogen bond between Si-OH groups and DMF molecules is usually destroyed after
the silylation process [30]. As a result, the big difference in capillary pressure operated
on pores made the structure collapse during ambient pressure drying, which leads to
broader pores size distribution. In the case of our proposed silylation conditions, the DMF
residual molecules are still present within silica pores. Therefore, we suppose that PSD
for the AG2 sample is only slightly broader compared to AG1 one (the difference between
pore diameter between AG1 and AG2 is about ~90 Å). Generally, the PSD distribution
of studied aerogels is relatively narrow compared to other APD aerogels described in
the literature. He et al. presented the results for DMF-modified and unmodified water
glass-based aerogels in a range from 17 Å to 17000 Å [30] and from 17 Å to 500 Å [47]. In the
case of DMF-modified samples presented in work [30], if nSi:nDMF molar ratio was equal
to 2.23, the PSD peak was narrower compared to the unmodified sample. Successively,
if nSi:nDMF decreased to 1.11 and 0.83, the PSD peaks were broader than those of the
unmodified aerogel. The difference in the widths of the peaks reached up to 700 Å. A
similar effect was also reported for DMF-modified silica samples described in the work [47].
When the nSi:nDMF molar ratio was higher than 1, the PSD peaks were narrower than
unmodified ones. However, if nSi:nDMF was lower than 1, the PSD distribution was
broader, and the final PSD differences between DMF-modified and unmodified samples
were about ~300–400 Å. In the case of our prepared samples, the difference in PSD peaks
width was only ~90 Å. This could be explained by residual amounts of DMF molecules after
the silylation process with TMCS/n-hexane, despite introducing DMF in excess during the
proposed synthesis (nSi:nDMF = 0.68).

Based on sorption isotherms with Brunauer–Emmett–Teller (BET) analysis, the specific
surface areas of prepared silica aerogel samples were also determined. The BET-specific
surface area determined for AG1 sample is equal to SBET = 828 m2/g. This value is very
similar to surface areas determined for other TEOS-based systems obtained via the APD
method: SBET = 878 m2/g [49] and SCD route: SBET = 875 m2/g [37]. As is seen from
Table 1, BET surface areas determined for analogous silica water–glass-based aerogels do
not reach such high values. The DMF-modified silica aerogel (AG2) exceeds a very high
BET surface area equal to 1231 m2/g.

The BET surface area values higher than 1000 m2/g were also obtained for only
a few aerogels prepared through ambient pressure drying and described by Wu et al.
(up to 1005 m2/g) [26] and Nazriati et al. (up to 1113.76 m2/g) [64]. Such high specific
surface areas are rather typical for supercritical drying systems, e.g., as was presented
in the following publications [56–58,65]. Based on published data, it was observed that
for DMF-modified aerogels with nSi:nDMF molar ratio equal to about 0.65, the increase
in surface area values was achieved at about 6.2% [47] and 6.8% [49] levels compared to
pure silica samples. In the case of our DMF-modified sample (AG2, nSi:nDMF = 0.68),
the increase in surface area reached up to 48.7% of BET surface area in comparison to
TEOS-based aerogel without DMF modification (AG1).
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Table 1. The literature data of specific surface areas measured for DMF-modified silica aerogels by
isotherms with standard Brunauer–Emmett–Teller (BET) analysis.

Silica Source Used Catalyst(s) Drying
Method

Surface
Modification

DMF:Si Molar
Ratio

BET Surface
Area (m2/g) Ref.

Si(OC2H5)4
(TEOS)

HCl
NH3·H2O APD TMCS in n-hexane 0.50 1231 Present

work

Na2O:3.33 SiO2 HCl APD TMCS in n-hexane

0
0.30
0.45
0.90
1.20

469
551
680
583
565

[30]

Si(OC2H5)4
(TEOS)

C6H8O7·H2O
(citric acid) SCD

0
0.2
0.4
0.6
0.8
1.0

875
860
830
770
655
480

[37]

Na2O:3.55 SiO2 NH3·H2O APD TMCS in n-hexane

0
0.31
0.62
0.93
1.24
1.55

740
817
728
627
456
786

[47]

Si(OC2H5)4
(TEOS)

HCl,
NH3·H2O APD TMCS in isopropyl

alcohol (IPA)

0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

878
939
927
938
939
894
930
908
935

[49]

Generally, as could be seen from the PSD in Figure 7, the modification of silica aerogel
by DMF additive diminishes the diameters of the pores, which in consequence leads to the
higher amount of micropores within the aerogel’s structure and gives the higher specific
surface area of prepared material (AG2, SBET = 1231 m2/g) compared to unmodified
aerogel (AG1, SBET = 828 m2/g). Moreover, the BET microstructure analysis pointed out
that in the case of DMF-modified silica aerogel, the micropore volume is about 30% higher
than for pure silica samples and amounts to 4.1 cm3/g. The aerogels’ structure also affected
the density, and for the AG1 sample, it equaled 0.115 g/cm3, while for AG2 aerogel, it was
negligibly smaller and equaled 0.114 g/cm3. To summarize, the selected structural and
thermal properties of studied samples are collated in Table 2.

Table 2. Structural and thermal parameters of pure silica aerogel (AG1) and modified with
DMF (AG2).

Density
(g/cm3)

Surface Area
(m2/g)

Average Pores
Diameter (nm)

Micropores
Volume
(cm3/g)

Mass Changes
at 2% Mass

Loss

Temperature
4% Mass

Loss

(◦C):
10% Mass

Loss

AG1 0.115 828 13.2 2.7 90 390 800
AG2 0.114 1231 13.2 4.1 310 350 630



Energies 2023, 16, 6244 12 of 16

In Figure 8, the thermogravimetric (TG) curves for pure AG1 and DMF-modified AG2
silica aerogels are presented. The thermal stability of prepared aerogels was evaluated
in a temperature range from 30 ◦C up to 1000 ◦C. Generally, two main stages of weight
loss for both of prepared aerogels were registered: the first stage was detected as gentle
degradation. However, the second one was observed as a major continuous weight loss.
For the AG1 sample, the following degradation steps were detected: ~30–162 ◦C (1◦) and
~273–1000 ◦C (2◦), while the range from 162 to 273 ◦C was registered without weight loss.
In the case of the AG2 DMF-modified sample, the degradation steps were observed in
the following temperature ranges: ~30–49 ◦C (1◦) and ~199–1000 ◦C (2◦), while the range
between 49 and 199 ◦C was registered without weight loss. The total weight losses were
estimated at 11.25% and 15.97% for AG1 and AG2 samples, respectively. Generally, the
first weight-loss step for both prepared aerogels is attributable to removing adsorbed water.
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The presented results suggest that the amount of unmodified silanol Si-OH surface
groups that interact with water molecules is slightly higher for AG1 aerogel than AG2.
This is evidenced by a more significant weight loss for the AG1 sample during the first step
of thermal degradation (for AG1: 2.59% and for AG2: 0.99%). On the other hand, the
total amount of Si-OH groups within the silica backbone is greater for AG2 DMF-modified
aerogel (as evidenced by an infrared band with a maximum at ~3420 cm−1, see Figure 3)
due to a hydrogen bonding with DMF molecules. Consequently, for the DMF-modified
sample (AG2), the amount of non-hydrogen-bonded Si-OH groups is smaller. Therefore,
the AG2 aerogel seems to be more hydrophobic than the unmodified AG1 one (despite the
broad IR band near ~3420 cm−1), and the final weight loss during the first TG step is smaller
for the DMF-modified sample due to the smaller amount of bonded water. Consequently,
it could be concluded that the AG2 sample reveals better temperature resistance at lower
temperatures. The next weight loss step is more spectacular for both prepared samples
and was estimated to be 8.66% for AG1 and 14.98% for AG2. The second degradation
step is closely related to the thermal evolution of the organic part of studied aerogels. It
should be noted that the second-step weight loss starts at ~160 ◦C for the DMF-modified
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aerogel (AG2) due to the gradual evaporation of DMF additive from silica backbone (boiling
point of DMF: ~153 ◦C [48]). Then, the non-hydrogen bonded Si-OH groups (which were
not reacted during the condensation reaction at the beginning of the presented synthesis
pathway) can react with each other, which leads to densify of silica:

≡Si-OH + HO-Si≡→ ≡Si-O-Si≡ + H2O [66].
The weight loss for AG1 non-modified silica sample starts at a higher temperature

(~200 ◦C) due to the lack of DMF molecules within the silica network. Therefore, such an
effect could explain the more significant weight loss for the AG2 aerogel sample and better
temperature resistance for AG1 at higher temperatures. The significant continuous weight
loss started from ~270 ◦C for both prepared samples. This effect is strictly related to the
thermal decomposition of Si-(CH3)3 modified groups, which are mainly responsible for the
hydrophobic nature of studied aerogels [67]. Obtained thermogravimetric results are in
good agreement with FT-IR studies.

4. Conclusions

The presented research studied the influence of drying control agent modification
on the physical and chemical properties of silica aerogel synthesized by ambient pressure
drying. Particular attention was focused on the role of DMF in creating the microstructure
of silica aerogel. Scanning electron microscopy (SEM) studies indicated highly paced
microstructures of prepared aerogels. The FT-IR and Raman measurements confirmed the
presence of DMF molecules within the silica aerogel skeleton, even after the subsequent
treatment in TMCS/n-hexane solution. The DMF modification led to the microstructure
with higher amounts of micropores with broader size distribution and a very high surface
area equal to about 1231 g/cm3. Such a high surface area was comparable with the values
obtained by other researchers for silica aerogels dried in supercritical conditions (SCD) and
significantly higher than the surface areas obtained via ambient pressure drying (APD).

Furthermore, the addition of DMF followed by the silylation process in APD influenced
excellent structural parameters and thermal stability of received silica aerogel and promoted
its hydrophobic nature. The TG analysis revealed that prepared aerogels retained the stable
structure up to ~270 ◦C due to Si-(CH3)3 modified groups.

The resulting silica aerogel, due to the simultaneous modification with DMF and
TMCS, has a much higher specific surface area than most commercial silica aerogels and
could be an interesting material for use in granular form in paints, plasters, or mortars and
concretes. In particular, the use of silica aerogels in lightweight and ultralight cementitious
composites appears to be important due to the significant improvement in insulation
performance. This is an important trend in the construction industry, in line with the
sector’s drive for sustainability.
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36. Ślosarczyk, A.; Klapiszewski, Ł.; Buchwald, T.; Krawczyk, P.; Kolanowski, Ł.; Lota, G. Carbon Fiber and Nickel Coated Carbon
Fiber–Silica Aerogel Nanocomposite as Low Frequency Microwave Absorbing Materials. Materials 2020, 13, 400. [CrossRef]

37. Rao, A.V.; Sakhare, H.M.; Tamhankar, A.K.; Shinde, M.L.; Gadave, D.B.; Wagh, P.B. Influence of N,N-dimethylformamide additive
on the physical properties of citric acid catalyzed TEOS silica aerogels. Mater. Chem. Phys. 1999, 60, 268–273.

38. Parvathy Rao, A.; Venkateswara Rao, A. Study the Influence of Drying Control Chemical Additives on the Physical and Optical
Properties of Nanocrystalline Cadmium Sulfide–Doped Tetraethylorthosilicate Silica Xerogels. J. Mat. Syn. Process. 2002, 10, 1.

39. Nah, H.-Y.; Parale, G.; Jung, H.-N.-R.; Lee, K.-Y.; Lim, C.-H.; Ku, Y.; Park, H.-H. Role of oxalic acid in structural formation of
sodium silicate-based silica aerogel by ambient pressure drying. J. Sol-Gel Sci. Technol. 2018, 85, 302–310. [CrossRef]

40. Ochoa, M.; Lamy-Mendes, A.; Maia, A.; Portugal, A.; Durães, L. Influence of Structure-Directing Additives on the Properties of
Poly(methylsilsesquioxane) Aerogel-Like Materials. Gels 2019, 5, 6. [CrossRef]

41. Lamy-Mendes, A.; Pontinha, A.D.R.; Alves, P.; Santos, P.; Durães, L. Progress in silica aerogel-containing materials for buildings’
thermal Insulation. Constr. Build. Mater. 2021, 286, 122815. [CrossRef]
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