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Abstract: Transport electrification, which entails replacing fossil fuel-powered engines with electric
drivetrains through the use of electric vehicles (EVs), has been identified as a potential strategy for
reducing emissions in the transportation sector. As the adoption of EVs increases, there is a growing
need to understand their performance and characteristics, particularly the factors that influence
energy consumption under actual driving conditions. This study sought to investigate the actual
energy consumption of commercial battery electric vehicles (BEVs) in Thailand by conducting real-
world driving tests under various route conditions, including urban and rural route modes. Data
collection was performed through the use of onboard diagnostics and global positioning system
devices. The result shows that the average energy consumption of the BEVs in this study was
148.03 Wh/km. Moreover, several machine learning (ML) techniques were utilized to analyze the
collected dataset to predict energy consumption and identify the key factors influencing energy
consumption. A comprehensive investigation of factor significance was carried out by employing a
specific algorithm in conjunction with the SHapley Additive exPlanations (SHAP) approach. This
investigation provided insights into the influence of battery current and vehicle speed on the energy
consumption of BEVs, particularly in the context of urban route conditions. The results of this study
provide valuable insights into the energy consumption of BEVs and the factors affecting it, which can
aid in improving energy efficiency and informing policy decisions related to transport electrification.

Keywords: artificial intelligence; SHAP approach; electric vehicle; clean energy; responsible consumption;
real-world driving; decarbonization

1. Introduction

The issue of global warming, characterized by a rising trend in global temperatures,
is widely regarded as a critical concern. The primary cause of this phenomenon is the
accumulation of greenhouse gases (GHG), particularly carbon dioxide (CO2), in the at-
mosphere. The burning of fossil fuels, specifically in the power generation, industrial,
agricultural, and transportation sectors, is the major source of CO2 emissions. Among
these, the transportation sector has emerged as a significant contributor to global GHG
emissions, accounting for approximately 25% of total emissions, and showing no signs of
abating [1]. In particular, road transport has become a leading contributor to emissions,
with the use of vehicles such as cars, trucks, and buses having significant detrimental
effects on both the environment and public health due to their emissions of GHG and
air pollution caused by fossil fuel combustion. As the global population and economy
continue to expand, it becomes increasingly imperative to take into consideration the envi-
ronmental impact of these vehicles and explore ways to decrease their energy consumption
and emissions. The European Union (EU) has taken a leading role in addressing the issue
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of global warming by devising strategies to decrease emissions from the transportation
sector and achieve the objectives of the Paris Climate Agreement. As per the European
Commission, CO2 emissions from new vehicles in the EU are projected to decrease by 55%
by the year 2030 as compared with 2021 levels [2]. Furthermore, all new vehicles registered
in the EU starting from 2035 must be zero-emission vehicles, resulting in the phasing out of
conventional internal combustion engine vehicles (ICEVs), which are the primary source of
emissions in the transportation sector. In line with the long-term objectives set forth by the
European Green Deal [2], there is a critical imperative to achieve a substantial reduction of
approximately 90% in emissions from the transportation sector by 2050. These ambitious
targets underscore the urgency and necessity of implementing sustainable measures to
combat climate change and foster a greener future in the realm of transportation [3].

Transport electrification, which involves transitioning from fossil fuel-powered en-
gines to electric drivetrains, has been identified as a possible strategy for reducing emissions
in the transportation sector. This shift towards a clean and sustainable energy system in
transportation holds the potential to significantly decrease emissions. As a result, the pro-
motion of electric vehicles (EVs) has gained traction as a means of reducing CO2 emissions
and addressing the issue of climate change [4]. It is projected that EVs will become the
prevalent form of vehicle in the global automotive market by the year 2030–2050, thus
effectively phasing out the use of gasoline and diesel-burning engines [5]. By incorporating
low-emission drivetrains and utilizing renewable energy sources [6,7], EVs have the po-
tential to significantly decrease emissions from both the transportation sector and power
generation. EVs, a type of transport electrification, rely on electric motors powered by
rechargeable batteries or a combination of an electric motor and an internal combustion
engine, instead of solely traditional gasoline or diesel engines. There are three main types
of commercial EVs currently available in the market, including battery electric vehicles
(BEVs), hybrid electric vehicles (HEVs), and plug-in hybrid electric vehicles (PHEVs). BEVs,
propelled solely by an electric motor, are powered by stored electricity and do not emit
tailpipe emissions. HEVs have both electric and gasoline engines, which can be powered in-
dividually or simultaneously. PHEVs have a larger battery that can be charged by plugging
the vehicle into an electric power outlet and can operate in all-electric mode for a certain
distance before switching to the gasoline engine. The various types of EVs available exhibit
different characteristics. In recent years, the EV market has experienced rapid growth, with
a significant increase in the number of EVs on the road. This growth can be attributed to a
range of factors, including the falling costs of EV technology, increased availability of EVs,
and supportive government policies. As a result, automotive industries in many countries
expect EVs to become the primary powertrain in the car market within the next decade.
McKinsey and Company, a global management consulting firm, has analyzed the long-term
market dynamics of EV market share towards 2030 and found that the EV market share in
China, Europe, and the US could increase by approximately 35 to 50%, 35 to 45%, and 15 to
35%, respectively, compared with 2020 [8].

Even though the EV market has seen significant growth in recent years as a way to
promote zero-emission transportation, EVs still make up a small percentage of the global
vehicle market. Additionally, the majority of EVs are concentrated in a few countries with
high EV market shares, such as China, which accounted for around half of the world’s EVs
as of 2021, followed by the EU and the US, which together hold about 40% [9]. Among the
commercial EVs, BEVs have been observed to have the lowest environmental impact in
the long run as they do not produce emissions from tailpipes and can be powered using
renewable energy sources. However, certain factors such as range anxiety, the availability
of charging infrastructure, the total cost of ownership, and actual vehicle performance
can present barriers for some individuals and businesses [10–12]. These challenges stand
as an obstruction to transition in the early stage. Nevertheless, as the growth in the EV
market, especially BEVs, is expected to expand to all regions globally, countries that aim to
encourage the adoption of EVs in their transportation systems should be prepared for this
shift and conduct further research to be ready for the new normal. The growing interest in
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BEVs in recent years can be attributed to their potential to mitigate environmental issues
arising from fossil fuel consumption and road transportation emissions. To evaluate the
potential and practicality of BEVs, numerous studies have been carried out on various
facets of EVs, including battery technology, cost-benefit analysis, vehicle efficiency, and
environmental impacts [9,13–17].

Energy consumption estimation models play a crucial role in forecasting and assess-
ing the performance and environmental consequences of diverse vehicle types operating
under varying traffic conditions. These models serve as indispensable instruments for
comprehending the energy efficiency of different traffic configurations, enabling informed
decisions in transportation planning and policymaking [18–22]. Analytical, statistical, and
machine learning (ML) models are among the various approaches employed to model the
energy consumption of vehicles. The ML approach is a rapidly growing field that utilizes
algorithms and large datasets to enable computers to learn and make predictions or deci-
sions [23]. Its applications are wide-ranging and have been found to be particularly useful
in the transportation industry for understanding and predicting patterns of consumption
and emissions. Using ML algorithms, researchers have been able to identify factors that
contribute to energy efficiencies, such as vehicle type, driving behavior, and road conditions.
The analysis of large datasets through ML has also allowed for the prediction of future
energy consumption and emissions based on associated factors [24–26]. This information
is vital for transportation planners and policymakers as it can be used to make informed
decisions on how to reduce energy consumption and emissions most effectively.

The widespread adoption of EVs has led to a growing need to understand their
performance and characteristics, particularly the factors that affect energy consumption
under actual driving conditions. To our knowledge, no published reports exist regarding
the estimation of energy consumption for various brands of current commercial BEVs
available in the early stage of the Thai market. Furthermore, based on our extensive
literature review, only a limited number of previous studies have explored the applicability
of ML techniques to estimate BEV energy consumption and comprehensively analyze the
influential variables that contribute to it. For this reason, this study aims to evaluate the
energy consumption of current commercial BEVs, which are considered to have the lowest
environmental impact among EV types, using in-vehicle sensors and locational tracking
data. Additionally, this study employs ML techniques to analyze the collected data and
establish predictive models of energy consumption, as well as identify the significance
of the variables impacting energy consumption. The findings and conclusions of this
research have the potential to be beneficial for EV users, manufacturers, and policymakers
in determining the actual efficiency of BEVs.

The present article is structured into five distinct sections. Section 2 elucidates the ex-
perimental protocol employed for real-world driving, outlining the proposed methodology
for capturing the actual energy consumption of BEVs. This section encompasses aspects
such as vehicle specifications, route selection, data collection devices, and the determination
of energy consumption. Section 3 details the ML approach utilized. Subsequently, Section 4
presents the results obtained and provides a comprehensive discussion. Lastly, Section 5
presents the overarching conclusions drawn from the study, providing a concise summary
of the research findings.

2. Experimental Procedure

The methodology used for determining the energy consumption of BEVs in this
study was carefully designed and implemented according to a standard experimental
methodology to ensure accurate and reliable results. In this section, we describe the
method in detail, including the vehicle specifications, route modes, data collection devices,
and energy consumption calculations. In all the real-world driving tests, the onboard
diagnostics (OBD) and global positioning system (GPS) devices were used to continuously
log in-vehicle sensor and locational data, respectively, via smartphone applications.
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2.1. Vehicle Specifications

The driving data used in this study were collected from a real-world driving test
conducted with three BEVs that are popular in Thailand and commonly utilized as medium-
sized family vehicles in urban and rural areas. The specifications of the test vehicles are
presented in Table 1.

Table 1. Specifications of test vehicles.

Details BEV1 BEV2 BEV3

Body type SUV SUV C segment
Model year 2019 2020 2018

Electric motor Permanent-magnet
synchronous

Permanent-magnet
synchronous

Alternating current
synchronous

Motor power (kW) 110 102 110
Battery type Lithium iron Lithium iron Lithium iron
Battery capacity (Wh) 44.50 47.79 40.00
Curb weight (kg) 1535 1510 1580

2.2. Route Modes

The test routes for this study were located primarily in Chiang Mai, a city in Thailand
with a diverse range of terrain and road types. For a realistic evaluation of energy con-
sumption under actual driving conditions, the routes were selected and classified based
on environmental and traffic conditions, in accordance with the European Real Driving
Emissions (RDE) test for quasi-flat roads. The routes were differentiated by vehicle speed
range, with the urban mode covering speeds below 60 km/h and the rural mode covering
speeds between 60 and 90 km/h, both requiring a trip distance of over 16 km and cumu-
lative positive altitude not exceeding 1200 m/100 km [27]. The urban mode focused on
traffic-related factors such as light, medium, and heavy congestion. Tests in this mode
were conducted in six city areas across various provinces in Thailand, including Chiang
Mai, Lampang, Tak, Kamphaeng Phet, Nakhon Sawan, Bangkok, and Phuket. The rural
mode aimed to replicate driving conditions on roads in addition to those of the urban
mode. These routes were selected to provide a representative sample of different road
conditions and speed ranges, such as the changes in curves and elevation of long routes.
All round trips in this mode covered a minimum distance of 20 km. The use of RDE test
methods and this specific route classification ensures a rigorous and accurate assessment
of the energy consumption of BEVs in real-world scenarios. In order to obtain results
that truly reflect actual driving conditions, all available vehicle auxiliaries such as music
players, air conditioners, and power supplies for mobile devices were used as per normal
usage in reality. The total distance traveled by the test vehicles across all trips in all route
modes exceeded 7000 km. The experimental design of this study included conducting tests
over a three-month period, encompassing both weekdays and weekends. The ambient
temperature during testing varied between 26 ◦C and 31 ◦C, and the altitudes, relative to
sea level, ranged from −10 to 400 m.

2.3. Data Collection Devices

The utilization of sensors and diagnostic tools in commercial vehicles has been on
the rise in recent times as these devices are essential for monitoring the performance of
the vehicle and ensuring safe and efficient operation by facilitating the diagnosis and
monitoring of essential vehicle components, i.e., the engine control module, transmission
control module, electronic control units, and various sensors. The most recent version
of the OBD system, the second generation of OBD (OBD-II), is an advanced version that
employs standardized commands to communicate with other devices within the vehicle.
The widespread adoption of Bluetooth technology has made access and control of the OBD
system more accessible. Many research studies have employed OBD-II devices to capture
and log data from in-vehicle sensors, making the OBD system a vital enabler for various
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vehicle applications [28,29]. In this study, it was assumed that the use of the OBD system
does not affect the energy consumption of the vehicle as it has low energy demands [30].

2.4. Determination of Energy Consumption and Emissions

The electric consumption of BEVs is commonly calculated by measuring the cor-
responding battery current and voltage, typically in terms of watt-hour per kilometer
(Wh/km). The determination of the electric energy consumed by BEVs during a trip in the
unit of watt-hour (Wh) can be analyzed from in-vehicle sensor data related to the battery
information as follows [30]:

Etrip =
1

3600

n

∑
i=1

Vi × Ii i = 1, 2, 3, . . . ., n (1)

where Vi and Ii denote the battery voltage and current measured at second i, while n
denotes the last second of a trip. Afterward, the energy consumption EC of BEVs in the
unit of Wh/km can be computed by

EC =
Etrip

dtrip
(2)

where dtrip is the total distance of the travel trip in the unit of km.
Furthermore, to assess the environmental impact of BEVs, it is possible to employ

a carbon lifecycle analysis as a means to estimate the overall carbon emissions. In the
case of BEVs, the carbon pathway primarily encompasses the production, processing, and
distribution of electric energy sources. By utilizing a conversion factor, the carbon emissions
of BEVs can be calculated based on their energy consumption. According to the guidelines
provided by the Thailand Greenhouse Gas Management Organization [31], a BEV’s energy
consumption in terms of kWh/km can be approximately converted into the amount of
carbon emissions in grams of CO2 equivalent per kilometer (gCO2eq/km) using a factor of
598.6 gCO2eq/kWh.

3. Machine Learning Method

In this study, the development of predictive models was achieved by studying the col-
lected dataset of in-vehicle sensor data and applying ML techniques to investigate patterns
and insights that affect the EV’s energy consumption. In the ML process, preprocessing the
raw data was performed before creating the model to ensure that only useful data were
incorporated into the models. Moreover, the process of selecting suitable algorithms was
undertaken to ensure the congruence between the model and the unique demands and
characteristics of the dataset.

3.1. Data Collection and Preprocessing

A comprehensive driving dataset comprising approximately 35,000 short-trip data
points was acquired, leveraging a diverse range of in-vehicle sensors connected to the
OBD-II system. GPS technology was employed to accurately track the vehicle’s location
throughout the data collection process. This dataset encompassed multiple BEVs, with
careful consideration given to the variables that impact their energy consumption. Data
acquisition occurred at a consistent frequency of 1 Hz, ensuring the reliable capture of
observed variables, including vehicle speed, acceleration, road slope, battery current, and
state of charge.

In order to mitigate the impact of varying ranges among the input features, a stan-
dardization process was conducted prior to analysis. Furthermore, to enhance the normal
distribution characteristics of the dataset, the Yeo–Johnson non-linear transformation tech-
nique was applied [23]. These preprocessing steps significantly contribute to both the
stability and expediency of the training process. By standardizing the input features



Energies 2023, 16, 6351 6 of 14

and achieving a normal distribution, potential biases and distortions within the data are
minimized, ensuring robustness and facilitating efficient model training.

3.2. Machine Learning Algorithms and Model Evaluation

This study employed four popular and efficient ML algorithms, including Extreme
Gradient Boosting (XGB), Random Forest (RF), Multilayer Perceptron (MLP), and Support
Vector Regression (SVR) for modeling purposes. The performance of these algorithms on
the feature input and target output dataset was assessed using the ten-fold cross-validation
method, in which the data are divided into ten subsets, with nine subsets utilized for model
training and the remaining one for validation, as shown in Figure 1. Consequently, the
training process is carried out with ten loops, and the accuracy of the training process
was computed as the mean of those from all the training loops [32,33]. The utilization of
the ten-fold cross-validation method allows for a reliable evaluation of the generalization
ability of an ML model and can aid in identifying the optimal set of hyperparameters for a
given dataset.
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The assessment of ML model accuracy constitutes a crucial step in the model develop-
ment process. Performance evaluation metrics, namely the Coefficient of Determination
(R-Squared, R2), Root Mean Squared Error (RMSE), and Mean Absolute Percentage Error
(MAPE), were employed to gauge the effectiveness of these models. In order to provide an
objective comparison of the estimation model’s performance within this study, these evalu-
ation metrics were utilized. The equations for calculating these metrics can be expressed
as follows:

R2 = 1 − ∑n
i=1
(
ECP

i − ECR
i
)2

∑n
i=1
(
ECR

i − mean
(
ECR

i
))2 . (3)

RMSE =

√
∑n

i=1
(
ECP

i − ECR
i
)2

n
(4)

MAPE =
1
n

n

∑
i=1

∣∣∣∣∣ECP
i − ECR

i
ECR

i

∣∣∣∣∣. (5)

Here, ECP
i is the predicted energy consumption, ECR

i denotes the associated real-
world energy consumption measured with identical parameters, and n stands for the
number of samples. Generally, a higher value of R2 and lower values of RMSE and MAPE
indicate superior model performance as they signify a reduced discrepancy between the
predicted and actual outcomes. These evaluation metrics serve as reliable indicators of
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the model’s accuracy, with larger R2 values denoting a stronger correlation and smaller
RMSE and MAPE values reflecting decreased errors in the predictions compared with the
ground truth.

4. Results and Discussion
4.1. Real-World Energy Consumption

The test routes in this study include a variety of driving conditions, which can be
classified as urban and rural routes based on the RDE test. With more than 80 trips, a large
number of data points were collected for the variables related to energy consumption. To
accurately determine the energy consumption of the vehicles under real-world driving
conditions, the energy consumption was estimated using numerous short-distance trips.
This approach allows for more accurate capture of variations in energy consumption than
considering the average of an entire trip. Figure 2 illustrates the energy consumption of the
BEVs against average travel speed.
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When evaluating the energy consumption of the BEVs based on route modes, the
average consumption was found to be 159.90 Wh/km and 132.24 Wh/km for the urban
and rural modes, respectively. It was observed that the consumption of BEVs was higher
in the urban mode than in the rural mode, with a difference of 20.92%. A comparison of
the individual BEVs on urban routes revealed that BEV2 consumed the highest energy
among the BEVs, while BEV1 and BEV3 had similar consumption values. The data also
indicated that energy consumption fluctuated greatly in the urban mode, while it was more
consistent in the rural mode. Overall, the average energy consumption of the BEVs in this
study was determined to be 148.03 Wh/km, as measured across all speed ranges and tests,
as shown in Figure 2. It is important to note that Figure 2 visually represents the real-world
driving data pertaining to numerous short-distance trips across various average speed
ranges. The classification of route modes can be determined by considering the specific
speed ranges associated with the data.

Moreover, considering the energy consumption of BEVs, the average carbon emissions
were determined to be 95.72 and 79.19 gCO2eq/km for the urban and rural modes, re-
spectively. The results of this investigation demonstrate that compared with the emissions
of ICEVs reported in the literature [14], the BEVs exhibited a reduction in emissions of
approximately 60% and 56% in urban and rural settings, respectively.
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4.2. Input Features

In this study, Pearson correlation analysis was employed to evaluate the variables
associated with the real-world energy consumption of the test vehicles. The objective of
utilizing this technique was to identify and eliminate variables that exhibit high correlations
with one another. Such variables can pose a challenge in regression models, as they tend
to result in unstable and unreliable coefficients. By eliminating these highly correlated
variables, the interpretability and stability of the ML models can be improved. In this study,
variables with absolute values of the Pearson coefficient greater than 0.8 were removed
as they were considered to have a high degree of correlation. The set of input variables
(features) selected for the ML models includes vehicle speed, acceleration, road slope,
battery current, and state of charge, while the target variable is energy consumption. The
values, mean values, and standard deviation (SD) of the input and output variables are
presented in Table 2. Note that all data collected from the experiment were used for ML
processing.

Table 2. Statistical data of the features.

Feature Unit Range Mean SD

Speed (v) km/h 1.00, 138.61 53.2915 32.2183
Acceleration (a) m/s2 −5.79, 15.99 0.0508 0.6404
Road slope (m) % −69.85, 69.98 0.0611 10.8670
Battery current (I) A −246.20, 335.10 11.0517 43.0538
State of charge (SOC) % 13.20, 97.97 50.4685 22.2618

4.3. Model Selection

Assessing the accuracy of ML models plays a vital role in the process of selecting
an optimal model. In the context of this study, various evaluation metrics, including R2,
RMSE, and MAPE, were utilized to evaluate the performance of the proposed ML models in
predicting the energy consumption of the BEVs. These evaluation metrics provide unique
insights into the model’s fit within the framework of a regression model. By employing
these metrics, the most effective model can be identified, facilitating the analysis of the
influential variables that contribute to the energy consumption. This rigorous evaluation
process enables researchers to make informed decisions regarding model selection and
gain a deeper understanding of the factors that impact BEV energy consumption.

Table 3 presents the predictive models’ accuracy in terms of the evaluation metrics and
run times. Again, to assess the selected ML algorithms, a comprehensive grid search with a
nested ten-fold cross-validation is conducted to determine the optimal hyperparameters.
Each training loop’s accuracy is evaluated based on the metrics presented in Table 3, with
the average scores and their SDs (indicated in parentheses) provided to gauge the model’s
overall performance. Notably, all the models exhibit comparable R2 and RMSE values,
except for the SVR model, which stands out with very poor performance outcomes. The
achieved high accuracy scores are in line with expectations, considering the utilization of
appropriate algorithms and the substantial volume of input data points used for training.
Among the ML models, the XGB and RF models exhibit commendable scores in terms of
evaluation metrics and run-time efficiency, while the MLP model demonstrates a favorable
metric score but requires a longer run time. Conversely, it is worth noting that the SVR
model appears unsuitable for this particular dataset.

The RF model exhibits exceptional R2 scores, indicating a robust fit of the model
to the data in terms of linear regression. The high percentage values obtained from the
RF model emphasize the strong correlation and coherence between the predicted and
measured data. These results underscore the efficacy of the RF model in capturing the
underlying relationships and patterns within the dataset. On the other hand, the RF model
demonstrates the lowest RMSE scores, indicating a superior fit between the predicted and
measured data. The excellent absolute measure of fit suggests that the standard deviation
of the data variance is minimal. Furthermore, the RF model also exhibits the lowest MAPE
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scores, which provide an indication of the average percentage difference between the
predicted and measured data. As shown in Table 3, the MAPE scores for the RF model in
predicting energy consumption under urban and rural modes reveal average deviations
of 11.81% and 24.60%, respectively, from the measured values. These evaluation scores
indicate that the RF model delivers the most accurate predictions for the dataset examined
in this study. It is worth noting that the RF model’s superior performance in terms of
accuracy makes it a reliable tool for estimating energy consumption in both urban and
rural driving modes. The excellent evaluation scores suggest that the predicted values
align closely with the actual energy consumption values, signifying the model’s ability to
capture the underlying patterns and factors influencing energy consumption accurately.

Table 3. Performance metrics and run times of the considered ML algorithms.

ML Algorithm Route Mode R2 RMSE MAPE Run Time (Second)

XGB

Urban 0.9136
(0.0171)

54.6055
(6.0350)

0.4373
(0.2266) 57.0548

Rural 0.8380
(0.0211)

34.6301
(2.4754)

0.4180
(0.2330) 45.1028

RF

Urban 0.9261
(0.0113)

51.9839
(4.5549)

0.1181
(0.0049) 56.7060

Rural 0.8563
(0.0222)

33.2777
(2.8756)

0.2460
(0.1334) 48.6161

MLP

Urban 0.9221
(0.0209)

53.3689
(7.7778)

0.2448
(0.0642) 203.1225

Rural 0.8400
(0.0168)

35.0335
(2.0151)

0.3015
(0.1016) 120.4364

SVR

Urban 0.3289
(0.0806)

109.3919
(7.2751)

1.2344
(0.4907) 318.6580

Rural 0.6994
(0.0356)

42.4560
(2.8301)

0.2441
(0.0794) 218.8431

Note: The standard deviation is shown in brackets, (SD).

Given the satisfactory accuracy achieved by most models, the ML implementation
in this study adopts the model with the best performance in accuracy and run time. Con-
sequently, the RF algorithm is chosen to establish the predictive model. The predicted
values of energy consumption generated by the chosen ML model were compared with the
measured values, the red square dots, as shown in Figure 3. The diagonal lines in the figures
represent the ideal estimation, while the green and blue lines indicate error boundaries of
±10% and ±20%, respectively. Most of the results were found to fall along the diagonal
line within the green line boundary, indicating the accuracy of the predictive models. The
difference between the measured and predicted results for the urban mode showed more
fluctuation than that of the rural mode, with some results outside the 10% error region.
Additionally, a few results were observed beyond the 20% error lines. Figure 3a provides
visual evidence of the significant presence of highly scattered consumption data within
the range of 300 to 1000 Wh/km for the urban mode. Conversely, Figure 3b reveals that
for the rural mode, the consumption data are primarily concentrated within the −400 to
600 Wh/km range, suggesting a comparatively lower rate of energy consumption in this
route mode.
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4.4. Feature Importance

Determining feature importance is a critical step in the ML approach as it enables a
deeper understanding of the extent to which features influence the target variable. This
knowledge not only enhances interpretability but also provides valuable insights into the
intricate relationships between features and the target variable. Given the complexity
of estimating energy consumption, which is influenced by a multitude of variables, a
feature importance analysis was conducted using the RF algorithm in conjunction with
SHapley Additive exPlanations (SHAP) method. SHAP is a game-theoretic approach
used to elucidate a model’s output by scoring the contribution of each feature to the
predicted results [34]. In this research, the SHAP approach was employed to analyze
feature importance and identify the significant impacts of the input variables.

To effectively present the distribution of SHAP values for each feature in the ML
model, beeswarm plots were employed, as depicted in Figures 4 and 5. The horizontal axis
of the plot represents the range of SHAP scores for the features, while the red and blue
contour dots indicate the high and low impact levels, respectively, of these features on the
energy consumption of the BEVs. These visual representations allow for a comprehensive
understanding of the relative importance and influence of each feature on the energy
consumption predictions.
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The classification of route modes in this study results in distinct variations in energy
consumption (EC) of the BEVs. Figure 4 visually presents the SHAP analysis of the energy
consumption prediction for the urban route mode, revealing notable findings regarding the
impact of input variables I and v on the EC. The analysis demonstrates a highly significant
influence of both I and v, as indicated by their SHAP scores. Evidently, the SHAP scores
for I exhibit a relatively uniform distribution, encompassing both positive and negative
scores of approximately ±800. This suggests a linear relationship between I and EC, with
the positive scores associated with high values of I (represented by the red contour dots).
Consequently, an increase in I corresponds to an elevation in the EC, while a decrease
in I results in a decrease in EC. Conversely, the SHAP scores for variable v display an
uneven distribution, with a range of scores approximately between −250 and +1000, as
depicted in Figure 4. This observation signifies a non-linear relationship between v and
EC. Positive SHAP scores associated with low values of v indicate that at a lower vehicle
speed, the energy consumption increases, and vice versa. However, the degree of change
in the negative range is less significant than in the positive range. The varying degrees
of change in the positive and negative score ranges highlight the greater significance of
low values of v to the energy consumption, which is characteristic of heavy urban traffic
conditions. The resulting significant impact of v on energy consumption is consistent with
a report in the literature [35] which highlights the strong correlation between vehicle speed
and energy consumption, particularly in the ranges of speed below 30 km/h. The state of
charge, acceleration, and road slope also exert influences on energy consumption; however,
their respective SHAP scores are notably lower in comparison with those of the battery
current and vehicle speed.

The SHAP analysis results for the rural route mode are presented in Figure 5. Among
the input variables, I demonstrates the most substantial impact on the energy consumption
of the BEVs, as evidenced by the highest SHAP score. The SHAP scores for I display a
relatively uniform distribution across both positive and negative ranges, approximately
±600. This indicates a linear relationship between I and EC, where an increase in I
corresponds to an increase in EC, and vice versa. However, these findings differ from
those of the urban route mode as the SHAP score of I in the rural route mode is clearly
lower. Furthermore, in this route mode, the influence of v on EC is significantly diminished,
suggesting v is a low-impact feature. The observed positive shift in the analysis results
concerning energy consumption demonstrates the efficacy of BEVs in the rural route mode,
aligning with both experimental findings and the existing literature. Moreover, the state of
charge, acceleration, and road slope can be categorized as features with low impacts on the
energy consumption of BEVs in both urban and rural route modes.



Energies 2023, 16, 6351 12 of 14

5. Conclusions

This study investigated the actual energy consumption of commercial BEVs in Thai-
land, by conducting real-world driving tests in both urban and rural modes. Moreover,
the ML approach was applied to analyze the large amount of data obtained from the tests.
This enabled the prediction of energy consumption and the identification of the key factors
influencing energy consumption. The following key findings were observed in this study:

• The average energy consumption of the BEVs was found to be 159.90 Wh/km for
the urban mode and 132.24 Wh/km for the rural mode, while the overall average
consumption was 148.03 Wh/km.

• There was a difference of approximately 21% in the average energy consumption
between driving on urban and rural routes.

• The BEVs showed higher energy consumption rates in the speed range below 30 km/h.
• The energy consumption of the BEVs has higher fluctuations in the urban route mode.
• The RF algorithm demonstrated the best performance in terms of accuracy and run

time, with MAPE scores of 11.81 and 24.60% for urban and rural routes, respectively.
• The factors that have an impact on the energy consumption, in descending order, were

found to be battery current, speed, state of charge, acceleration, and road slope.

Based on the findings of this study, generalized conclusions can be drawn regarding
the substantial influence of traffic conditions on the energy consumption of BEVs. It
was observed that BEVs tend to consume more electric power when operating at lower
average speeds with frequent fluctuations in acceleration. Furthermore, the utilization of
appropriate ML models based on real-world data measurements has demonstrated efficacy
in accurately predicting BEV energy consumption. These potential predictive models
can be further applied in the development of autonomous control systems for advanced
automotive technologies.
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