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Abstract: As renewables become more established in the electricity grid, the focus, and therefore
adaptability, will need to shift from the generation side to the demand side. Since the building sector
accounts for a large share of the energy demand, it will be strongly affected by this development. One
possibility for adaptation is so-called demand side management (DSM). To assess the contribution
of the building sector to energy flexibility, some key performance indicators (KPIs) have already
been developed in previous work. In this study, we investigate and statistically compare two
control strategies for temporarily raising the room temperature—one rule-based and one schedule-
based—with regard to their influence on the characterization of the building mass as a type of thermal
energy storage. In each case, we determine the thermal energy demand of a residential district based
on a dynamic simulation that occurred for a period of one year. The rule-based control assigns in the
median approximately 60% (mean: 41%) less capacity to the building mass than the schedule-based
control for the same boundary conditions. The calculation of the time-independent heating load
results in a median difference of 34% (mean: 36%). In addition, the establishment of energy-flexible
control in the evening hours just before a night-time reduction in the room temperature has a negative
impact on the efficiency of the thermal storage.

Keywords: energy flexibility; active demand response; thermal storage; buildings labeling

1. Introduction

As part of the energy transition, the German government has committed itself to
achieving greenhouse gas neutrality by 2045 [1]. This also applies to the national electricity
grid, which means that an accelerated expansion of renewable energies is being promoted.
Weather-dependent and therefore fluctuating power sources such as wind and solar power
require a trend reversal in energy systems [2,3]. Storage technologies can already be used
to transfer energy surpluses in times of energy shortages and thus partially cover demand
and stabilize the electrical grid [4]. However, the focus and adaptability will have to
shift from electricity generation to the demand side to avoid grid overloads. It will be
necessary to adjust the energy demand to compensate for surpluses and shortages in energy
supply [5,6]. Given that the building sector accounts for 40% of total energy consumption
worldwide [7], there is significant potential for future energy systems to achieve a higher
share of renewability and energy flexibility on the demand-side [8]. The implementation of
energy flexibility in buildings has also already found its way into EU directives. The 2018
revision of the energy performance of buildings directive (EPBD) highlights the importance
of energy flexibility in buildings and introduces the Smart Readiness Indicator (SRI) to
assess a building’s ability to adapt its operation to the needs of the occupants and the
requirements of the grid, and goes beyond a mere energy label [9]. The International
Energy Agency’s (IEA) Energy in Buildings and Communities Program (EBC) Annex 67
has focused more generally on defining energy flexibility in buildings [10]. This includes
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the effective management of both demand and generation to match local climate conditions,
user preferences, and energy grid requirements.

Within this domain, demand side management (DSM) offers a wide range of methods
to influence electricity demand patterns. These methods include reduction (peak shaving,
conservation), increases (valley filling, load growth), and rescheduling (load shifting) in
electrical loads [11,12]. The term demand response (DR) includes all of the measures that
are not categorized within energy efficiency [13], as shown in Figure 1. In practice, DR
strategies can be implemented through active demand response (ADR), which employs
short-term load management tactics [14]. The goal of ADR is to meet day-ahead load curve
constraints by adjusting the daily schedule based on factors such as user behavior, weather
conditions, and energy market prices.

Demand side management

Energy efficiencyDemand response

Active demand
response

•periodically adapted
schedule

•peak shaving
• valley filling
• load shifting
• load growth

• conservation

Figure 1. Classification of demand side management, adapted from [11,13,14].

To create a financial incentive for consumers to participate in ADR measures on DSM,
a control signal can be implemented through a dynamic price tariff, which may be based
on the electricity market price or locally generated energy as described by Lauro et al. [14],
Arteconi et al. [15], Arteconi and Polonara [16], de Coninck and Helsen [17] and Luc et al. [18].
In Germany, the Act to Restart the Digitization of the Energy Transition came into force in May
2023, obliging electricity providers to include dynamic electricity prices in their portfolios by
2025, paving the way for energy-flexible applications [19]. Examples of common household
electrical appliances suitable for ADR include time-controlled appliances such as washing
machines and dishwashers, and thermostatically controlled appliances such as heat pumps
or boilers [20], which are essential for space heating and domestic hot water production.
In particular, the inherent thermal inertia of the building mass [21], which is often present
anyway, and/or additional thermal energy storage (TES) [22] can contribute to load shifting
in combination with heat pumps: the thermal storage systems allow short- to medium-term
changes in the load pattern without compromising indoor comfort. The floor heating system
used at low supply temperatures contributes to active thermal storage systems and thus
represents a possibility for the implementation of thermally activated building structures
(TABS) [15].

Developing a methodology to assess and quantify the energy flexibility of build-
ings is a crucial challenge when it comes to recognizing their active role in future energy
networks [23]. Several approaches have already been introduced in the literature and
presented in the form of key performance indicators (KPIs), considering different aspects.
According to Li et al. [24] the top five popular energy flexibility metrics are Peak Power
reduction [25], the Flexibility Factor [26], Self-Sufficiency and Self-Consumption [27], the Ca-
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pacity and the Efficiency of ADR [28] and the Flexibility Index [29]. The method presented
by Reynders et al. [28] does not directly consider monetary savings from an optimized
DSM, but is dedicated to quantifying the building mass as a storage option during an ADR.
For this purpose, the setpoint temperature in the heated spaces is increased for a certain
time and the thermal energy stored in the activated building mass is evaluated [18,26,30].
The increase in the setpoint temperature can be controlled by a fixed schedule or according
to certain rules via an external signal, such as the electricity market price [16,18,31,32].
The factors influencing thermal capacity and efficiency in terms of ADR have been studied
several times, e.g., by Vivian et al. [33], comparing different building ages and insulation
thicknesses. Foteinaki et al. [32] further developed different signal scenarios and investi-
gated flexible peak load and cost reduction in residential buildings. However, we are not
aware of any research that statistically quantifies the storage capacity and storage efficiency
of building mass over the term of one year, comparing the different results for control
strategies, namely rule-based and schedule-based strategies.

In this study, we determine the storage capacity and efficiency of ADR of a newly
planned residential district in Darmstadt, Germany, by means of a dynamic building
simulation including energy flexible control, according to Reynders et al. [28]. The novelty
lies in the statistical comparison of two different energy flexible control signals, namely rule-
based and schedule-based signals, and their effect on the characterization of the building
mass in terms of its ability to provide an electrical grid serving behavior.

In Section 2, the method used to quantify the building mass, the control options,
the statistical evaluation, and the building simulation model is presented. In Section 3 the
duration, the additional heat demand and the additional heating load of the two control
strategies, both rule-based and schedule-based, are calculated with the building simulation.
First, an analysis without night-time reduction in the room temperature is carried out,
followed by the more realistic case that includes night-time reduction. In Section 4, we
discuss the results of the different control strategies and the main conclusions are drawn.

2. Materials and Methods
2.1. Energy Flexibility Event

In this study, the active demand response (ADR) strategy for the inherent thermal
inertia of the building mass is achieved by temporarily raising the setpoint room temper-
ature to the upper limit of a temperature comfort band. The permitted range is defined from
Tlow = 20.5 ◦C to Tup = 22 ◦C, in accordance with other publications such as
Arteconi et al. [31]. This enables an additional heat input into the building mass, which is
activated by the floor heating system. The resulting upward process of the room tempera-
ture compared to a reference control that maintains the lower limit Tlow of the comfort band
is defined below as an up event and can usually be divided into three phases, as shown in
Figure 2, and is used by several other authors [32,34]:

• Charge: compared to the lower limit of the comfort temperature Tlow, the increase in
the setpoint temperature to Tup leads to an increased heating load and, accordingly,
the building mass is charged with thermal energy.

• Steady state: the raised setpoint temperature Tup is reached and only the increased
transmission heat losses are additionally compensated compared to the reference state
with the continuous lower setpoint temperature Tlow.

• Discharge: the reset of the setpoint temperature to Tlow leads to a decreased heating
load compared to the reference state and, accordingly, the building mass is discharged
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Figure 2. Concept of an up event as an active demand response strategy, including the three defining
phases (charge, steady state, discharge).

A temporary decrease in the setpoint temperature, referred to as a downward event,
is also possible for energy flexibility purposes, but is not investigated further in this work.
The properties of the respective phases, such as duration t, amount of added heat Q and
heating load P, can be derived from the following equations, where “up” denotes the case
with and “ref” the case without ADR:

tcharge = t1 − t0 (1)

tsteady state = t2 − t1 (2)

tdischarge = t3 − t2 (3)

Qcharge =
∫ t1

t0

(Pup − Pref) dt (4)

Qsteady state =
∫ t2

t1

(Pup − Pref) dt (5)

Qdischarge =
∫ t3

t2

(Pup − Pref) dt (6)

Pcharge =
Qcharge

tcharge
(7)

Psteady state =
Qsteady state

tsteady state
(8)

Pdischarge =
Qdischarge

tdischarge
(9)

2.2. Capacity and Efficiency of ADR through Up Events

According to Reynders et al. [28], the characteristics of the activated building mass can
be derived from the three phases of an up event. The amount of additional heat required in
the charge phase represents the storage capacity CADR in an energy flexibility event enabled
by ADR (Equation (10)). In addition to the actual building mass, the control-related setpoint
temperatures (Tlow and Tup) also have a significant influence. It is therefore important to
ensure that the same boundary conditions are used in all studies. Furthermore, the charge
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phase must be clearly distinguished from the steady state phase to avoid incorrectly
assigning the increased transmission heat losses to the storage capacity. Reynders et al. [28]
did not make this distinction due to relatively short steady state phases.

CADR = Qcharge (10)

ηcharge/discharge =
|Qdischarge|

Qcharge
(11)

ηup =
|Qdischarge|

Qcharge + Qsteady state
(12)

The efficiency of the up event or thermal storage in the energy-flexible control can
also be determined from the three phases. This allows a comparison with conventional
storage technologies and represents the basis for an economic evaluation; for example, with
dynamic electricity prices. To identify the influence of the higher transmission heat losses
when maintaining the increased setpoint temperature, the storage efficiency η is calculated
in this study both with (Equation (11)) and without (Equation (12)) the steady state phase.

2.3. Implementation of Control Strategies

The energy flexible control is implemented in two ways: rule-based and schedule-
based, as shown in Figure 3. The rule-based control uses a signal that increases the setpoint
temperature from Tlow = 20.5 ◦C to Tup = 22 ◦C when prices are favorable, depending
on the electricity market. For this purpose, spot market electricity prices from 2021 in
Germany are selected at an hourly resolution and the lower quantile is calculated monthly
as described by Foteinaki et al. [32]. If the price falls below the quantile, the setpoint
temperature is increased. Accordingly, there are shorter and longer energy flexibility events.
The schedule-based variant is characterized by a fixed period per day in which the setpoint
temperature is increased from 20.5 ◦C to 22 ◦C, as described in many publications [30,31].
In this study, the approximate mean duration of the rule-based control events of 2.5 h,
taking into account a night-time reduction in the temperature, is used to set the duration
of the schedule-based control and to ensure comparability. The afternoon from 2 pm to
4.30 pm is the time period chosen to precondition the building mass for the evening hours,
as it means that tenants do not need to turn on the heating system when coming home
from work.

Tlow

Tup

pthreshold

rule schedule electricity price

se
tp

oi
nt

te
m
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ra

tu
re
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ec
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it
y

m
ar
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Figure 3. Concept of rule- and schedule-based control for the implementation of up events.
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2.4. Identification of Phases in Up Events

To separate the phases of all up events from one another, rules are required that
identify each of them properly. However, fluctuations in room temperature due to external
influences complicate this process and lead to misidentification of some energy flows.
For example, a room temperature fluctuating around the increased setpoint temperature
due to a hysteresis control should be assigned to a single steady state phase and not to
many shorter charge and discharge phases. The rules for determining the current phase i
in each time step are implemented as follows, where Tair represents the simulated room
temperature with and Tair,ref without energy flexible control:

icharge(Tset, Tair) =

{
1, if (Tset = Tup ∧ Tair < Tup − 0.25)
0, otherwise

(13)

isteady state(Tset, Tair) =

{
1, if (Tset = Tup ∧ Tair ≥ Tup − 0.25∧ Tair < Tup + 0.1)
0, otherwise

(14)

idischarge(Tset, Tair, Tair,ref) =


1, if (Tset ≤ Tlow ∧ Tair < Tup − 0.25∧ Tair > Tair,ref + 0.055)

∨ (Tset = Tlow ∧ Tair ≤ Tlow ∧ Tair > Tair,ref + 0.055)

0, otherwise
(15)

The identification of the discharge phase idischarge refers to the temperature decrease
to the lower comfort temperature Tlow, as well as to the heating up in the morning after a
night-time reduction. If the discharge phase occurs during the night-time reduction, no
energy can be saved compared to the reference state, but a higher initial temperature can be
assumed in the morning. The discharge phase can therefore also take place during active
heating. To verify the correct identification of the individual phases using the method
described above, the overall efficiency ηup,tot of all up events (Equation (16)) is alternatively
calculated by simply comparing the simulation with up events to the reference simulation
without up events (Equation (17)).

ηup,tot =
|∑n

j=1 Qdischarge,j|

∑m
j=1 Qcharge,j + ∑

p
j=1 Qsteady state,j

(16)

ηup,alt =
|
∫ t=1a

0 (Pup − Pref)
− dt|∫ t=1a

0 (Pup − Pref)+ dt
(17)

2.5. Statistical Evaluation

Depending on the type of energy flexible control, e.g., rule-based or schedule-based,
up events will always occur at the same time or be distributed throughout the day. External
boundary conditions such as solar radiation, ambient temperature and internal heat gains
ensure that every up event is unique. In order to obtain a representative capacity and
efficiency for the characterization of the building mass by the rule-based and schedule-
based control, we perform a simulation over a whole year and statistically evaluate the up
events in the heating period. As the generated data are not necessarily normally distributed,
the median is calculated in addition to the mean to compare the control strategies. However,
since the size of the data sets (rule-based and schedule-based) is limited by the simulation
duration and the time steps, it must also be determined whether they are statistically
suitable for comparison at all.

The Brunner–Munzel test [35] can be used for non-normally distributed data sets to
test whether there is a stochastic difference between two sets. The null hypothesis, which
is the statement being tested, is that there is no significant difference (in terms of central
tendency) between the two sets of data, rule-based and schedule-based. A probability of
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p ≤ 0.05 is considered significant and means that it is safe to assume that there is indeed
a difference between the two sets and, therefore, a valid comparison of the means and
medians is possible. However, a p-value greater than 0.05 does not mean that the two
sets are stochastically equal. The data quality is simply not good enough to interpret the
observed direction. In the box plots, the following annotation is selected to indicate a
significant difference that allows comparability:

• p > 0.05: ns (not significant)
• p ≤ 0.05: * (significant)
• p ≤ 0.01: ** (significant)
• p ≤ 0.001: *** (significant)
• p ≤ 0.0001: **** (significant)

2.6. Building Energy Simulation and Boundary Conditions

The subject of the study is a new high-energy-standard residential district planned in
Darmstadt, Germany, consisting of eight multi-family buildings with a total of
140 residential units, to be completed in 2025. Three decentralized water-to-water heat
pumps connected to a central borehole heat exchanger field provide the heat supply. We
implemented a detailed model of the building energy system using the simulation software
Trnsys18. Trnsys is a graphical software environment used to simulate the behaviour
of transient systems [36], based on the Fortran programming language. There are other
tools for dynamic building simulations available, such as EnergyPlus [37], IDA ICE [38]
or Modelica [39]. Despite different levels of detail and focus, the simulation tools show
good agreement in the results for the calculation of energy demand [40]. In this study,
the energy supply system is not considered; instead, a constant supply temperature of the
floor heating system of 40 ◦C is assumed, as only the building mass is to be evaluated.
To reduce complexity, the individual apartments were grouped floor by floor into one
thermal zone each, which proved to be a good compromise between simulation speed and
accuracy [41,42]. The statistical investigation of the individual phases as well as the storage
capacity is carried out as an example on the second floor of the northeastern building,
as shown in Figure 4, to limit the scope within this study, while the storage efficiency
is calculated for all floors of all buildings due to the reasons mentioned in Section 2.4.
The building simulation also contains the basements, which are not actively heated and are
therefore not part of the energy-flexible control.

Figure 4. Building model of the district. The white marked floor is used for a detailed investigation
of the storage capacity (NW view).



Energies 2023, 16, 6878 8 of 17

The boundary conditions of the simulation model are defined to correspond to the
aforementioned district in Darmstadt, Germany. For the weather data, the test reference
year 2015 of dwd is chosen, which also considers solar radiation. The internal heat sources
and the minimum air exchange rate are selected according to the user boundary conditions
of DIN V 18599 [43]. All boundary conditions are listed in Table 1. The annual space
heating demand, determined using the dynamic simulation with time steps of one minute,
is 23.22 kWh·m−2·a−1 for the described district section.

Table 1. Boundary conditions and properties for the building simulation.

Category Property Attribute

Building

Location 64285 Darmstadt, Germany
Number of buildings 8

Floor area 9827 m2

U-value wall 0.118–0.151 W·m−2·K−1

U-value roof 0.078–0.104 W·m−2·K−1

U-value ground floor 0.157–0.193 W·m−2·K−1

U-value window 0.78 W·m−2·K−1

Thermal bridges 0.03 W·m−2·K−1

Screed thickness 0.065 m
Relative heated floor area ≈75%

Simulation

Simulation time 8760 h
Time step 1 min

Heating set temperature 20.5 ◦C
Night-time reduction 11 pm–6 am

Night-time 18.5 ◦C
Weather data TRY 2015 for Darmstadt

Heating season 30 September–30 April
Air exchange rate 0.44 h−1

Internal gains 90 Wh·m−2·d−1

Supply temperature 40 ◦C
Heat demand 23.22 kWh·m−2·a−1

Energy flexibility

Up event set temperature 22 ◦C
Electricity price data Spot market Germany 2021

Schedule-based control 2 pm–4.30 pm
Rule-based control External price signal

3. Results

In this section, we evaluate and compare the properties of the up events, i.e., raising
the setpoint temperature from 20.5 ◦C to 22 ◦C in schedule-based and rule-based control.
The thermal simulation is carried out once with and once without night-time reduction in
the room temperature. The focus is on the statistical distribution of the individual phases
in the up events in terms of their duration and stored thermal energy over a whole year.
Subsequently, we calculate the storage capacity and the storage efficiency for both control
strategies according to Reynders et al. [34]. The methodology for the statistical study of the
phases is performed for a selected zone to limit the scope within this study. The comparison
of annual efficiencies includes all floors of all buildings.

3.1. Statistical Evaluation of Up Events with Schedule-Based and Rule-Based Control without
Night-Time Reduction

Over a simulation period of one year, a total of 163 triggered up events are identified
in the heating season using the rule-based control and 116 up events are identified in
the schedule-based control. However, a triggered up event does not necessarily lead
to the occurrence of all phases: charge, steady state and discharge. These depend in
particular on the duration and the prevailing room temperature. For example, if the room
temperature is in the upper range of the comfort band due to solar gain or prior up events,
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the probability of the occurrence of steady state phases increases. In addition, the phase
identification algorithm is designed so that there is a difference in the heating load compared
to the reference control. This prevents phases from being incorrectly assigned based on
solar gains.

The temporal distribution of the charge, steady state and discharge phases in the
rule-based and schedule-based controls over one year is shown in Figure 5a. The notation
ns stands for “not significant“ and therefore no statement about the stochastic differences
between the two data sets is possible. If not specified otherwise, the value of the rule-based
control is always given first when listing medians or means. The median of the duration
of the charge events in the rule-based control is 1.88 h (mean: 2.20 h). The median of
the duration in the schedule-based control is 2.47 h (mean: 2.01 h), which corresponds
to 2.5 h due to the predefined increase in setpoint temperature. However, when using
the Brunner–Munzel test, no significant difference is found between the two sets of data,
so the difference in duration cannot be statistically confirmed. The discharge phases of
the rule-based control (median: 5.04 h) are also shorter than those of the schedule-based
control (median: 6.06 h), as charge phases are repeatedly inserted due to volatile electricity
prices. In general, the discharge times are about 2.5 times longer than the charge times,
which can be explained by the high insulation standard. This has a positive effect on the
potential to avoid periods of high electricity prices. The steady state phase, i.e., reaching
and maintaining the increased setpoint temperature, is only maintained for a short time in
the rule-based and schedule-based control strategy (median: 1.02/0.69 h).

The statistical distribution of charged and discharged heat per event is shown in Figure 5b.
The median of the additional heat transferred per charge phase is 0.023 kWh·m−2 (mean:
0.029 kWh·m−2) in the rule-based control and 0.058 kWh·m−2 (mean: 0.049 kWh·m−2) in the
schedule-based control. In comparison, the medians of the heat saved in the discharge phases
are −0.022 kWh·m−2 and −0.043 kWh·m−2 (not significant according to Brunner–Munzel).

The heating load per phase in the up events is derived from the duration of the
events and the transferred heat, which is shown in Figure 5c. The rule-based control
has lower additional heating loads in the charge phase than the schedule-based control
(median: 16.53/25.11 W·m−2), but reduces the heating load more in the discharge phase
(median:−6.34/−5.33 W·m−2). In the steady state phase, both control strategies require
an additional heating load to compensate for the higher transmission heat losses (me-
dian: 4.29/6.39 W·m−2).

According to Reynders’ approach [28], the charged heat of an event corresponds
to the flexible storage capacity of the building mass. This is largely dependent on the
setpoint temperature or the temperature achieved per event. In contrast to Reynders,
we considered the charge phase independently from the steady state phase. In the rule-
based control, the median of the additional heat demand is only 39.7% of the median in
the schedule-based variant. This implies that 0.023 kWh·m−2 (mean: 0.029 kWh·m−2) or
0.058 kWh·m−2 (mean: 0.049 kWh·m−2) of energy per flexibility event can be stored in the
activated building mass.

Similarly, the efficiency of the building mass as a thermal storage site can also be calcu-
lated from the ratio of the respective heat transfer in the charge and discharge phases,
as shown in Section 2.2. The storage efficiencies with and without consideration of
the steady state phases in the rule-based and schedule-based control of all floors and
houses are shown in Figure 5d. The storage efficiency without consideration of the steady
state phases achieves similarly high values in both control strategies (median: 0.92/0.94,
mean: 0.93/0.92). According to the Brunner–Munzel test, there is no statistically signif-
icant difference between the efficiency distributions. When the steady state phases and
the associated higher transmission heat losses are included, it is noticeable that the over-
all storage efficiency decreases, especially for the rule-based control (median: 0.78/0.91,
mean: 0.77/0.89). The steady state phase, as described above, does not contribute to the
stored energy, and therefore cannot achieve higher savings in the discharge phase.
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Figure 5. Statistical evaluation of charge, steady state and discharge phases over one year. Brunner-
Munzel test p-values indicate statistical significance (* p ≤ 0.05, *** p ≤ 0.001, **** p ≤ 0.0001), ns:
no significance.

3.2. Statistical Evaluation of Up Events with Schedule-Based and Rule-Based Control with
Night-Time Reduction

The following results for rule-based and schedule-based control refer to a simulation
period of one year and, accordingly, one heating period as well, but now consider the
more realistic night-time reduction in the setpoint temperature in the heating period to
18.5 ◦C. In addition to the total annual energy demand, the night-time reduction has an
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influence on the previously listed characteristics of the up events. As stated previously,
the schedule-based control includes a daily increase in the setpoint temperature for 2.5 h
from 2 pm to 4.30 pm.

The duration of all charge, steady state and discharge phases in the rule-based and
schedule-based control is shown in Figure 6a. Compared to the temperature control without
night-time reduction (Figure 5a), the charge (median: 1.99/2.47 h, mean: 2.32/2.04 h—ns)
and steady state phases (median: 1.10 / 0.60 h, mean: 1.75/0.69 h) with night-time reduction
have similar values. The slight increase during the regulated charge phase can be explained
by the lower average room temperatures due to the night-time reduction. In the discharge
phase, the rule-based control results in higher values (median: 6.03 h), as the events just
before the night-time reduction can be extended.

For the determination of the additional heat demand (Figure 6b), the rule-based control
again shows differences compared to the investigation without night-time reduction, especially
in the charge (median: 0.007 kWh·m−2, mean: 0.014 kWh·m−2) and discharge phase (median:
≈0 kWh·m−2, mean: −0.010 kWh·m−2). As the night-time reduction creates natural discharge
phases in the reference control, there are several discharge phases in the rule-based control
that show little or no energy savings compared to the reference. The schedule-based control
has similar values in the charge phase (median: 0.052 kWh·m−2, mean: 0.046 kWh·m−2) and
discharge phase (median: −0.035 kWh·m−2, mean: −0.029 kWh·m−2) to the control without
night-time reduction due to the up events in the midday to afternoon period.

The differences to the control without night-time reduction can also be seen in the
additional heating load (Figure 6c), especially in the rule-based control in the charge phase
(median: 4.42 W·m−2) and the discharge phase (median: ≈0 W·m−2, mean: −2.27 W·m−2).
Schedule-based control is less affected and results in 23.83 W·m−2 in the charge phase
and −3.28 W·m−2 in the discharge phase. As described above, the storage capacity of
the building mass for flexibility events can be derived from the additional heat demand
(Figure 6b) according to Reynders’ approach. For the rule-based control, the median
capacity is given as 0.007 kWh·m−2 (mean: 0.014 kWh·m−2), while the schedule-based
control, largely unaffected by the night-time reduction, has a capacity of 0.052 kWh·m−2

(mean: 0.046 kWh·m−2).
Figure 6d shows the storage efficiencies for all buildings and floors studied as a ratio

of the sum of the discharged energy to the sum of the charged energy. The night-time
reduction in the room temperature leads to lower efficiencies, especially in the rule-based
control (median: 0.72/0.93, mean: 0.73/0.91), since discharge phases can partly not be used.
By including the steady state phase, the median of the total efficiency decreases to 0.54
(mean: 0.54) in the rule-based control and to 0.90 (mean: 0.88) in the schedule-based control,
since the steady state phase is associated with higher transmission heat losses and does not
store any further energy in the building mass.

3.3. Verification of Phase Identification Via Efficiencies of Up Events

As described in Section 2.4 it is possible to verify the correct identification of the phases
using the efficiencies of the up events. For this purpose, in addition to calculating the
efficiencies ηup,tot from the identified phases, we calculated the efficiency ηup,alt alterna-
tively simply by comparing the simulation with energy flexible control and the reference
simulation, without assigning energy differences to a specific event. The two ways of
calculating the rule-based control efficiencies for all simulated floors are shown in Figure 7.
The high agreement of the efficiencies (maximum deviation less than 4%) indicates the
mostly correct identification of the events.
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Figure 6. Statistical evaluation of charge, steady state and discharge phases over one year with night-
time reduction. Brunner-Munzel test p-values indicate statistical significance (* p ≤ 0.05, ** p ≤ 0.01,
**** p ≤ 0.0001), ns: no significance.
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Figure 7. Verification of the phase identification by comparing the efficiencies calculated according to
Section 2.4 of all floors.

4. Discussion

In this study, we focus on characterizing the storage capacity of the building mass
for energy flexible control. For this purpose, we make a comparison between two control
strategies: rule-based and schedule-based. It should be noted, however, that the strategies
used represent only a subset of each category. The rule we use is based on the electricity
price market, but could also be based on electricity greenhouse gas emissions, for example.
Thus, further research is needed to quantify the impact of other rule-based controls. In ad-
dition, the building simulation has not yet been validated with real data, so absolute values
in the comparison of the two control strategies should be treated with caution.

4.1. Comparability of the Data Sets

Some data sets in our study do not show statistical differences according to the
Brunner–Munzel test, which is due to the distribution and quantity of the data. The ob-
served differences, e.g., in charge duration for the different strategies, are quite possible,
but should be interpreted with caution due to the limited data available. In some cases,
larger data sets are needed to increase statistical confidence. To address this, future investi-
gations could include additional heating periods in the simulations.

4.2. Differences in the Rule- and Schedule-Based Control without Night-Time Reduction

To minimize external influences, we run the first simulation without night-time re-
duction in the room temperature. Since the duration of the charge phase for up events in
schedule-based control must be defined in advance, a duration of 2.5 h is chosen, which cor-
responds to the average duration of rule-based control with night-time reduction (≈2.3 h).
As the distribution of events over a year in both control strategies cannot be described by a
common probability distribution, a clear characterization is not possible. However, for the
purpose of comparison, we utilize both the mean values and the more robust median,
which is less affected by outliers. This results in a median value of 1.88 h for rule-based
control and 2.47 h for schedule-based control (mean: 2.20/2.01 h). The differences in
duration are also reflected in the additional heat transferred per charge phase in each
control strategy, but cannot be explained by this alone (median: 0.023/0.058 kWh·m−2,
mean: 0.029/0.049 kWh·m−2). The time-independent representation using the additional
heating load emphasizes the control-related discrepancy (median: 16.53/25.11 W·m−2,
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mean: 15.30/23.91 W·m−2). Accordingly, the rule-based control for characterizing the stor-
age mass in this study leads to a 60% smaller storage capacity in the median (mean: 41%)
and a 34% (mean: 36%) smaller heating load (time-independent) than characterization by
schedule-based control.

4.3. Challenges in the Phase Identification

To make a statement about the efficiency of the energy flexible control, it is necessary
to determine the energy saved compared to the reference control in the discharge phase.
As there is no fixed time between two up events in rule-based control, it is possible for a new
charge phase to occur before the previous discharge phase is complete. As a result, there is
no clear assignment of the discharge phases, and therefore no efficiency per single up event
can be determined. In addition, due to the ambiguous assignment of energy to phases and
temperature fluctuations caused by the heating control, energy is sometimes assigned to
the wrong phases or not assigned at all, which leads to the discrepancy in the verification
of efficiency. To evaluate the overall efficiency, we calculate the sum of all phase-related
energies over one year individually, as described in Section 2.4. Hence, the characterization
of storage capacity and storage efficiency using rule-based control requires a more detailed
examination and verification of the assigned phases and is therefore more time-consuming
than characterization using schedule-based control.

4.4. Difficulties in the Rule-Based Control with Night-Time Reduction

The introduction of the more realistic scenario with night-time reduction in the room
temperature to 18.5 °C has an impact on the rule-based control and the resulting characteri-
zation of the storage capacity (median: 0.007/0.052 kWh·m−2, mean: 0.014/0.046 kWh·m−2)
and storage efficiency (median: 0.72/0.93, mean: 0.73/0.91) of the building mass. This is due
to up events just before the night-time reduction. The discharge phase occurs during the
temperature-reduced operation, which is also present in the reference variant, and therefore
cannot compensate for the previously increased heating load. With rule-based control
only according to the electricity market price without time restrictions, the median of
the total storage efficiency drops from 0.78 to 0.54. The characterization of the building
mass by means of rule-based control therefore requires further boundary conditions to
ensure reasonable operation. This includes measures such as evening curfews and weather
forecasting to take into account solar gains, which would allow the room temperature to be
raised without additional heating.

5. Conclusions

In this study, we use dynamic simulations over one year, including flexible control, to
calculate both the storage capacity and storage efficiency for the building mass. We show
that the type of flexible control (rule-based versus schedule-based) has a significant impact
on the characterization. Since rule-based control is likely to be implemented in the future,
this result should be considered when characterizing the building mass. Based on this
study, we can make the following statements about the implemented rule-based control:

• The characterization of the building mass using the rule-based control without a night-
time reduction leads to a 60% smaller median in the storage capacity (mean: 41%)
than using schedule-based control under comparable boundary conditions. The cal-
culation of the time-independent heating load results in a median difference of 34%
(mean: 36%).

• By establishing a night-time reduction in the setpoint temperature, the median of the
storage efficiency using rule-based control drops from 0.92 to 0.72 (mean: 0.93/0.73).

• The evaluation of the storage capacity and the storage efficiency with the help of
the rule-based control requires a more detailed examination and verification of the
assigned phases and is accordingly more time-consuming than the characterization by
means of the schedule-based control.
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• The characterization of the building mass with the help of rule-based control requires,
in addition to the simple use of electricity market prices, further boundary conditions
that ensure reasonable operation. These include, for example, evening curfews and
weather forecasting.

Further research will optimize the characterization of the building mass by the rule-
based control and make the phase detection algorithm for up events more robust. Based
on this, the up events will be complemented by down events in times of high electricity
prices. In addition, the properties assigned to the building mass will be validated using
real measured data.

Author Contributions: Conceptualization, J.R.; methodology, J.R.; software, J.R. and X.K.; vali-
dation, J.R. and X.K.; formal analysis, J.R.; investigation, J.R.; resources, N.B.; data curation, J.R.;
writing—original draft preparation, J.R.; writing—review and editing, X.K., N.B. and J.R.; visualiza-
tion, J.R.; supervision, N.B.; project administration, N.B.; funding acquisition, N.B. All authors have
read and agreed to the published version of the manuscript.

Funding: The authors gratefully acknowledge the financial support of the project Living Lab: DELTA
(grant agreement No. 03EWR002A) which is funded by the Federal Ministry for Economic Affairs
and Climate Action (BMWK) and the NextGenerationEU and is managed by the management agency
Project Management Jülich (PtJ).

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank Anja Schaffarczyk, Bernadette Lang-Eurisch
and Yang Xue for their support.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the
design of the study; in the collection, analyses, or interpretation of data; in the writing of the
manuscript; or in the decision to publish the results.

Abbreviations
The following abbreviations are used in this manuscript:

DSM Demand side management.
DR Demand response.
ADR Active demand response.
KPI Key performance indicator.
TABS Thermally activated building structures.
TES Thermal energy storage.
ns Not significant.

References
1. Die Bundesregierung Informiert. Startseite. Klimaschutzgesetz: Klimaneutralität bis 2045 | Bundesregierung. Available on-

line: https://www.bundesregierung.de/breg-de/schwerpunkte/klimaschutz/klimaschutzgesetz-2021-1913672 (accessed on
10 July 2023).

2. Denholm, P.; Hand, M. Grid flexibility and storage required to achieve very high penetration of variable renewable electricity.
Energy Policy 2011, 39, 1817–1830. [CrossRef]

3. Morales, J.M.; Conejo, A.J.; Madsen, H.; Pinson, P.; Zugno, M. Integrating Renewables in Electricity Markets; Springer: New York,
NY, USA, 2014. [CrossRef]

4. Hu, X.; Zou, C.; Zhang, C.; Li, Y. Technological Developments in Batteries: A Survey of Principal Roles, Types, and Management
Needs. IEEE Power Energy Mag. 2017, 15, 20–31. [CrossRef]

5. Lund, H.; Münster, E. Integrated energy systems and local energy markets. Energy Policy 2006, 34, 1152–1160. [CrossRef]
6. O’Malley, M.; Kroposki, B.; Hannegan, B.; Madsen, H.; Andersson, M.; D’haeseleer, W.; McGranaghan, M.F.; Dent, C.; Strbac, G.;

Baskaran, S.; et al. Energy Systems Integration. Defining and Describing the Value Proposition; Office of Scientific and Technical
Information (OSTI): Oak Ridge, TN, USA , 2016.

7. Nejat, P.; Jomehzadeh, F.; Taheri, M.M.; Gohari, M.; Abd. Majid, M.Z. A global review of energy consumption, CO2 emissions
and policy in the residential sector (with an overview of the top ten CO2 emitting countries). Renew. Sustain. Energy Rev.
2015, 43, 843–862. [CrossRef]

https://www.bundesregierung.de/breg-de/schwerpunkte/klimaschutz/klimaschutzgesetz-2021-1913672
http://doi.org/10.1016/j.enpol.2011.01.019
http://dx.doi.org/10.1007/978-1-4614-9411-9
http://dx.doi.org/10.1109/MPE.2017.2708812
http://dx.doi.org/10.1016/j.enpol.2004.10.004
http://dx.doi.org/10.1016/j.rser.2014.11.066


Energies 2023, 16, 6878 16 of 17

8. Zafar, R.; Mahmood, A.; Razzaq, S.; Ali, W.; Naeem, U.; Shehzad, K. Prosumer based energy management and sharing in smart
grid. Renew. Sustain. Energy Rev. 2018, 82, 1675–1684. [CrossRef]

9. European Parliament. Directive (EU) 2018/844 of the European Parliament and of the Council of 30 May 2018 Amending Directive
2010/31/EU on the Energy Performance of Buildings and Directive 2012/27/EU on Energy Efficiency (Text with EEA Relevance); European
Parliament: Brussels, Belgium , 2018.

10. Jensen, S.Ø.; Marszal-Pomianowska, A.; Lollini, R.; Pasut, W.; Knotzer, A.; Engelmann, P.; Stafford, A.; Reynders, G. IEA EBC
Annex 67 Energy Flexible Buildings. Energy Build. 2017, 155, 25–34. [CrossRef]

11. Lund, P.D.; Lindgren, J.; Mikkola, J.; Salpakari, J. Review of energy system flexibility measures to enable high levels of variable
renewable electricity. Renew. Sustain. Energy Rev. 2015, 45, 785–807. [CrossRef]

12. Gellings, C.W.; Smith, W.M. Integrating demand-side management into utility planning. Proc. IEEE 1989, 77, 908–918. [CrossRef]
13. Morales-España, G.; Martínez-Gordón, R.; Sijm, J. Classifying and modelling demand response in power systems. Energy

2022, 242, 122544. [CrossRef]
14. Lauro, F.; Moretti, F.; Capozzoli, A.; Panzieri, S. Model Predictive Control for Building Active Demand Response Systems.

In Proceedings of the 7th International Conference (Energy Procedia) SEB-15, Lisbon, Portugal, 1–3 July 2015; Volume 83,
pp. 494–503. [CrossRef]

15. Arteconi, A.; Costola, D.; Hoes, P.; Hensen, J. Analysis of control strategies for thermally activated building systems under
demand side management mechanisms. Energy Build. 2014, 80, 384–393. [CrossRef]

16. Arteconi, A.; Polonara, F. Assessing the Demand Side Management Potential and the Energy Flexibility of Heat Pumps in
Buildings. Energies 2018, 11, 1846. [CrossRef]

17. de Coninck, R.; Helsen, L. Quantification of flexibility in buildings by cost curves— Methodology and application. Appl. Energy
2016, 162, 653–665. [CrossRef]

18. Luc, K.M.; Li, R.; Xu, L.; Nielsen, T.R.; Hensen, J.L. Energy flexibility potential of a small district connected to a district heating
system. Energy Build. 2020, 225, 110074. [CrossRef]

19. Bundesministerium der Justiz. Gesetz zum Neustart der Digitalisierung der Energiewende Bundesgesetzblatt. 2023, Teil I Nr. 133.
Bonn, Germany, 2023. https://www.recht.bund.de/bgbl/1/2023/133/VO.html (accessed on 28 August 2023).

20. Callaway, D.S.; Hiskens, I.A. Achieving Controllability of Electric Loads. Proc. IEEE 2011, 99, 184–199. [CrossRef]
21. Reynders, G.; Nuytten, T.; Saelens, D. Potential of structural thermal mass for demand-side management in dwellings.

Build. Environ. 2013, 64, 187–199. [CrossRef]
22. Arteconi, A.; Hewitt, N.J.; Polonara, F. State of the art of thermal storage for demand-side management. Appl. Energy

2012, 93, 371–389. [CrossRef]
23. Airò Farulla, G.; Tumminia, G.; Sergi, F.; Aloisio, D.; Cellura, M.; Antonucci, V.; Ferraro, M. A Review of Key Performance

Indicators for Building Flexibility Quantification to Support the Clean Energy Transition. Energies 2021, 14, 5676. [CrossRef]
24. Li, H.; Wang, Z.; Hong, T.; Piette, M.A. Energy flexibility of residential buildings: A systematic review of characterization and

quantification methods and applications. Adv. Appl. Energy 2021, 3, 100054. [CrossRef]
25. Cetin, K.S. Characterizing large residential appliance peak load reduction potential utilizing a probabilistic approach. Sci. Technol.

Built Environ. 2016, 22, 720–732. [CrossRef]
26. Le Dréau, J.; Heiselberg, P. Energy flexibility of residential buildings using short term heat storage in the thermal mass. Energy

2016, 111, 991–1002. [CrossRef]
27. Vanhoudt, D.; Geysen, D.; Claessens, B.; Leemans, F.; Jespers, L.; van Bael, J. An actively controlled residential heat pump:

Potential on peak shaving and maximization of self-consumption of renewable energy. Renew. Energy 2014, 63, 531–543.
[CrossRef]

28. Reynders, G.; Saelens, D.; Diriken, J. A generic quantification method for the active demand response potential of structural
storage in buildings. In Proceedings of the 14th Conference of International Building Performance Simulation Association,
Hyderbad, India, 7–9 December 2015; pp. 1986–1993. [CrossRef]

29. Vigna, I.; de Jaeger, I.; Saelens, D.; Lovati, M.; Lollini, R.; Pernetti, R. Evaluating Energy and Flexibility Performance of
Building Clusters. In Proceedings of the 16th IBPSA International Conference and Exhibition, Rome, Italy, 2–4 September 2019;
pp. 3326–3333. [CrossRef]

30. Foteinaki, K.; Li, R.; Heller, A.; Rode, C. Heating system energy flexibility of low-energy residential buildings. Energy Build.
2018, 180, 95–108. [CrossRef]

31. Arteconi, A.; Mugnini, A.; Polonara, F. Energy flexible buildings: A methodology for rating the flexibility performance of
buildings with electric heating and cooling systems. Appl. Energy 2019, 251, 113387. [CrossRef]

32. Foteinaki, K.; Li, R.; Péan, T.; Rode, C.; Salom, J. Evaluation of energy flexibility of low-energy residential buildings connected to
district heating. Energy Build. 2020, 213, 109804. [CrossRef]

33. Vivian, J.; Chiodarelli, U.; Emmi, G.; Zarrella, A. A sensitivity analysis on the heating and cooling energy flexibility of residential
buildings. Sustain. Cities Soc. 2020, 52, 101815. [CrossRef]

34. Reynders, G.; Diriken, J.; Saelens, D. Generic characterization method for energy flexibility: Applied to structural thermal storage
in residential buildings. Appl. Energy 2017, 198, 192–202. [CrossRef]

35. Brunner, E.; Munzel, U. The Nonparametric Behrens-Fisher Problem: Asymptotic Theory and a Small-Sample Approximation.
Biom. J. 2000, 42, 17–25. [CrossRef]

http://dx.doi.org/10.1016/j.rser.2017.07.018
http://dx.doi.org/10.1016/j.enbuild.2017.08.044
http://dx.doi.org/10.1016/j.rser.2015.01.057
http://dx.doi.org/10.1109/5.29331
http://dx.doi.org/10.1016/j.energy.2021.122544
http://dx.doi.org/10.1016/j.egypro.2015.12.169
http://dx.doi.org/10.1016/j.enbuild.2014.05.053
http://dx.doi.org/10.3390/en11071846
http://dx.doi.org/10.1016/j.apenergy.2015.10.114
http://dx.doi.org/10.1016/j.enbuild.2020.110074
https://www.recht.bund.de/bgbl/1/2023/133/VO.html
http://dx.doi.org/10.1109/JPROC.2010.2081652
http://dx.doi.org/10.1016/j.buildenv.2013.03.010
http://dx.doi.org/10.1016/j.apenergy.2011.12.045
http://dx.doi.org/10.3390/en14185676
http://dx.doi.org/10.1016/j.adapen.2021.100054
http://dx.doi.org/10.1080/23744731.2016.1195660
http://dx.doi.org/10.1016/j.energy.2016.05.076
http://dx.doi.org/10.1016/j.renene.2013.10.021
http://dx.doi.org/10.26868/25222708.2015.2475
http://dx.doi.org/10.26868/25222708.2019.210448
http://dx.doi.org/10.1016/j.enbuild.2018.09.030
http://dx.doi.org/10.1016/j.apenergy.2019.113387
http://dx.doi.org/10.1016/j.enbuild.2020.109804
http://dx.doi.org/10.1016/j.scs.2019.101815
http://dx.doi.org/10.1016/j.apenergy.2017.04.061
http://dx.doi.org/10.1002/(SICI)1521-4036(200001)42:1<17::AID-BIMJ17>3.0.CO;2-U


Energies 2023, 16, 6878 17 of 17

36. Welcome. TRNSYS : Transient System Simulation Tool. Available online: https://www.trnsys.com/ (accessed on 28 July 2023).
37. EnergyPlus. Available online: https://energyplus.net/ (accessed on 26 July 2023).
38. IDA ICE—Simulation Software. EQUA. Available online: https://www.equa.se/de/ida-ice (accessed on 28 July 2023).
39. Dymola—Dassault Systèmes®. Available online: https://www.3ds.com/de/produkte-und-services/catia/produkte/dymola/

(accessed on 26 July 2023).
40. Magni, M.; Ochs, F.; de Vries, S.; Maccarini, A.; Sigg, F. Detailed cross comparison of building energy simulation tools results

using a reference office building as a case study. Energy Build. 2021, 250, 111260. [CrossRef]
41. David Bewersdorff. HYGGiency : Room Hygiene and Comfort through Energetic Refurbishment in District; Volume 61 , Mechanik,

Werkstoffe und Konstruktion im Bauwesen, Springer: Wiesbaden, Germany, 2021.
42. Kirschstein, X.; Reber, J.; Zeus, R.; Schuster, M.; Bishara, N. Modelling of Floor Heating and Cooling in Residential Districts.

Energies 2023, 16, 5850. [CrossRef]
43. DIN V 18599-10. Energetische Bewertung von Gebäuden – Berechnung des Nutz-, End- und Primärenergiebedarfs für Heizung,

Kühlung, Lüftung, Trinkwarmwasser und Beleuchtung – Teil 10: Nutzungsrandbedingungen. Deutsches Institut für Normung e.
V.: Berlin Germany, 2018. Available online: https://dx.doi.org/10.31030/2874436 (accessed on 20 July 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.trnsys.com/
https://energyplus.net/
https://www.equa.se/de/ida-ice
https://www.3ds.com/de/produkte-und-services/catia/produkte/dymola/
http://dx.doi.org/10.1016/j.enbuild.2021.111260
http://dx.doi.org/10.3390/en16155850
https://dx.doi.org/10.31030/2874436

	Introduction
	Materials and Methods
	Energy Flexibility Event
	Capacity and Efficiency of ADR through Up Events
	Implementation of Control Strategies
	Identification of Phases in Up Events
	Statistical Evaluation
	Building Energy Simulation and Boundary Conditions

	Results
	Statistical Evaluation of Up Events with Schedule-Based and Rule-Based Control without Night-Time Reduction
	Statistical Evaluation of Up Events with Schedule-Based and Rule-Based Control with Night-Time Reduction
	Verification of Phase Identification Via Efficiencies of Up Events

	Discussion
	Comparability of the Data Sets
	Differences in the Rule- and Schedule-Based Control without Night-Time Reduction
	Challenges in the Phase Identification
	Difficulties in the Rule-Based Control with Night-Time Reduction

	Conclusions
	References

