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Abstract: This paper presents a method for determining the load capacity of three-phase squirrel-cage
induction motors supplied with a balanced distorted voltage containing rotating harmonics (1st,
5th, 7th, 11th, 13th,...). The method is based on the dependence of the motor load capacity on the
load power losses in the rotor cage. The load capacity was determined based on motor short-circuit
measurements made for frequencies equal to harmonic frequencies. To evaluate the load capacity, a
factor with the proposed name Harmonic Losses Factor (HLF) was introduced. Its expression is a
generalization of the well-known HVF expression. However, it has been shown that a more accurate
estimation of the load capacity is obtained using the sum of load power losses in the rotor cage from
higher harmonics. Measurements and calculations were carried out for a low-voltage squirrel-cage
motor with a rated power of 22 kW and a synchronous speed of 1500 rpm. Calculations showed that
the derating power curves given in the IEC 60034-17 and NEMA MG1 standards are incorrect for the
tested motor.
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1. Introduction

The power systems of many countries operate an increasing number of non-linear
loads. These are power electronic devices (inverters, cycloconverters, controlled and non-
controlled rectifiers, thyristor, and triac controllers), arc furnaces, electric arc welders, and
modern light sources (LED, fluorescent lamps), FC-TCR compensators, and power supplies,
especially for IT equipment. In some sense, they are also capacitors, used for power factor
correction and voltage control or filtration, and chokes used to reduce the short-circuit
currents of power lines and for filtering purposes [1]. Capacitors and chokes are not non-
linear loads, but they can cause resonance phenomena in the power system that affect the
waveforms of grid voltages. The operation of non-linear loads in the power system causes
three-phase voltage distortions. The most common case is a deformation of the waveforms
of these voltages. The deformation can be presented as the appearance of higher harmonics
in the voltages. There may also be sub-harmonics and inter-harmonics in voltages, usually
associated with fluctuations in the amplitudes of three-phase voltages. The operation of
single-phase loads or sources, linear or non-linear, results in the unbalance of grid voltages.

Powering a three-phase induction squirrel-cage motor with voltage containing addi-
tional frequencies or with unbalanced voltage can cause many disturbances in its operation.
First, it causes an increase in power losses in the motor and creates alternating torques.
Alternating torques can cause fluctuations in the motor rotational speed, which causes
the appearance of additional frequencies in the motor currents [2]. These effects make it
necessary to lower the thermally admissible long-term load capacity of the motor in terms
of load torque and power.

One of the first papers on powering a motor with distorted voltage was by Cummings
(1986) [3]. This paper can be considered a basic study of supplying a squirrel-cage motor
with a voltage containing rotating harmonics. Cummings in [3] presents considerations
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leading to the determining of the admissible load power of the squirrel-cage induction
motor supplied with distorted voltage containing harmonics order h = 1,5,7,11,13,... The
paper determines the relationship between load power losses in the motor from higher
rotating harmonics (h ≥ 5) and the value of the defined Harmonic Voltage Factor (HVF).
Based on this relationship, the expression for the thermally admissible torque and load
power as a function of HVF can be derived (see Appendix A). The power values, equal to
0.6 and 0.8 of the rising short-circuit resistance and reactance of the motor with the stator
current frequency, were determined, which influenced the form of the HVF expression. The
expression for the HVF was presented in the standards [4,5] and is the basis for determining
the derating factor (DF) of motor power according to the DF(HVF) curves provided there.

In Fuchs et al. [6], the expression for power losses from rotating higher harmonics in
the HVF function was modified. The form and value of the coefficient of the relationship
between these losses and the HVF2 value were modified. This coefficient depended on the
type of electric machine (motor, transformer, single-phase machine, three-phase machine)
and the parameters of its model. The form of the HVF has also been modified. The powers
of RMS values of the voltage harmonics and harmonic’s numbers h depend on the type of
electric machine.

This modified expression is the basis of the work [7], where the increase in load losses
caused by the distorted power supply is related to the temperature of the motor winding
insulation. The results reported in [7] were based on the complete three-dimensional
thermal model of the machine. All the investigated motors were modeled for steady-state
operation at 75% load and temperature of cooling air equal to 30 ◦C. In such favorable
operating conditions of the motor, it was assumed that the durability of its insulation
should be approximately 20 years, for sinusoidal and balanced supply voltage. The motor
and its insulation life calculations were based on aging curves given in IEEE Std. 117. The
paper focused on the determination of the relationship between the decrease in the average
lifetime of the insulation and the value of higher harmonics or voltage unbalance.

In [8], the induction machine equivalent circuits for higher rotating harmonics were
also used. Their form was assigned to all higher harmonics, including those with even and
triple numbers. The article focused on the calculation of stray load losses for the distorted
supply voltage, regardless of the increase in the rotor resistance with a harmonic number,
causes by a skin effect in the rotor cage bars. A simple, analytical thermal model of the
machine was proposed. Based on it, the power derating factor for different contents of
higher harmonics in the supply voltage was determined. The derating factor for machines
of various rated powers and designs was calculated.

In the studies presented by Lee et al. [9], measurements of a loaded motor were carried
out to examine the impact of each harmonic of the supply voltage (from the 2nd to the
13th) on the motor’s operation at different values of the Voltage Distortion Factor (VDF).
A motor with a rated power of 2 kW was tested. They consisted of recording the voltage
and current waveforms of the motor supplied with distorted voltage and measuring its
efficiency and temperature. Based on motor temperature measurements, a new method
for determining the power derating factor of an induction motor was made. An important
conclusion from the measurements was the statement that harmonics with a number below
5 have more impact on a three-phase induction motor than the higher harmonics.

Jalilian et al. [10] investigated the power losses of a high-efficiency squirrel-cage
induction motor with a rated power of 7.5 kW, supplied from a distorted voltage source.
The voltage contained the fundamental harmonic (50 Hz) and higher rotating harmonics
with frequencies up to 1 kHz. The measurement of motor power losses was carried out
extremely accurately and reliably by measuring the dissipated heat of the motor in a double
calorimetric chamber. According to the measurements from the tested 7.5 kW motor, it
was found that the short-circuit resistance for higher rotating harmonics (h ≥ 5) increases
with the harmonic number in the power of 0.5, and the short-circuit reactance in the power
of 0.65. On this basis, the Weighted THD (WTHD) factor was proposed, based on which
the motor power losses due to higher harmonics of the supply voltage depend on the 2nd



Energies 2023, 16, 735 3 of 24

power. The WTHD was used to derive an expression for the power derating factor of
squirrel-cage induction motors.

The calorimetric chamber for thermal measurements of the motor was used in the
wide-ranging work described in [11], where 15 motors with rated powers from 11 kW to
147 kW were tested. Unfortunately, this paper was about comparing different measurement
methods for determining stray load losses in sinusoidal-fed induction machines. This paper
did not consider all the additional load losses in non-sinusoidal-fed induction machines.

In the paper [12], many induction motors were computationally tested, based on
various models of an induction machine. There were three large and two small, low-voltage
motors: 400 kW, 4 poles, 200 kW, 2 poles & 4 poles, 7.5 kW, 4 poles, 3 kW, 4 poles. The
tests concerned motors powered by a voltage with rotating harmonics, and unbalanced
voltage. The tests showed that the computational DF(HVF) curves for each motor may
be significantly different, depending on the machine model adopted for simulations. For
different motors, the DF(HVF) calculation curves were also significantly different, using
the same author’s machine model [13], having regard to the machine thermals. Various
calculation curves of rotor effective resistance as a function of frequency for the many rotor
bar types present in motors explained this fact. The efficiency class of the motor plays an
important role in derating, too. Furthermore, the size of the motor, its rated power, different
conditions of heat dissipation, as well as the design (open or closed design, type of cooling),
have roles in derating. The authors proposed a general, polynomial form of the expression
for the DF(HVF) curve, for individual harmonics.

Measurements in [14] showed that, for a 4 kW motor at smaller loading, derating
factors from [4,5] can underestimate the power losses in the motor. It was also noted that
the phase shift of the rotating harmonics (h ≥ 5) influences the maximum value of the flux
density and therefore the saturation level of core and power losses in the machine. Derating
according to the authors in [4] uses practically the same derating factor as done in [5] and
both derating methods are widely described in [15].

In [16], various standard methods were collected (IEEE Std. 399 Generic Method,
IEEE Std. 399 Induction Motor Equivalent Circuit Method, IEEE Harmonics Task Force
Model 2003) from papers [3,17] for determining the variation of the short-circuit resistance
and inductance of an induction motor with the frequency of its voltage supply. The
differences between the short-circuit resistance values sometimes varied by several orders
of magnitude. This illustrates the scale of the problem of the correct calculation of the
variation in the short-circuit power of the motor with the frequency of its supply.

In [18], the results of measurements of squirrel-cage induction motors with a rated
power of 4 kW and a synchronous speed of 1500 rpm (for a 50 Hz supply), with the efficiency
classes IE1 and IE2, were presented. These motors were supplied with a voltage containing
12% of the 5th harmonic (100% was equal to the rated voltage) and loaded with a torque
varying from 20% to 110% of its rated value. The results showed a slight variation of the
power losses from the 5th harmonic as a function of the load torque: from 35 W to 42 W for
an IE1 class motor and from 23 W to 32 W for an IE2 class motor. The measurements showed
an increase in the fundamental harmonic active power when the motor was supplied with
distorted voltage. Unfortunately, this observation was not elaborated on in the paper, which
was devoted mainly to the problems of obtaining adequately accurate measurements of the
power and efficiency of both motors.

De Lima et al. [19] assumed, based on their earlier papers, that the equivalent rotor
resistance varies exponentially with the frequency of the rotor currents—in the power
on the base e there is the root of this frequency. Calculations of the DF were carried out
numerically only, for two low-voltage motors (220 kW and 132 kW), as model calculations
based on motor equivalent circuits for successive rotating harmonics h = 1, 5, 7, 11, 13,
17, 19, 23, and 25. For a squirrel-cage motor supplied with an unbalanced or distorted
voltage, the following were compared: (a) power losses in the stator winding for a loaded
motor with power losses in the stator winding in the rated state of the motor, (b) total
power losses for a loaded motor with total power losses in the rated state of the motor. The
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results showed that unbalance mainly affected the stator winding, and harmonic distortions
mainly affected the rotor circuit.

Donolo et al. [20] performed measurement tests of three induction motors with the
same rated power of 5.5 kW and synchronous speed of 1500 rpm, but with different
efficiency classes (IE1, IE3, IE4). Based on the measurements, they showed that NEMA
derating factors were not correct to maintain power losses in the motor IE3 or IE4 class
below rated values. The voltage supplying the tested motors contained the 5th and 7th
harmonics. The magnitude of the 7th harmonic was 70% of the magnitude of the 5th
harmonic. Finally, they calculated derating factors for HVF values 0.03–0.14. The standard
curve turned out to be appropriate only for the motor with the IE1 efficiency class. It should
be noted that the total load power losses in the motor were taken into consideration, not
just the rotor load losses. In the conclusions, the authors wrote: “This article suggests
that (1) IM losses due to voltage unbalance and harmonic distortion are greater in higher
efficiency class IMs, and (2) that derating factors defined in standards are not enough to
avoid overload on higher efficiency class IMs.”

As can be seen from this short review, the standard [4,5] DF(HVF) curves have often
been questioned. The HVF formula has also been questioned. It is suggested that one
curve DF(HVF) for all existing induction motors may not be possible, due to the different
designs, the number of poles, size, cooling, efficiency class, and operating duty of the
motors. It is also not established which electromagnetic model of an induction machine
(with concentrated parameters) is appropriate for a disturbed power supply. For steady
sub-synchronous states, the classical model is most often used as equivalent circuits for
individual harmonics of the motor supply voltage. Their resistances and inductances
are varied with the frequency of the harmonic currents of the stator or rotor, or with the
frequency of the motor supply voltage. The character and rate of these variations are
variously assumed. Hybrid models of induction machines are also used, i.e., taking thermal
phenomena in motors into account.

The calculations presented in this paper were aimed at determining the derating
factor for a low-voltage squirrel-cage induction motor with a rated power of 22 kW and a
synchronous speed of 1500 rpm when the motor was supplied with a voltage containing
higher rotating harmonics. The calculations were based on the results of short-circuit
measurements of the motor made for the frequencies of these harmonics. For the calcula-
tions, the classical model of an induction machine for a steady sub-synchronous state was
used. In this model, the resistances and inductances of equivalent circuits for individual
harmonics were varied. According to the model, the additivity of calculation results for
individual harmonics was assumed. The assumption about the additivity of power losses
from individual harmonics applies to the steady state of the motor, i.e., constant speed of
the motor and periodic waveforms of motor currents and voltages. This assumption was
met by definition in this machine model. Based on the assumed limit of the power losses
in the rotor cage, equal to the rated power losses in the rotor cage, DF was calculated. A
new factor for estimating the DF values for the squirrel-cage induction motor is proposed.
Its expression is a generalization of the well-known HVF expression. The paper presents
an engineering and practical approach to the problem of determining the admissible load
power of a squirrel-cage induction motor supplied with distorted voltage.

2. Materials and Methods

The research concerned a squirrel-cage induction motor, with the descriptive data
presented in Table 1. Short-circuit measurements of the stopped motor were made with
the motor’s supply frequency varying from 50 Hz to 1450 Hz. The RMS value of the three-
phase balanced sinusoidal voltage was such that the RMS current was equal to the rated
current of the motor. Active power, RMS current, and RMS voltage were measured. The
Chroma 61512 programmable inverter was used for power supply and measurements. This
is a special inverter for experimental purposes whose output voltages are truly sine wave
(no modulation effects) thanks to the output sine filter. It is not an inverter commercially
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designed to power electric motors. Short-circuit measurements were performed by the
inverter. It records the waveforms of phase voltages and currents and, on this basis,
determines the RMS values of voltages and currents as well as the value of active power.
Power measurements were verified with two electrodynamic wattmeters in the Aron circuit.

Unfortunately, for the highest frequencies, the inverter could not generate such a high
voltage that the motor current was equal to the rated current. The RMS limit of the inverter
output phase voltage was 300 V. For example, for the frequency of 1450 Hz, the measured
current was only 11.8 A, instead of the rated value of 23.8 A. In this case, the measurement
results were converted into the rated current level—short-circuit power with the square
of the ratio of the rated current to the measurement current, the short-circuit RMS voltage
linear with this ratio.

Table 1. Rated and cataloged data of the tested squirrel-cage motor.

Data, Symbol, Unit Value Data, Symbol, Unit Value

Operating duty S1 Efficiency at 3
4 PN [%] 92.8

Power PN [kW] 22 Efficiency at 1
2 PN [%] 91.4

Torque TN [N·m] 142.4 Efficiency class IE3
Frequency fN [Hz] 50 Insulation class F

Speed nN [rpm] 1475 Weight (IMB3—feet) [kg] 200

Slip sN 0.0167 Rotor moment of inertia J
[kg·m2] 0.185

Number of pole pairs p 2 Degree of protection IP55
Voltage UN [V] 690 Y/400 ∆ Climatic execution N

Current IN [A] 23.8 Y/41.1 ∆ Ambient temperature
[◦C] up to +40

Maximum torque [N·m] 3.4·TN
Altitude above sea level

[m] up to 1000

Starting torque [N·m] 3.2·TN Cooling method IC411
Starting current [N·m] 8.5·IN No-load power P0 [W] 931

Power factor cosϕN 0.83 No-load current I0/IN 0.528

Power factor at 3
4 PN 0.79 Mechanical losses

∆Pmech0 [W] 86

Power factor at 1
2 PN 0.67 Core losses ∆PFe0 [W] 722

Efficiency ηN [%] 93.0 Short-circuit voltage uk1
= Uk1/UN [%] 13.0

For the calculations, a classical model of a three-phase induction machine was used,
which is a model of a wound machine. The model assumed the internal symmetry of
the machine, both electric and magnetic, a sinusoidal spatial distribution of the rotating
magnetic field in the machine for each rotating harmonic of the supply voltage, and the
linear magnetization of the machine. In this way, the model ignored the real arrangement of
the stator and rotor windings and the presence of the slots on the stator and rotor. Therefore,
in the model, the mutual inductances between the stator phases and the equivalent rotor
phases varied sinusoidally with the rotor position, and the inductances of the stator phases
and the equivalent rotor phases were constant. Power losses in the machine core, resulting
from the rotating magnetic field, were included in the model post factum, by introducing
an additional resistance RFe to the model. This method can only be considered suitable for
a steady-state machine. Power losses due to leakage fluxes were included by increasing
the resistance of the stator and rotor phases. As for the previous, this method can only
be considered appropriate for a steady-state machine. The other additional load losses in
the machine could be taken similarly into account. The skin effect in the rotor cage bars
could be accounted for by changing the rotor resistance and leakage inductance with the
frequency of its currents. This would be correct only for the steady state of the machine.

As in [3,4,7,8] and based on the conclusions presented in [21], it was assumed that
the increase in the temperature of the motor windings is caused by the currents of these
windings, i.e., load power losses in the machine, both basic and additional. For the
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calculations, the models of the steady state of the motor for individual supply harmonics
were used, with the variation in the resistance and leakage reactance of the stator and rotor
with the frequency of currents. The model, which was the basis of the equivalent circuit
presented in Figure 1, assumed the formation of sinusoidal, rotating magnetic fields from
individual harmonics of the voltage supplying the motor. Therefore, equivalent circuits can
only be created for those voltage harmonics that give rotating fields. These are harmonics
no. h = 5,7,11,13,17,... If the three-phase voltage supplying the machine is balanced, then
its harmonics with numbers given by the formula: h = (6 · k − 1), k є N, have the opposite
sequence of phases and give in the machine rotating magnetic fields with the direction
of rotation opposite to that of the fundamental harmonic field (h = 1). Harmonics with
numbers given by the formula h = (6 · k + 1) form three-phase systems with the same phase
sequence and give rotating magnetic fields with the same direction of rotation as the first
harmonic field. The magnetic fields caused by harmonics h = 3,9,15,... are not rotating
fields and therefore the structure of the equivalent circuit in Figure 1 does not apply to
these harmonics. However, the currents of these harmonics can flow from the power source
to the machine stator with a four-wire supply only, which is not used. Even-numbered
harmonics of voltages in the power system are typically transient. Therefore, an induction
motor connected to a three-phase power grid is exposed to rotating harmonics of voltages
and their sub-harmonics and inter-harmonics. The risk for the motor is also unbalanced
voltage, resulting in the appearance of the negative sequence of voltage in the motor phase
voltages [12,15,19].

Energies 2023, 15, x FOR PEER REVIEW 6 of 24 
 

 

equivalent rotor phases varied sinusoidally with the rotor position, and the inductances 

of the stator phases and the equivalent rotor phases were constant. Power losses in the 

machine core, resulting from the rotating magnetic field, were included in the model post 

factum, by introducing an additional resistance RFe to the model. This method can only be 

considered suitable for a steady-state machine. Power losses due to leakage fluxes were 

included by increasing the resistance of the stator and rotor phases. As for the previous, 

this method can only be considered appropriate for a steady-state machine. The other 

additional load losses in the machine could be taken similarly into account. The skin ef-

fect in the rotor cage bars could be accounted for by changing the rotor resistance and 

leakage inductance with the frequency of its currents. This would be correct only for the 

steady state of the machine. 

As in [3,4,7,8] and based on the conclusions presented in [21], it was assumed that 

the increase in the temperature of the motor windings is caused by the currents of these 

windings, i.e., load power losses in the machine, both basic and additional. For the cal-

culations, the models of the steady state of the motor for individual supply harmonics 

were used, with the variation in the resistance and leakage reactance of the stator and 

rotor with the frequency of currents. The model, which was the basis of the equivalent 

circuit presented in Figure 1, assumed the formation of sinusoidal, rotating magnetic 

fields from individual harmonics of the voltage supplying the motor. Therefore, equiva-

lent circuits can only be created for those voltage harmonics that give rotating fields. 

These are harmonics no. h = 5,7,11,13,17,... If the three-phase voltage supplying the ma-

chine is balanced, then its harmonics with numbers given by the formula: h = (6 · k− 1), k є 

N, have the opposite sequence of phases and give in the machine rotating magnetic fields 

with the direction of rotation opposite to that of the fundamental harmonic field (h = 1). 

Harmonics with numbers given by the formula h = (6 · k + 1) form three-phase systems 

with the same phase sequence and give rotating magnetic fields with the same direction 

of rotation as the first harmonic field. The magnetic fields caused by harmonics h = 

3,9,15,... are not rotating fields and therefore the structure of the equivalent circuit in 

Figure 1 does not apply to these harmonics. However, the currents of these harmonics 

can flow from the power source to the machine stator with a four-wire supply only, 

which is not used. Even-numbered harmonics of voltages in the power system are typi-

cally transient. Therefore, an induction motor connected to a three-phase power grid is 

exposed to rotating harmonics of voltages and their sub-harmonics and inter-harmonics. 

The risk for the motor is also unbalanced voltage, resulting in the appearance of the 

negative sequence of voltage in the motor phase voltages [12,15,19]. 

 

Figure 1. Equivalent circuit of squirrel-cage motor for harmonic h; sh = (+/−h∙ω1−ω)/(+/−h∙ω1) ≈ 1. 

For high frequencies of rotating harmonics (h ≥ 5), the magnetizing currents Iμh of 

these harmonics, in the equivalent circuits flowing through the magnetizing reactance, 

have a negligible impact on the RMS value of the stator current of the motor operating at 

sub-synchronous speed. This is caused by the high value of the magnetizing reactance 

Xμh and value of the slip approximately equal to 1. The power losses in the magnetic 

circuit of the machine increase faster than linearly with increasing frequency of the sup-

ply voltage, typically with the power of 1.5÷1.7, according to the catalog data of motor 

sheets. The second factor of their increase are the power losses in the rotor’s core, not 

Figure 1. Equivalent circuit of squirrel-cage motor for harmonic h; sh = (+/−h·ω1−ω)/(+/−h·ω1) ≈ 1.

For high frequencies of rotating harmonics (h ≥ 5), the magnetizing currents Iµh of
these harmonics, in the equivalent circuits flowing through the magnetizing reactance,
have a negligible impact on the RMS value of the stator current of the motor operating at
sub-synchronous speed. This is caused by the high value of the magnetizing reactance Xµh
and value of the slip approximately equal to 1. The power losses in the magnetic circuit of
the machine increase faster than linearly with increasing frequency of the supply voltage,
typically with the power of 1.5 ÷ 1.7, according to the catalog data of motor sheets. The
second factor of their increase are the power losses in the rotor’s core, not present for the
fundamental harmonic. However, it was assumed [3,4,10] that the power losses in the core
do not increase the temperature of the machine windings due to the large mass and volume
of the machine core. On this basis, it was assumed that the machine equivalent circuit
for each higher harmonic is a short circuit, i.e., the current flows only in the longitudinal
branch of this circuit, and power losses occur in the stator resistance and rotor resistance.
These resistances were assumed to be variable with the frequency of currents, due to skin
effect, proximity effect (for stator winding), and stray-load losses [3,10]. The skin effect is
especially high in the rotor cage bars, causing the resistance value Rr’ to vary even several
times with the harmonic number. Along with the increase in the value of this resistance, the
power losses in the rotor increase. Because values of the slips s5, s7, s11, s13,... are close to 1,
it was assumed that these slips are equal to 1, as in [3,6]. The calculations assume that the
mean torques from the rotating higher harmonics are negligible at sub-synchronous speeds.
This is caused by high synchronous speeds of these harmonics and low values of their
voltages. The RMS values of these voltages are usually much lower than the rated voltage
of the motor. It should be noted that at sub-synchronous speeds, the negative torques of the
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harmonics h = (6 · k − 1) in part compensate with the positive torques of the harmonics h =
(6 · k + 1). For these reasons, it can be assumed that the mean electromagnetic torque of the
motor, in the steady-state equal to its load torque, comes from the fundamental harmonic
of the motor supply voltage only.

3. Results
3.1. Derating Load Torque and Power

According to the classical model of the induction machine, the average electromagnetic
torque of the motor caused by the fundamental harmonic of the power supply can be related
to the power losses in the rotor winding:

Tem =
∆PCur1

s·ω1
p

(1)

where: ∆PCur1—load power losses in the rotor cage from the first harmonic of the motor
supply, s—slip of the motor, ω1—pulsation of the first harmonic of the motor supply.

This relationship assumes no power losses in the rotor core from the first harmonic of
the motor supply. This assumption is met, as the frequency of the rotor currents caused by
the fundamental harmonic of the stator power supply is the frequency s·f 1, and therefore
very low with typical motor slips of several percent. Based on (1), the expression for the
thermally admissible electromagnetic torque of the motor supplied with a voltage with
rotating harmonics can be written as:

Temder =
∆PCur1der

s·ω1
p

(2)

where: ∆PCur1der—thermally admissible load power losses in the rotor cage from the first
harmonic of the motor supply.

For motor load torques not greater than its rated torque, it can be assumed that the
relationship between motor slip and motor average electromagnetic torque (equal to load
torque) is linear:

s = sN ·
Temder

TN
· 1
u2

s1
(3)

where: us1 = Us1/UsN, Us1—RMS value of the first harmonic of phase voltage of the motor,
UsN—rated phase voltage of the motor.

On this basis, the expression for the thermally admissible electromagnetic torque of
the motor supplied with voltage containing higher rotating harmonics is obtained:

Temder = us1·
√

∆PCur1der

sN ·ω1
p
·TN = us1·

√
∆PCur1der

sN ·ω1
p ·TN

·T2
N = us1·TN ·

√
∆PCur1der
∆PCurN

(4)

The admissible motor load power (mechanical, i.e., on the shaft) was determined as
the product of the admissible motor load torque and the shaft speed. It was determined
based on (3):

Pemder = Temder·ω = Temder·(1− s)·ω1
p

= Temder·ω1
p − s·Temder·ω1

p = Temder·ω1
p − ∆PCur1der

= us1·TN ·
√

∆PCur1der
∆PCurN

·ω1
p − ∆PCur1der

(5)

For a sinusoidal motor supply, the thermally admissible power losses from the first
harmonic of the supply ∆PCur1der are equal to the rated power losses in the rotor cage
∆PCurN. For a distorted power supply, they are reduced by the sum of power losses in the
rotor cage from higher rotating harmonics of the motor power supply:
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∆PCur1der = ∆PCurN −∑∞
h=5,7,11,... ∆PCurh (6)

The value of total power losses in the motor for higher rotating harmonics can be
determined by short-circuit measurements of a stopped motor supplied with a three-
phase and balanced sinusoidal voltage, with frequencies equal to the frequencies of rotating
harmonics. For higher rotating harmonics, the short-circuit state of the machine corresponds
to its operation with around-synchronous speeds. Assigning the measured short-circuit
active power to the power losses in the machine windings (both base and additional) means
that power losses in the stator and rotor core from the main flux are negligible. This is
justified by the small RMS value of the measuring short-circuit voltage of the machine.
With increasing frequency, this voltage increases (while maintaining the condition of taking
measurements at the RMS value of the current equal to the rated current of the motor),
due to the increase in windings leakage reactance. However, assuming that the leakage
reactances of the stator and rotor windings are equal, the power losses in the core from
the main flux are determined by half of the RMS value of this voltage. Based on the rated
power losses in the stator core provided by the manufacturer of the tested motor (Table 1),
it was estimated that for the frequency 1450 Hz (h = 29) the main flux power losses in the
stator and rotor cores are approximately 540 W at a short-circuit power of 5700 W. For the
estimation, it was assumed that the main flux losses in the motor core during a short-circuit
test depend on: 1, the square of the ratio of half of the RMS value of short-circuit voltage to
its frequency; 2, the frequency of the short-circuit voltage in the power of 1.6; 3, the mass
of the stator and rotor cores—it was assumed that the mass of the rotor core is 2/3 of the
mass of the stator core. They, therefore, amount to less than 10% of the short-circuit power.
On this basis, no power losses in the cores were assumed. That is, it was assumed that all
the load power losses of the rotor are dissipated in the rotor cage, and they heat it directly.
This made it possible to write an expression for the sum of rotor load losses from higher
rotating harmonics using the results of its short-circuit measurements:

∑∞
h=5,7,11,... ∆PCurh = ∑∞

h=5,7,11,... 3·R′rh·I
′2
rh

= ∑∞
h=5,7,11,... 3·R′rh·I

2
kh·

U2
sh

U2
kh

= ∑∞
h=5,7,11,...

R′rh
Rkh

Pkh·
U2

sh
U2

kh

(7)

where: Rrh
′—rotor cage resistance for harmonic h ≥ 5, Irh

′—RMS value of the harmonic
h of the equivalent rotor current, Rkh—measured short-circuit resistance of the motor for
the frequency of h · f 1, Ikh—RMS value of the measuring short-circuits phase current of the
motor with a frequency of h · f 1, Ukh—RMS value of the measuring short-circuits phase
voltage of the motor with a frequency of h · f 1, Pkh—measured motor short-circuit power at
a frequency of h · f 1, Ush—RMS value of the harmonic h of the phase motor supply voltage.

For the practical use of Formula (7), it is necessary to know the rotor resistance values
for all harmonics of the motor supply.

3.2. Identification of Motor Model Parameters

According to the steady-state model of the induction machine for higher harmonics
(Figure 1) and ignoring the power losses in the cores, the measured short-circuit resistance
is the sum of the stator phase resistance and the rotor phase equivalent resistance. As
the frequency increases, the values of both resistances increase, but not equally. It can be
presumed that the rotor resistance will increase faster due to the skin effect in the cage bars.
The value of the stator phase resistance for the rated frequency can be determined based on
the motor-rated power balance, prepared based on data from Table 1 and formulas of the
model. Knowing the stator resistance makes it possible to determine the rotor resistance for
the rated stator frequency, based on the measurement of the short-circuit active power when
the motor is supplied with a voltage of this frequency. The resistances determined in this



Energies 2023, 16, 735 9 of 24

way also include additional load losses of the motor at the rated stator frequency. Values of
the rotor resistance for the rated frequency of the rotor currents can be calculated based
on the model formulas. The method of determining the values of these three resistances is
described by Formulas (8)–(20):

∆PCusN = ∆PN − ∆PCurN − ∆PFe0·
∣∣UµN

∣∣2∣∣Uµ0
∣∣2 (8)

Rs1 =
∆PCusN

3·|IsN |2
(9)

Xσs1 = 0.5·Xk1 (10)

∆PN = PN ·
1− ηN

ηN
(11)

∆PCurN = sN ·(TN ·
ω1

p
+ ∆Pmech0) (12)

UµN = UsN − (Rs1 + j·Xσs1)·IsN (13)

Uµ0 = Us0 − (Rs1 + j·Xσs1)·Is0 (14)

IsN = IsN ·(cosϕN − j·sinϕN) (15)

Is0 = Is0·(cosϕ0 − j·sinϕ0) (16)

R′r1 = Rk1 − Rs1 (17)

RrN
′ =

∆PCurN

3·
∣∣IrN

′∣∣2 (18)

IrN
′ = IsN −

UµN

Zµ
(19)

Zµ =
j·Xµ·RFe

RFe + j·Xµ
(20)

where: ∆PN—rated motor power losses, ∆PCusN—rated power losses in the stator winding,
∆PCurN—rated power losses in the rotor cage, IsN—rated current of phase of the stator, as a
complex value, Is0—motor idling current of phase of the stator, when the motor is supplied
with the rated voltage, as a complex value, UµN—voltage on the transverse branch of the
motor equivalent circuit in the rated state of the motor, as a complex value, Uµ0—voltage on
the transverse branch of the equivalent circuit of the motor in the idling state of the motor,
when the motor is supplied with the rated voltage, as a complex value, Rs1—resistance of
the stator phase in the rated state of the motor, Xσs1—leakage reactance of the stator phase
for stator currents with rated frequency and RMS value not greater than the rated current
of the motor, Rr1

′—resistance of the equivalent rotor phase for the frequency of the rotor
currents fr = f 1 = fN, RrN’—resistance of the equivalent rotor phase for the rated frequency
of the rotor currents frN = sN · fN, IrN’—rated current of the equivalent rotor phase, as a
complex value, Zµ—impedance of the transverse branch of the motor equivalent circuit,
for the rated supply voltage, as a complex value, Xµ—magnetizing reactance of the motor,
for the rated supply voltage, RFe—resistance representing power losses in the stator core,
for the rated supply voltage.
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3.3. Models of Load Losses

In the Master of Science thesis [22], short-circuit measurements of various squirrel-cage
motors for higher frequencies were performed. It was found that the variability of the short-
circuit resistance and reactance of a squirrel-cage motor with the frequency short-circuit
current can be approximated as:

Rkh = Rk1·((1− a)·hx + a) (21)

Xkh = Xk1·hy (22)

where: a, x, y—coefficients determined during approximation, Xk1—motor short-circuit
reactance measured at frequency f 1 = fN.

Approximation Formulas (21) and (22) (Figure 2) were selected based on experiments
presented in papers [5–7,10], where power relations of resistance and reactance to frequency
were assumed. However, the formula for the short-circuit resistance was extended so that:
(a) there is no passus of zero short-circuit resistance of the machine for direct current, (b)
there is possible correctly reproduce by the approximation formula the sum of the stator
resistance Rsh for the frequency of the rated slip (h = sN) and the rotor resistance RrN’. The
resistance RrN’ is implicitly present in the Formula (6) and the rated power losses in the
rotor (18) depend on it, which is of key importance for determining the admissible torque
and power. The coefficients a, x were calculated in such a way that the calculated short-
circuit active powers for all frequencies (all h orders) were not smaller than the measured
short-circuit active powers. In [22], the powers of y obtained from the approximation for
various motors were always in the range from 0.9 to 1.1, so the increase in the reactance
value with frequency was always approximately linear.
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Variation of stator phase resistance and resistance of the equivalent rotor phase with
frequency was determined in three alternative models:
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1. In model 1, it was assumed that the stator resistance and rotor resistance vary with
the harmonic number according to the expression (21) and with the same power of x,
but with different values of the coefficient a:

Rk1·((1− a)·hx + a) = Rsh + R′rh
= Rs1·((1− as)·hx + as) + Rr1

′·((1− ar)·hx + ar)
(23)

Knowing the power of x from the approximation and the value of Rr1′ from (17) and
the value of RrN’ from (18), as the value of Rrh’ for h = sN, allowed us to determine the
values of coefficients ar (for rotor) and as (for stator):

ar =

RrN
′

Rr1
′ − sx

N

1− sx
N

(24)

as =
a·Rk1 − ar·Rr1

′

Rs1
(25)

The values of both coefficients should be between 0 and 1. Values less than 0 would
mean that the DC winding resistance is negative. Values greater than 1 would mean
that the resistance value decreases with increasing frequency.

2. In model 2, it was assumed that the stator resistance and rotor resistance vary with
the harmonic number according to the expression (21) and with the same power of x
and coefficient a:

Rk1·((1− a)·hx + a) = Rsh + R′rh = Rs1·((1− a)·hx + a) + R′r1·((1− a)·hx + a) (26)

The value of the coefficient a should be in the range from 0 to 1, for the reasons given
for model 1. Model 2 can be described as “optimistic” in relation to the value of load
power losses in the rotor cage. These losses should be assessed as underestimated
because it is practically impossible for the stator resistance to increase with frequency
as fast as the rotor resistance, in which the skin effect in the cage bars occurs. The
disadvantage of model 2 is the incorrect reproduction of the rotor resistance value in
the rated state RrN’—for the tested machine it is overestimated.

3. In model 3, it was assumed that the stator resistance is constant, and the rotor resis-
tance, which varies with the harmonic number, is responsible for the entire increase in
the short-circuit resistance of the machine with frequency:

Rk1·((1− a)·hx + a) = Rsh + R′rh = Rs1 + (Rk1·((1− a)·hx + a)− Rs1) (27)

The variation of the rotor resistance with the harmonic number can be written by the
equation:

R′rh = Rr1
′·
((

1− ar
′)·hx + ar

′) (28)

where: a′r = (Rk1·a− Rs1)/R′r1.
The value of the coefficient a should be greater than the quotient Rs1/Rk1 so that
the DC rotor resistance is greater than 0, and less than 1, so that the rotor resistance
increases with frequency. For ar’, it means that it should be between 0 and 1. Model 3
can be described as “pessimistic” in relation to the value of load power losses in the
rotor cage. These losses should be assessed as overestimated because it is practically
impossible for the stator resistance not to increase with frequency. The disadvantage
of model 3 is the incorrect reproduction of the rotor resistance value in the rated state
RrN’—for the tested machine it is underestimated.

The values of the approximation coefficients for the tested motor are presented in Table 2.
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Table 2. Approximation coefficients for all three power loss models for the tested motor.

Coefficient Value

a 0.592
x 0.57
y 0.92
as 0.780
ar 0.477
ar’ 0.343

3.4. Derating Torque and Power

For various models of rotor resistance variability with frequency, different values of
the sum of the load power losses of the rotor for higher harmonics were obtained, according
to (7). These calculations were based on the results of motor short-circuit measurements
for individual harmonics. The curves shown in Figures 3–5, were calculated based on
the machine model for steady states of the motor. The measured values of short-circuit
resistance and reactance of the motor for harmonic frequencies or their approximations
were used for the calculations. The determination of the rotor resistance for the individual
harmonics was performed based on the measured short-circuit resistance and the proposed
models 1–3 for the increase of stator and rotor resistance with frequency.

The paper presents calculations for all models and for the fundamental and fifth
harmonic of the voltage supplying the motor. The fifth harmonic was varied from 0 to 25%,
with the fundamental harmonic equal to the rated voltage of the motor (rated voltage is
100%). The value of the HVF then varied in the range from 0 to 11.2%. Figure 3 shows
the sum of rotor load power losses from higher harmonics (i.e., 5th only) as a function
of the RMS value of the 5th voltage harmonic referenced to the rated voltage. This sum
determines the value of the admissible power losses in the rotor from the fundamental
harmonic according to (6), also shown in Figure 3. This value determines the admissible
motor load torque according to (4), for various models of power losses in the rotor cage—
Figure 4. Figure 5 shows the admissible motor load power according to (5) as a function of
the 5th voltage harmonic, also for all models of power losses in the rotor cage.
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For comparison, Figures 3–5 show the characteristics determined based on [3] and
HVF. For the model of power losses in the motor based on the HVF factor, the expressions
for the admissible torque and motor load power were derived, based on the formulas
from [3]—derivations are in Appendix A. Assuming the linear variation of the motor slip
with the load torque according to (3) and the frequency-independent value of the stator
phase resistance according to [3], the following can be written:

∆PCur1der = ∆PCurN −∑∞
h=5,7,11,... ∆PCurh (29)

∑∞
h=5,7,11,... ∆PCurh = ∑∞

h=5,7,11,... ∆PCuh −∑∞
h=5,7,11,... ∆PCush (30)

∑∞
h=5,7,11,... ∆PCuh = ∆PCuN ·42·HVF2 (31)

∆PCush = 3·Rs1·I2
sh (32)
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Temder = us1·TN ·
√

1− 42·HVF2 (33)

Pemder = us1·PN ·
√

1− 42·HVF2

(1− sN)
·
(

1− sN ·
√

1− 42·HVF2
)

(34)

Furthermore, for comparative purposes, Figures 4 and 5 show the characteristics
determined based on limiting the RMS value of the stator current at the level of its rated
value:

Is1limit =
√

I2
sN −∑∞

h=5,7,11,... I2
sh (35)

Formulas (4) and (5) were used to determine the admissible torque and load power. The
load power losses in the rotor cage for the first harmonic were determined as:

∆PCur1der = 3·RrN
′·I′2r (36)

The current of equivalent rotor phase was determined according to the formulas:

Ir
′ = Is1limit −

us1·UsN − (Rs1 + j·Xσs1)·Is1limit

Zµ
(37)

Is1limit = Is1limit·(cosϕN − j·sinϕN) (38)

In the expression (38), for calculations with us1 = 1 was arbitrarily assumed the rated cosϕ.
Undoubtedly, the cosϕ of the motor changes with the RMS value of the first harmonic stator
supply voltage and the value of the calculated admissible load torque. The admissible
motor load power was calculated by the expression (5), by multiplying the admissible
load torque by the rotor speed. It was calculated for us1= 1 based on the motor slip from
the Formula (3). The RMS values of stator harmonic currents Ish for voltages Ush were
calculated based on the results of motor short-circuit current measurements:

Ish = Ikh·
Ush
Ukh

= IsN ·
Ush
Ukh

(39)

Furthermore, for comparative purposes, Figure 5 shows the characteristics present
in standards [4,5], presenting the admissible motor load power as a function of the HVF
value. It is very similar to the characteristic according to (34).

3.5. Harmonic Losses Factor

Following the example HVF from [3], a new factor was introduced on which the load
losses of the rotor from higher harmonics depend squarely. In [3], the load losses from
higher harmonics depend on the value of the HVF squarely for the stator and rotor together.
To distinguish a new factor from the HVF this factor was called the Harmonic Losses Factor
(HLF). Its formula depends on the model of load power losses of the rotor:

1. For model 1:

∑∞
h=5,7,11,... ∆PCurh = ∑∞

h=5,7,11,... 3·Rrh
′·I′2rh (40)

∑∞
h=5,7,11,... ∆PCurh = 3·R′r1·

∑∞
h=5,7,11,...((1− ar)·hx + ar)·

U2
sh

R2
k1·((1−a)·hx+a)2+X2

k1·h
2y

(41)

∑∞
h=5,7,11,... ∆PCurh = 3·R′r1·I2

sN ·

∑∞
h=5,7,11,...

((1−ar)·hx+ar)·u2
sh

u2
k1·cos2 ϕk1·((1−a)·hx+a)2+u2

k1·sin2 ϕk1·h2y

(42)

The product 3·Rr1
′·IsN

2 is the short-circuit power loss in the rotor when it is supplied
with a definitional short-circuit voltage Uk1 (Ik1 = IsN) with rated frequency. The
short-circuit cosϕ of the motor is then cosϕk1. Expression (42) can be written using the
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rated power losses in the rotor winding, which is more useful as a reference power
than the product 3·Rr1

′·IsN
2, due to their presence in expressions (4)–(6):

∑∞
h=5,7,11,... ∆PCurh = ∆PCurN ·

(
I2
sN

I2
rN′

)
((1−ar)·sx

N+ar)
· 1

u2
k1
·

∑∞
h=5,7,11,...

((1−ar)·hx+ar)·u2
sh

cos2 ϕk1·((1−a)·hx+a)2+sin2 ϕk1·h2y

(43)

By defining the HLF as:

HLF =

√
∑∞

h=5,7,11,...

((1− ar)·hx + ar)·u2
sh

cos2 ϕk1·((1− a)·hx + a)2 + sin2 ϕk1·h2y
(44)

we can write an expression for the rotor load losses due to higher harmonics:

∑∞
h=5,7,11,... ∆PCurh = ∆PCurN ·

(
IsN
IrN′

)2(
(1− ar)·sx

N + ar
)
·u2

k1
·HLF2 (45)

The HLF formula may be reduced to the HVF formula for the assumptions made
in [3]. These are: (a) ar = 0 and a = 0 (then the variability of the resistances with the
harmonic number is power function only), (b) cosϕk1 = 0 (then the limitation of higher
harmonic currents are the motor short-circuit reactances for these harmonics, without
resistances), (c) x = 0.6, y = 0.8. In the expression for the total motor load losses from
higher harmonics derived in [3], there is a numerical factor in front of the square
of its value, which is 35 (42 in Formulas (31) and (A1) due to a different reference
power—∆PCuN). Its role in (45) is fulfilled by the following expression:

C =

(
IsN
IrN′

)2(
(1− ar)·sx

N + ar
)
·u2

k1
(46)

For the tested motor C = 166.
2. For model 2: In model 2, the following equality is fulfilled: ar = as = a, which simplifies

expression (44) to the form:

HLF =

√
∑∞

h=5,7,11,...

((1− a)·hx + a)·u2
sh

cos2 ϕk1·((1− a)·hx + a)2 + sin2 ϕk1·h2y
(47)

and expression (45) is fulfilled to the form:

∑∞
h=5,7,11,... ∆PCurh = ∆PCurN ·

(
IsN
IrN′

)2(
(1− a)·sx

N + a
)
·u2

k1
·HLF2 (48)

The disadvantage of model 2 is the incorrect reproduction of the resistance value RrN’.
It has a negative impact on the accuracy of determining the coefficient C. For the
tested machine C = 139, so the power losses in the rotor cage from higher harmonics
are underestimated. This disadvantage can be corrected, inconsistently about model 2
by substituting in formula (48) instead of the expression ((1 − a)·sN

x + a), the ratio of
the resistance RrN’ (according to (18)) to the resistance Rr1

′ (according to (17)).
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3. For model 3: In model 3, the coefficient ar in Formulas (44) and (45) was replaced by
the coefficient ar’ as in Formula (28):

HLF =

√
∑∞

h=5,7,11,...

((1− ar ′)·hx + ar ′)·u2
sh

cos2 ϕk1·((1− a)·hx + a)2 + sin2 ϕk1·h2y
(49)

The expression (45) takes the form:

∑∞
h=5,7,11,... ∆PCurh = ∆PCurN ·

(
IsN
IrN′

)2(
(1− ar ′)·sx

N + ar ′
)
·u2

k1
·HLF2 (50)

The disadvantage of model 3 is the incorrect reproduction of the resistance value RrN’.
It has a negative impact on the accuracy of determining the coefficient C. For the
tested machine C = 216, so the power losses in the rotor cage from higher harmonics
are overestimated. This disadvantage can be corrected, inconsistently about model 3
by substituting in Formula (50) instead of the expression ((1 − ar’)·sN

x + ar’), the ratio
of the resistance RrN’ (according to (18)) to the resistance Rr1

′ (according to (17)).

For the tested motor, for all three models, the HLF values as a function of the HVF values
are shown in Figure 6, to show differences in HLF and HVF values for the same Us5 values.
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3.6. Determination of the DF Curves Based on the HLFs

Based on the HLF defined by Formula (44) and power losses in the rotor cage from
higher harmonics according to (45), expression (6) can be written for model 1:

∆PCur1der = ∆PCurN ·

1−

(
IsN
IrN′

)2(
(1− ar)·sx

N + ar
)
·u2

k1
·HLF2

 (51)

Based on expression (51), expression (4) can be written for model 1:

Temder = us1·TN ·

√√√√√1−

(
IsN
IrN′

)2(
(1− ar)·sx

N + ar
)
·u2

k1
·HLF2 (52)
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where:

((1− ar)·sx
N + ar) ≡

RrN
′

Rr1
′ (53)

Analogous to Formulas (52) and (53), formulas for model 2 are based on HLF according
to (47) and have the following form:

Temder = us1·TN ·

√√√√√1−

(
IsN
IrN′

)2(
(1− a)·sx

N + a
)
·u2

k1
·HLF2 (54)

((1− a)·sx
N + a) 6= RrN

′

Rr1
′ (55)

The same formulas for model 3 are based on HLF according to (49) and have the
following form:

Temder = us1·TN ·

√√√√√1−

(
IsN
IrN′

)2(
(1− ar ′)·sx

N + ar ′
)
·u2

k1
·HLF2 (56)

((
1− ar

′)·sx
N + ar

′) 6= RrN
′

Rr1
′ (57)

For all three models, the formula for the admissible motor load power is the same,
based on Formula (5):

Pemder = Temder·
ω1

p
− ∆PCur1der = Temder·

ω1

p
− ∆PCurN ·(

T2
emder

(us1·TN)
2 ) (58)

Figure 7 shows the admissible motor load torques according to (4), which are shown
in Figure 4, and the admissible motor load torques according to (52), (54), (56). These
were calculated in two variants: exactly according to these formulas and by replacing
the approximation expressions present in the coefficient C before HLF2 according to (53),
(55), (57) with the resistance ratio RrN’/Rr1

′. This substitution approximates the curves
according to (54) and (56) to the curves according to (4). For the curve according to (52), this
substitution does not cause any changes, according to identity (53). There are significant
differences between the curves according to (4) and the curves drawn with dashed lines.
For example, for us5 = 0.2 these differences are: for the curve according to (52) 0.06TN,
for the curve according to (54) 0.042TN and for the curve according to (56) 0.09TN. These
differences increase with a decrease in the admissible motor load torque. They result
from the use of the measured values of short-circuit powers and resistances (Pkh, Rkh) for
calculations according to (4), and the approximated values of these powers and resistances
for the curves drawn with solid and dashed lines. Admissible torque calculated with HLF
is always overestimated in relation to its value based on (4). Paradoxically, this results
from the choice of the coefficients a, x of the approximation of increase in the short-circuit
resistance of the motor with the frequency of the short-circuit current, so that the calculated
short-circuit active power is never smaller than that measured for each frequency. This
approximation formula is in the denominator of each HLF expression (Formulas (44),
(47), (49)), which underestimates its value and increases the admissible motor load torque
according to (52), (54), (56).
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Figure 7. Derating torque of the motor as a function of the RMS value of the 5th harmonic of the
supply voltage—comparison of curves from Figure 4 with curves obtained based on HLF.

Figure 8 shows the admissible motor load powers, calculated based on the torques
from Figure 7 and the Formula (58).
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Figure 8. Derating power of the motor as a function of the RMS value of the 5th harmonic of the
supply voltage—comparison of curves from Figure 5 with curves obtained based on HLF.

Table 3 compares the calculated DF values with the values from selected papers. For
small values of HVF and HLF, DF values are similar. Bigger differences appear for higher
values of HVF and HLF. The large range of DF values in the column headed DF by [12] of
Table 3 apply to motors with very different rated powers—from 7.5 kW to 400 kW. Smaller
DF values apply to a 400 kW motor, bigger values apply to a 7.5 kW motor.
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Table 3. Comparison of DF values.

HVF HLF
Model 1

DF
Model 1

DF
by [3]

DF
by [4,5]

DF
by [20]

DF
by [12]

DF
by [23]

0.04 0.030 0.919 0.966 0.985 0.983 0.915–0.985 0.973
0.06 0.045 0.810 0.923 0.945 0.931 0.790–0.975 0.926
0.08 0.060 0.626 0.859 0.885 0.856 0.580–0.960 0.839
0.10 0.075 0.087 0.767 0.800 0.758 0.300–0.950 0.773
0.12 0.090 0 0.640 0.660 0.645 0.240–0.920 0.700

4. Discussion

1. The full range of possible rotor resistance changes with frequency was examined:
from the variant where the full variability of the motor short-circuit resistance with
frequency was assigned to the rotor resistance (model 3), through the variant where
the variability of the rotor resistance was such that the rated value of this resistance
was correctly reproduced (model 1), to the variant of identical variability of the stator
and rotor resistance (model 2). Models 2 and 3 describe extreme variants because, in
reality, it is not possible for the stator resistance to increase with frequency as quickly
as the rotor resistance, and it is impossible for it to remain constant.

2. In model 1, the determination of the coefficients as and ar was based on three resis-
tance values: Rs1, Rr1

′ = Rk1 − Rs1, RrN’. This guarantees the correct determination
of the RrN’ resistance value from the approximation formula, and thus the correct
determination of the rated power losses in the rotor. However, the variation of the
rotor resistance with frequency was determined based on two values of this resistance,
for the frequency fN (h = 1) and sN · fN (h = sN), which are not far apart in the frequency
domain. It reduces the reliability of determining the values of the coefficients as and ar
in terms of the correct determination of the Rrh’ value for higher rotating harmonics.

3. For all three loss models, the curves of the admissible load torque and power accord-
ing to (4) and (5) had a similar shape. However, from an operational point of view,
the values of admissible torque and power were significantly different. For example,
for us5 = 0.2, the differences between the values of the admissible load torque were
+0.083TN and −0.123TN, relative to the curve of model 1. These differences decreased
with the increase of the admissible torque—for us5 = 0.15, the corresponding differ-
ences were +0.03TN and −0.037TN. These were smaller differences than expected, but
for operational reasons are too big to conclude that the choice of the load losses model
is of no practical importance.

4. The curves of the admissible motor torque and admissible power, described by For-
mulas (4) and (5), and models of load losses, differ significantly from the curves
described by Formulas (33) and (34). The main reason for these differences is that
the model of load losses presented in [3] applies to the total load losses in the motor.
This model does not make it possible to separate rotor losses from the total load
losses. It makes it impossible to link the admissible motor load torque with rotor
losses. The derivation of the expression HVF and the expression for the total load
losses of the motor supplied with a distorted voltage may be questionable. It is not
understandable why the highly saturated value of the short-circuit reactance of the
motor, measurement as the input reactance of the motor during its start-up, was used
to determine the harmonic currents. The results of the calculations apply to the states
of the motor with small currents not exceeding the rated current. During the start
of the motor, the current is big—in [3] a phase current equal to 6.5IsN was assumed.
Neglecting the short-circuit resistance in the expression for the harmonic current Ish
seems to be an oversimplification and an unnecessary simplification. At such high
frequencies as the frequencies of the rotor currents from higher rotating harmonics,
the resistance of the cage bars can be very high, and consequently the value of the
model parameter Rrh’ can be comparable to the value of the short-circuit reactance Xkh,
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and even more so with its saturated start-up value. In [3], the rated rotor resistance
RrN’ and the short-circuit resistance of rotor Rr1

′ were not differentiated. The model
assumed powers of x = 0.6 and y = 0.8 for all squirrel-cage motors, which was not
exact for the tested motor (Table 2). The consequence of all these assumptions and
simplifications is that the admissible torque and power were much greater than those
based on the losses models proposed in this paper. This is even though the curves
of power losses in the rotor presented in Figures 3 and 6 are not much different from
the curves based on loss models described by Formulas (23), (26), and (28). This may
raise doubts as to the correctness of the derivation of Formulas (33) and (34), but
an indirect confirmation of their correctness is the compliance of the curve of the
admissible motor load power according to (34) with the curve given in [4]—Figure 5.
The admissible power, according to [4] is greater than according to expression (34)
consistently by approximately 2.5% of the rated motor power for each magnitude of
the voltage of the 5th harmonic us5 (at us1 = 1).

5. The curves of the admissible torque and motor load power based on Formulas (4) and
(5) and power loss models described by Formulas (23), (26), (28) also significantly
differ from the curves based on Formulas (4) and (5) with stator current RMS value
limit (35). This is because equation (35) does not account for the increase in the
short-circuit resistance of the motor with the increase in the frequency of its current.
The short-circuit resistance of the tested motor increases by 61% when the frequency
increases from the rated (50 Hz) to five times the rated (250 Hz). Assuming that the
increase in the rotor resistance with the frequency of its currents is the same as the
stator resistance (ar = as = a, model 2), the rotor resistance for the 5th harmonic Rr5

′ in
relation to its rated value RrN’ increases by 205%. The increase in load power losses in
the rotor associated with the increase in resistance is not included in the Formula (35).
This explains the very overestimated values of the admissible torque and load power.

6. The curves of the admissible torque and motor load power based on Formulas (52),
(54), (56), and (58) theoretically should be identical to the curves according to (4) and
(5), for the same models of losses. The differences result from the use of approximation
formulas three or two times in Formulas (52), (54), and (56), which resulted in the
summation of approximation errors. This problem does not occur when Formulas (4)
and (5) are used directly; then, the approximation formula is used only once when
determining the value of the expression (7).

7. Assuming the identity RrN’ = Rr1
′ and IrN’ = IsN (as in [3]) is a source of large errors

in the value of the coefficient C present before the HLF square in Formula (45). After
making these assumptions, the coefficient C reduces to 1/uk1

2, and its value for the
tested machine is 60. The actual value is 166. It would be equal to 42, as in (33) and
(34), if the short-circuit voltage of the tested machine was 15.5% instead of the real
13%. In the tested motor, Rr1

′/RrN’ = 1.89, IsN/IrN’ = 1.21.
8. The paper assumes that all additional load losses of the stator and rotor turn into heat

in the windings of the machine, limiting the thermally admissible power losses for
the fundamental harmonic of currents. This is a pessimistic assumption—some of
these losses are outside the windings, not affecting the temperature of the windings
or affecting it in part only. This problem requires further research. However, it was
verified by calculations that for the tested motor, the rotor load losses from the 5th
harmonic according to model 1 would have to be included in the calculations of the
admissible torque and load power according to Formulas (4)–(7) only in 42%, so that
these curves will be agreed with the according to Formulas (33) and (34) curves.
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5. Conclusions

1. The derating power curves given in [4,5] as a function of the HVF value for the
tested motor are incorrect. For all three models of losses, the curves of the admissible
motor power were definitely below the curves from [4,5]. Based on the derivation in
Appendix A, it can be presumed that they are based on the considerations presented
in [3]. The simplifications and inconsistencies result in a significant overestimation of
the admissible torque and power.

2. The accuracy of determining the variation of the rotor resistance Rrh’ with frequency
has a key impact on the accuracy of determining the thermally admissible load torque
of the induction motor. The key to determining DF is the knowledge of power losses
from higher harmonics of the supply in the rotor, and not in the whole motor overall.

3. The introduced HLF according to (44) differs from the well-known HVF by its gener-
alization for real conditions when cosϕk1 > 0, a > 0, ar > 0, x 6= 0.6, and y 6= 0.8. For
cosϕk1 = 0, a = 0, ar = 0, and for x = 0.6, y = 0.8, the HLF formula is reduced to the HVF
formula.

4. The formulation of the HLF expression carries with it the duplication of mathematical
approximation errors, which generates errors in determining admissible torque and
power. These values are more accurately determined based on Formulas (4)–(7) di-
rectly, preferably with an approximation of rotor resistance variability with frequency
according to model 1. This leads to the conclusion that the curves of the admissible
motor power should be determined not as a function of HLF or HVF, but as a function
of the sum of the rotor winding power losses from higher harmonics, according to (7).

5. The curves of the admissible torque and the admissible power are not different.
6. There is no reason why the variation of rotor leakage reactance and resistance with

frequency should be the same in different induction motors. This variability is deter-
mined by the skin effect in the bars of the rotor cage. Squirrel-cage motors have cage
bars with cross-sections of different shapes. Therefore, the skin effect occurs in them
with different intensities. This thesis is confirmed by the results of simulations in [12],
where the curves DF(HVF) were significantly different for different motors. There
it was found that curve DF(HVF) also depended on the number of pole pairs of the
machine, its size and rated power, its design, and efficiency class.
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Appendix A

Based on [3], we can write for us1 = 1:

∑∞
h=5,7,11,... ∆PCuh = 42·HVF2·∆PCuN (A1)

∑∞
h=5,7,11,... ∆PCuh + ∆PCu1 = 42·HVF2·∆PCuN + ∆PCu1 (A2)

where: ∆PCuh—load power losses in the motor supplied with a distorted voltage, caused
by harmonic h of the motor power supply, ∆PCuN—load rated power losses in the motor,
∆PCu1— load power losses in the motor supplied with a distorted voltage, caused by the
fundamental harmonic of the power supply.

In [3], it was assumed that the total load losses should not exceed the rated load losses
of the motor for thermal reasons. Based on equation (A2) it can be written as:

∆PCuN = 42·HVF2·∆PCuN + ∆PCu1der (A3)
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where: ∆PCu1der—thermally admissible value of load power losses in the motor for the
fundamental harmonic of the motor power supply.

Based on the expression (A3), the expression for the admissible load losses in the
motor for the fundamental harmonic of the motor power supply can be obtained:

∆PCu1der = ∆PCuN ·
(

1− 42·HVF2
)

(A4)

Expression (A4) is the starting point for determining the thermally admissible torque
and power. To determine the admissible torque, it was assumed that for the slips varies
from s = 0 to s = sN, the slip increases linearly with increasing load torque, according to
expression (3). Using (3), the individual components of the load power losses ∆PCu1 can be
represented as (neglecting the magnetizing current and power losses in the motor core, as
in [3]):

∆PCur1 = s·Tload·
ω1

p
=

sN
TN
·T2

load·
ω1

p
(A5)

∆PCus1 = 3·Rs1·I′
2
r1 =

Rs1

RrN
′ ·∆PCur1 (A6)

∆PCuadd1 = 3·Radd1·I′
2
r1 =

Radd1

RrN
′ ·∆PCur1 (A7)

∆PCu1der = ∆PCur1 + ∆PCus1 + ∆PCuadd1 (A8)

where: Radd1—resistance representing the additional power losses in the motor for the
fundamental harmonic of the power supply.

Unfortunately, in [3], it is not clear which rotor resistance should be used in expressions
(A6) and (A7): Rr1

′ or RrN’. The second variant was chosen because it is closer to reality.
The expression for the thermally admissible value of the motor load torque is obtained by
inserting the expressions (A4)–(A7) into (A8):

Tloadder =

√√√√∆PCuN ·(1− 42·HVF2)
sN
TN
·ω1

p ·
R′rN+Rs1+Radd1

R′rN

(A9)

The quotient of resistances in the denominator of expression (A9) represents the ratio
of the total load losses to the rotor load losses in the rated state of the motor:

R′rN + Rs1 + Radd1

R′rN
=

∆PCuN

sN · PN
1−sN

=
∆PCuN

sN · TN ·(1−sN)·ω1/p
1−sN

=
∆PCuN

sN ·TN ·ω1/p
(A10)

By inserting (A10) into (A9) and dividing (A9) by the rated torque, the last form of the
expression for the admissible relative value of the motor load torque as a function of the
HVF was obtained:

Tloadder
TN

=
√

1− 42·HVF2 (A11)

The thermally admissible load power of the motor was calculated as the product of
the admissible load torque according to (A11) and the rotational speed of the machine,
expressed by the slip s according to (3):

Ploadder = Tloadder·
(

1− sN
TN
·Tloadder

)
·ω1

p
(A12)
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By inserting the expression (A11) into the expression (A12) and dividing it by the rated
motor power, the expression for the relative motor load power as a function of HVF and
rated slip sN was obtained:

Ploadder
PN

=

√
1− 42·HVF2

(1− sN)
·(1− sN ·

√
1− 42·HVF2) (A13)

The dependence of the admissible motor power on the rated slip is practically negligi-
ble because the difference ((1 − sN) in (A13) is close to 1 (sN is always close to 0). Assuming
that (1 −sN) ≈ 1 and sN ≈ 0 we get expressions identical to (A11). This is due to the low
variability of the motor speed as a function of the load torque. The variability of motor
load power is a function only the variability of the load torque, due to changes in rotational
speed of several percent.
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