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Abstract: Amidst a global discourse on energy resources, it is imperative to provide decision mak-
ers with a comprehensive overview of energy consumption (EC) associated with various projects,
particularly wastewater treatment plants (WWTPs). Ensuring compliance with stringent effluent
quality criteria in the treatment of municipal wastewater necessitates a substantial EC, representing
a predominant factor contributing to the operational expenses incurred by WWTP. Machine learning
(ML) techniques can contribute to the estimation of the WWTPs’ EC, which requires efficient and
accurate data. This article uses data from several municipal WWTP projects in Greece, which are
examined in order to produce EC estimation models. Data were first statistically analyzed, according
to the context of project attributes and the context of EC, and correlation analysis identified the appro-
priate predictive project variables. Then, the attribute selection function in Waikato Environment for
Knowledge Analysis 3.8.4 (WEKA 3.8.4) software emphasized the most effective subset of variables.
The extracted variables from the combination of the correlation analysis and the WEKA attribute
function were used as input neurons for the construction of neural network (NN) models, in the Fast
Artificial Neural Network Tool 1.2 (FANN Tool 1.2). The optimum NN model resulted in a mean
squared error (MSE) of 8.99899 × 10−5 and was based on treatment capacity, flow rate, influent load,
and served population as its inputs. Notably, the research highlights the potential generalizability
of these models in Greece and beyond the Greek context, offering valuable tools for stakeholders to
inform decision making, allocate resources efficiently, and improve energy-efficient designs, resulting
in cost savings and sustainability benefits.

Keywords: wastewater treatment plants; neural networks; predicting models; energy consumption;
attribute selection

1. Introduction

Comprehending the energy consumption (EC) of a wastewater treatment plant (WWTP)
is crucial for various reasons [1]. Efficient energy management plays a direct role in en-
hancing cost-effectiveness by facilitating optimal resource allocation and the potential
for savings. These insights support the fine-tuning of processes, channeling efforts to-
wards energy-intensive stages to enhance overall operational efficiency. Beyond financial
implications, a grasp of EC knowledge contributes to environmental sustainability and sus-
tainable development by mitigating the carbon footprint linked with elevated energy use.
Precise energy data facilitate regulatory compliance, while well-informed infrastructure
planning, benchmarking, and funding decisions draw advantages from this comprehen-
sion [1]. Transparent endeavors to manage EC not only enhance public perception but also
foster community engagement, aligning WWTPs with responsible resource stewardship
and sustainable practices. Hence, it becomes evident that the prediction of EC in WWTPs
can play a pivotal role in achieving sustainable development, improved decision mak-
ing, power management, monitoring various operational functions, and environmental
protection [1–3].
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Municipal WWTPs, typically employing conventional activated sludge (CAS) pro-
cesses, are intensive energy consumers [4–8]. The EC of CAS plants typically falls within
the range of 0.3 to 0.6 kWh/m3, with approximately half of this energy being allocated
to aeration for oxygen supply and the conversion of organic pollutants to sludge [4,7,9].
In the European Union (EU), the energy requirements of WWTPs constitute over 1% of the
total electricity consumption in Europe [10]. It has also been documented that WWTPs are
responsible for 4% of the United States’ national electricity consumption and approximately
7% of global electrical energy usage [5,11–13]. They exhibit a high energy demand due to
the substantial energy required for executing the various treatment procedures essential for
wastewater purification. EC can contribute to as much as 48% of the operational costs of
a WWTP [14]. The majority of WWTPs in Greece function as extended aeration facilities,
leading to elevated operational expenses primarily attributed to substantial energy require-
ments [15]. The notable energy-intensive processes within a WWTP include the aeration,
mixing, and pumping of water and solids for recirculation, filtration, and disinfection [1].
Furthermore, energy is also essential for biosolids processing, encompassing activities like
aerobic digestion, heat drying, and dewatering. The energy requirements for disinfection
may differ based on the selected method, with chlorination exhibiting lower energy require-
ments compared to ultraviolet (UV) or ozone disinfection. Although sedimentation is an
essential process in wastewater treatment, it is not generally regarded as a highly energy-
intensive process [1]. These energy-demanding activities, in addition to the electrical and
mechanical equipment utilized in WWTPs, make a substantial contribution to the overall
EC. Enhancing energy efficiency through measures like incorporating renewable energy
sources or optimizing treatment processes can mitigate WWTP energy consumption.

Rojas et al. [16] have highlighted that the design of most WWTPs primarily focuses
on meeting effluent quality standards, often neglecting energy efficiency considerations.
This aspect presents an opportunity for enhancement. At present, optimizing energy ef-
ficiency in WWTPs is a prominent topic in the scientific community [17–20]. Accurately
predicting the EC of WWTPs is one potential approach to optimize them and achieve energy
savings. Notably, machine learning (ML) techniques are being harnessed within WWTPs to
bolster efficiency and curtail operational expenditures. Forecasting EC in WWTPs provides
a better understanding of the energy needs for various operational strategies, ultimately
leading to energy reduction [3]. When WWTP operators have access to swift and accurate
EC predictions, they can adjust their operational strategies to minimize energy usage while
maintaining treatment efficiency. For example, they can optimize aeration levels, reducing
energy consumption during periods of low influent loading or when influent quality is
relatively good. ML techniques have gained substantial traction across numerous domains,
including predicting and optimizing wastewater components, due to their remarkable
precision; all this can be accomplished without the need for an intricate comprehension of
the underlying mechanisms typically essential for constructing mechanistic models [21].
Until this moment, only a limited number of studies have explored the utilization of ML
technologies for predicting EC in WWTPs [3], and to our best of knowledge, the combina-
tion of wastewater characteristics, WWTPs’ hydraulic parameters, and the treatment lines
for wastewater and sludge for a full-scale WWTP energy consumption prediction has not
been studied yet.

In Greece, there is a significant variation in energy requirements among WWTPs, indi-
cating the potential for improvements to reduce energy consumption [15]. This underscores
the critical importance of having swift and accurate predictions for the EC of WWTPs,
allowing for the optimization of their operations.

The main aim of the current study is to produce reliable and efficient NN models for the
estimation of EC, regarding the operation of WWTPs in Greece. The models were produced
by considering the combined influence of wastewater characteristics, WWTP hydraulic
parameters, and the treatment processes for both wastewater and sludge, enabling accurate
predictions of EC for WWTPs in Greece.



Energies 2023, 16, 7408 3 of 20

This study starts by introducing the findings of prior research on project performance
models, along with the associated documented methodologies Subsequently, within the
scope of our sample projects, the study underscores the correlation outcomes of the selected
variables and their influence on the EC of WWTPs. Moreover, a structured methodology
for generating NNs is analyzed. The associated models are introduced alongside their
individual performance results. Finally, discussions and conclusions were conducted in the
study, with attention given to limitations and prospects for future research.

The format of this paper proceeds as follows: Section 2 presents an outline of EC
prediction and corresponding ML methodologies. In Section 3, the research methodology
is presented, detailing the approach taken for this study, while also elaborating on the
application and the architecture of NN, highlighting their role in the analysis. Furthermore,
the section explores the application of the Waikato Environment for Knowledge Analysis
3.8.4 (WEKA 3.8.4) software for attribute selection, showcasing its significance in the context
of the study. Finally, Section 4 contains some conclusions, limitations, and future thoughts.

2. Project Performance Prediction Models

Artificial intelligence (AI) finds application across various domains for the prediction
of both natural and artificial processes. As a subgroup of AI, machine learning constitutes
a technique for identifying specific patterns based on provided data, facilitating prediction
or classification [22].

Recent publications have explored energy consumption (EC) modeling and prediction
for WWTPs using various statistical and machine learning algorithms.

Bonescu et al. [23] considered the logistic regression method (LRM). This approach
involved the use of input variables such as flow rate and wastewater properties to predict
the EC of a WWTP in Romania. The study gathered data from a WWTP spanning 2015 to
2017, compiling a dataset of 403 records to verify the efficiency of this method. The findings
demonstrated a satisfactory predictive performance, achieving an accuracy rate of 80%.
Żyłka et al. [24] evaluated the implementation of a least squares linear regression model to
forecast EC in a WWTP serving a Polish dairy. This initiative resulted in the optimization
of energy utilization. Furthermore, they observed the influence of air temperature and
biological load as significant factors affecting EC. A regression model for the annual EC of
WWTPs under various influent conditions was developed by Yang et al. [25] Their findings
indicated that the main correlated features with EC in bioreactors were the influent flow
rate and chemical oxygen demand (COD) concentration. The obtained model showed
a high accuracy in predicting the annual EC. Using Bayesian semiparametric quantile
regression (QR), Yu et al. [26] employed wastewater parameters including biochemical
oxygen demand (BOD), COD, pH, and total nitrogen as input variables to estimate the EC
of WWTPs. Correlation analysis revealed the strongest correlations were observed between
the dependent variable and COD (0.96) and BOD (0.86), respectively.

S. Zhang et al. [27] employed a random forest (RF) model to forecast the EC of WWTPs.
They evaluated this ML method utilizing a dataset consisting of 2387 records extracted
from the China Urban Drainage Yearbook. The findings demonstrate that the RF approach
displayed satisfactory predictive capabilities, achieving an R2 value of 0.702.

Oulebsir et al. [28] introduced an approach involving the utilization of an artificial
neural network (ANN) to construct an optimal EC model for WWTP employing the ac-
tivated sludge process. The model demonstrated good results, exhibiting a coefficient
of determination ranging from 90% to 92% during the training phase and 74% to 82%
during testing. Furthermore, when the most proficient model was applied, substantial
energy gains were observed across a significant portion of the dataset. Z. Zhang et al. [29]
employed an NN model to estimate the EC of pumps within a wastewater treatment plant.
This utilization facilitates the creation of the scheduling of pump system operations with
the intention of minimizing EC. The performance of the ANN model was satisfactory,
achieving a mean absolute error (MAE) of 0.78 and a mean absolute percentage error
(MAPE) of 0.02, underscoring its ability to deliver accurate predictions. Z. Zhang et al. [12]
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focused on the modeling and optimization of a wastewater pumping system with the
objective of curbing energy consumption, employing the ANN model. Precisely, NNs were
harnessed to construct models for both pump EC and wastewater flow rate. To tackle the
optimization challenge encompassing the dual goal of minimizing EC and maximizing
pumped wastewater flow rate, an artificial immune network algorithm (AINA) was imple-
mented. The outcome of this endeavor demonstrated energy savings ranging from 6% to
14%, while simultaneously upholding optimal pumping performance. Qiao and Zhou [30]
introduced an approach for EC and effluent quality prediction, employing a density peak-
based adaptive fuzzy neural network (DP-AFNN). The experimental results showed that
the proposed DP-AFNN can achieve fast convergence speed and high prediction accu-
racy in comparison with some existing methods such as multiple linear regression (MLR),
the FNN-EBP (error backpropagation), and the dynamic FNN.

To optimize EC in a large-scale WWTP located in Italy, Borzooei et al. [31] conducted
weather-based cluster analysis on historical influent data along with various aeration
strategies. An extensive dataset of historical and meteorological records was subjected
to two clustering techniques: the K-means algorithm and the Gaussian mixture model
(GMM) utilizing the expectation–maximization (EM) algorithm. The findings suggest that
integrating weather-based aeration strategies into the WWTP operations enhances the
efficiency of energy utilization.

Torregrossa et al. [32] applied ANN and RF to forecast energy costs within WWTPs.
This comprehensive study enfolded a dataset encompassing 279 WWTPs distributed across
northwest Europe, encompassing countries such as Belgium, France, Holland, Denmark,
Germany, Luxembourg, and Austria. In terms of average R2 values, RF exhibited a notable
performance level of 0.82, closely followed by ANN at 0.81. The primary objective of
Torregrossa et al. [33] was to improve energy efficiency in WWTPs by conducting an
extensive daily benchmark analysis. They explored the applicability of support vector
regression (SVR), ANN, and RF algorithms, employing the Solingen–Burg WWTP dataset.
The RF algorithm emerged as the optimal choice due to its superior performance, achieving
an R2 value of 0.72 during validation and 0.71 during testing. Bagherzadeh et al. [3] delved
into investigating the effect of wastewater, hydraulic, and climate related factors on the
daily EC of the East Melbourne WWTP, utilizing a six-year dataset spanning from 2014
to 2019. Employing four different feature selection (FS) algorithms, the research aimed to
unveil the relationships among these variables and identify the most relevant for training
ML models. The study further explored the application of ANN and two decision tree
algorithms—gradient boosting machine (GBM) and RF —to predict EC values, followed
by a thorough assessment of a 95% confidence interval. Findings from the FS algorithms
underscored the substantial impact of total nitrogen, COD, and inflow on WWTP energy
consumption. Notably, GBM exhibited superior predictive performance compared to other
regression algorithms. A 95% confidence interval analysis demonstrated a reasonable error
band for prediction (±68 MWh/day). Ramli and Hamid [34] conducted an extensive
investigation to investigate the effectiveness of various predictive models, including linear
regression (LR), K-nearest neighbors (KNN), ANN, and SVM, in forecasting the EC of
a WWTP situated in Peninsular Malaysia. The dataset for EC was sourced from the Tenaga
National Berhad electrical bills spanning from March 2011 to February 2015. The outcomes
of this research indicated that among the considered models, the ANN model demonstrated
a notable superiority in performance.

Oliveira et al. [35] endeavored to formulate, fine-tune, and assess an array of prospec-
tive deep learning models, all with the overarching objective of predicting the EC of
a WWTP using a recursive multistep methodology. Within this exploration, three distinct
types of models were tested: long short-term memory networks (LSTMs), gated recurrent
units (GRUs), and unidimensional convolutional neural networks (CNNs). The evaluation
encompassed both uni- and multivariate configurations, accompanied by diverse tech-
niques for addressing outliers. Notably, CNN-based models yielded promising forecasting
outcomes, with a statistically significant disparity compared to LSTMs and GRUs. The most
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optimal model demonstrated an approximate overall error of 630 kWh in a multivariate
context. Yusuf et al. [36] employed the widely recognized statistical method known as
autoregressive integrated moving average (ARIMA) and deep learning techniques to pre-
dict the daily electric consumption across a month, as well as the 15 min moving average
electric consumption within a single day. This forecasting effort was conducted for two
distinct locations within a water utility in southern California. A comprehensive compara-
tive analysis of these methodologies was presented, incorporating relevant error metrics.
The prediction of electric consumption for a water treatment plant and a pumping station
was executed using both approaches. Notably, deep learning techniques emerge as superior
in consumption prediction for both scenarios and across both time resolutions.

Das et al. [37] employed and trained sophisticated ML models, including ANN, re-
current neural networks (RNN), LSTM, and GRU, using real-world data, to forecast the
EC of WWTPs. Through the utilization of four ML algorithms on the provided dataset,
the optimal-fitting model was determined. Performance assessment of the models hinges
on established metrics like MAE and root mean square error (RMSE). The findings highlight
that the GRU model demonstrates the best fit and is thus suggested for further future anal-
yses. Alali et al. [1] conducted an evaluation and comparison of 23 candidate ML models to
predict EC in WWTPs, utilizing real data sourced from the Melbourne WWTP. To enhance
model performance, Bayesian optimization was employed to calibrate the investigated
ML models. XGBoost (extreme gradient boosting) and RF were applied to evaluate the
impact of the integrated features on EC prediction. Furthermore, the investigation delved
into the potential of integrating time-lagged measurements from past data to enhance
prediction accuracy. The findings unveiled the superiority of dynamic models employ-
ing time-lagged data, outperforming the static and streamlined ML models. The study
showed that including lagged measurements in the model improves prediction accuracy,
and the results indicate that the dynamic K-nearest neighbors (kNN) model outperforms
the state-of-the-art methods by reaching promising EC predictions. Ahmad and Chen [2]
presented four different ML forecasting models, which were conditional decision trees
(CDT), FitcKnn, a linear regression model (LRM), and stepwise-LRM for the EC demand of
water source pumps within the water industry. The input data for these models encom-
passed environmental and power usage variables associated with the water source pumps,
analyzed at both weekly and monthly intervals.

3. Research Methodology

The main aim of the current study is to produce reliable and efficient neural network
(NN) models for the prediction of energy consumption (EC), regarding the operation of
WWTPs in Greece. The sample projects under evaluation comprise 31 WWTPs. For these
specific projects, it became possible to collect a substantial amount of the same type of data,
both quantitative and qualitative. Numerous studies have concentrated on the utilization
of multiple linear regression techniques to estimate EC in WWTPs. The constraints of these
approaches mainly centered around their linear and parametric characteristics. Further-
more, the dataset includes qualitative parameters, making NN a superior alternative to
multiple regression models. Additionally, Juszczyk [38] underscores that NN possesses
traits such as the ability to learn and generalize acquired knowledge, adapt to changing
conditions, and exhibit limited sensitivity to input data errors. The latter is crucial, given
the ongoing concern about data reliability, particularly in the case of EC. Considering these
facts and the international literature, the present study applies NNs to forecast the EC for
WWTPs operating in Greece. In addition to presenting the developed models, this paper in-
troduces a novel methodological approach (inspired by [39]) that ensures the identification
of the most highly performing and reliable models through an effective variable screening
process, based on available data and suitable input variable combinations. This research
methodology has been successfully applied to predict construction costs and project dura-
tions for highway and bridge projects [39–41]. However, it has not yet been applied and
tested to WWTPs and their operational characteristics, particularly in predicting EC. For the
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aforementioned reasons, this specific method was selected for use in the current work.
In this section, we provide an outline of the research methodology, the project sample,
the application of neural networks and the application of WEKA.

3.1. The Methodological Approach

The proposed methodology is built upon the following tools (inspired by [39]): the Fast
Artificial Neural Network Tool 1.2 (FANN Tool 1.2) for neural network development,
Waikato Environment for Knowledge 3.8.4 Analysis (WEKA 3.8.4) for feature selection,
and IBM SPSS 29.0, a software application designed for statistical analysis and data man-
agement, for performing correlation analysis. To elaborate, FANN Tool 1.2 facilitated the
implementation of various NN libraries. IBM SPSS 29.0 in conjunction with WEKA 3.8.4
facilitated the screening of variables. Essentially, FANN Tool 1.2 generated an array of
distinct ANN models. IBM SPSS 29.0 was used for data description and correlation analysis,
enabling the identification and ranking of independent variables based on their correlation
coefficients’ predictive capability. Subsequently, the WEKA 3.8.4 application pinpointed a
subset of variables within the group of highly correlated variables, as identified by the cor-
relation analysis [40]. The methodological framework encompassed the following stages:

Stage 1. Consideration of 31 selected WWTPs and collection of the relevant data.
Stage 2. Development of a suitable SPSS database that encompasses all types of variables

(quantitative and qualitative).
Stage 3. Descriptive statistics of the variables.
Stage 4. Correlation analysis was conducted between the independent variables and EC.

The analysis was conducted separately for quantitative as well as for quantitative
and qualitative in type variables.

Stage 5. Creation of a ranked list of variables, ordered in descending correlation values
for potential input neurons.

Stage 6. Proposal of NN models utilizing the FANN Tool 1.2 application. The NNs
were formulated by initially incorporating the most highly correlated variable,
followed by sequential addition of variables from the ranked list (stage 5), based
on their correlation degree.

Stage 7. Further selection of the highly correlated variables using the WEKA 3.8.4 soft-
ware, leading to the identification of the most effective subset of variables for
input into the NN models.

Stage 8. Proposal of neural networks, utilizing FANN Tool 1.2, to forecast EC in WWTP
projects using the subset of variables found in stage 7.

Graphical representation of the methodological approach is illustrated in Figure 1
(inspired by [39]).

3.2. Model Structure

An SPSS database was created, encompassing all variables. These could be categorized
as either quantitative, represented by numerical values, or qualitative, characterized by
ordinal values. Table 1 presents the variables at hand:

Table 1. Quantitative and qualitative variables.

Quantitative Variables Qualitative Variables

Flow rate (m3/d) Aeration
Treatment capacity (population equivalent—p.e.) Wastewater treatment line
Served population (population equivalent—p.e.) Sludge treatment line

Influent load (BOD5/d)
Energy consumption (kWh/d)
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Figure 1. Methodological approach (inspired by [39]).

The description of the examined variables are as follows:

• Flow rate: the average daily incoming flow rate, measured in cubic meters per
day (m3/d).

• Treatment capacity: the maximum amount of the population equivalent (p.e.) of
wastewater the facility can effectively process per day.

• Served population: the daily average of equivalent population for which the WWTP
provides wastewater treatment services.

• Influent load: the daily average of organic pollution entering the treatment plant,
measured in terms of biochemical oxygen demand over a five-day period (BOD5/d).

• Energy consumption: the daily average amount of energy used by the treatment plant,
measured in kilowatt-hours per day (kWh/d).

• Aeration: this variable takes on values ranging from 1 to 3 (ordinal values), determined
by the aeration process of wastewater treatment (surface aeration = 1, diffusion = 2,
surface aeration and diffusion = 3).

• Wastewater treatment line: the variable’s value ranges from 1 to 9 (ordinal values),
depending on the wastewater treatment line stages (Table 2).

• Sludge treatment line: the variable’s value ranges from 1 to 7 (ordinal values), depend-
ing on the sludge treatment line stages (Table 3).
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Table 2. Stages of wastewater treatment line and variable values.

Stages Value

Pre-Treatment, Secondary Treatment, Disinfection–Chlorination 1
Pre-Treatment, Primary Treatment, Secondary Treatment,
Disinfection–Chlorination 2

Pre-Treatment, Secondary Treatment, Nitrogen Removal,
Disinfection–Chlorination 3

Pre-Treatment, Primary Treatment, Secondary Treatment, Nitrogen Removal,
Phosphorus Removal 4

Pre-Treatment, Primary Treatment, Secondary Treatment, Nitrogen Removal,
Disinfection–Chlorination 5

Pre-Treatment, Secondary Treatment, Nitrogen Removal, Phosphorus Removal,
Disinfection–Chlorination 6

Pre-Treatment, Primary Treatment, Secondary Treatment, Nitrogen Removal,
Phosphorus Removal, Disinfection–Chlorination 7

Pre-Treatment, Secondary Treatment, Further Process—Rotating Discs, Nitrogen
Removal, Phosphorus Removal, Disinfection–Chlorination 8

Pre-Treatment, Primary Treatment, Secondary Treatment, Further Process—Sand
Filters, Nitrogen Removal, Phosphorus Removal, Disinfection Chlorination,
UV Radiation

9

Table 3. Stages of sludge treatment line and variable values.

Stages Value

Thickening 1
Dewatering 2

Thickening, Dewatering 3
Stabilization, Dewatering 4

Thickening, Stabilization, Dewatering 5
Thickening, Digestion, Dewatering 6

Thickening, Stabilization, Dewatering, Thermal Drying 7

3.3. Sample and Database Description

The database encompasses data from 31 municipal WWTPs currently in operation
across Greece all of which employ the activated sludge treatment method. Wastewater
treatment facilities are subject to the conditions of the Mediterranean climate, which include
mild wet winters and warm to hot, dry summers [42]. Out of the 31 WWTPs recorded,
12 of them are associated with small-scale facilities serving populations of up to 10,000 p.e.
Additionally, 12 out of the 31 WWTPs are dedicated to medium-sized plants catering to
populations ranging from 10,000 to 100,000 p.e. Finally, 7 out of the 31 WWTPs are associ-
ated with large-scale facilities serving populations exceeding 100,000 p.e. The 31 facilities
encompass treatment capacities ranging from a few hundred equivalent residents to as
high as 4,000,000, collectively exceeding a total treatment capacity of 6,000,000 equivalent
residents. This indicates that they encompass a significant proportion of the served pop-
ulation in Greece. The sample displays significant diversity, encompassing WWTPs of
varying scales, serving populations from small-scale facilities to large-scale plants, and
featuring treatment capacities ranging from a few hundred equivalent residents to millions.
The data for the database were sourced from multiple channels, including the National
WWTPs Operation Monitoring Database in Greece [43], and Master’s thesis works [44–46].
Additionally, we enriched this dataset through direct interactions with the responsible
authorities overseeing WWTPs. Specifically, data were extracted for 25 WWTPs from the
thesis works. For the additional six WWTPs, data were collected by the author of this study
using the National WWTPs Operation Monitoring Database in Greece and by contacting
the relevant responsible authorities. The National WWTPs Database was also used to
fill in data gaps in the information obtained from the aforementioned thesis. Selection
criteria for inclusion in the database were primarily predicated on data availability and
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uniformity to facilitate the creation of a comprehensive dataset. This selection process
ensured that quantitative and qualitative data of a consistent nature could be gathered
for these projects. Subsequently, an SPSS database was generated to facilitate the ensuing
analysis. This database encompassed 31 distinct cases, representing individual projects, and
featured 8 variables that collectively covered data commonly available across all projects.
These variables were recorded as quantitative and qualitative. Descriptive statistics of the
sample are included in Table 4. Figure 2 illustrates the variations in energy consumption
across different WWTPs in Greece.

Table 4. Descriptive statistics.

Variables N Range Minimum Maximum Sum Mean

Flow Rate (m3/d) 31 726,751.00 50.00 726,801.00 1,174,349.00 37,882.23
Treatment Capacity (p.e.) 31 5,628,500.00 1500.00 5,630,000.00 9,040,600.00 291,632.26
Served Population (p.e.) 31 3,646,138.00 250.00 3,646,388.00 5,971,411.00 192,626.16
Influent Load (BOD5/d) 31 218,768.00 15.00 218,783.00 358,286.00 11,557.62

Aeration 31 2.00 1.00 3.00 45.00 1.45
Wastewater Treatment Line 31 8.00 1.00 9.00 155.00 5.00

Sludge Treatment Line 31 6.00 1.00 7.00 116.00 3.74
Energy Consumption (kWh/d) 31 294,293.67 179.33 294,473.00 494,116.37 15,939.24
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3.4. Correlation Analysis for Quantitative Variables

The SPSS database was used to find the correlations among independent quantitative
variables and EC. The FANN tool demonstrates greater reliability when applied to quan-
titative variables rather than qualitative ones. Subsequently, based on the results of the
correlation analysis, a series of neural networks were generated and employed, in order to
create suitable models for the forecast of EC. According to Field [47], Pearson correlation
coefficient and the significance value are the indicators for evaluating the results of the
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correlation analysis. The Pearson correlation coefficient takes on values close to 1 for strong
relationships and −1 for adverse strong relationships. A correlation of 0 implies no rela-
tionship whatsoever. Typically, a Pearson correlation coefficient ranging from 0.3 to 0.5 is
deemed moderate, while a coefficient exceeding 0.5 is categorized as a strong correlation.
Furthermore, significance values less than 0.05 indicate strong correlations, while those
ranging between 0.05 and 0.06 demonstrate the tendency to correlate. When the significance
factor falls below 0.01 (p < 0.01), it is denoted by **, and when it ranges between 0.01 and
0.05 (0.01 < p < 0.05), it is denoted by *. Table 5 and Figure 3 depict the results meeting the
previously outlined criteria.

Table 5. Correlations of quantitative variables with energy consumption.

A/A Quantitative Variables Pearson Coefficient

1 Treatment Capacity 0.999 **
2 Flow Rate 0.998 **
3 Influent Load 0.997 **
4 Served Population 0.997 **

Note: N = 31; ** p < 0.01, two-tailed significance.
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A brief examination of the correlation analysis results reveals a strong correlation
between all the independent variables and EC. More specifically, EC is associated with the
following variables in descending order of correlation:

1. Treatment capacity;
2. Flow rate;
3. Influent load;
4. Served population.

The findings align with expectations and make sense.
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3.5. Correlation Analysis—Quantitative and Qualitative Variables

This time, the qualitative variables were also included, as depicted in Table 6 and
Figure 3. The following list represents their ranked order according to correlation coefficients:

1. Treatment capacity;
2. Flow rate;
3. Influent load;
4. Served population;
5. Sludge treatment line;
6. Wastewater treatment line;
7. Aeration.

The findings align with expectations and make sense.

Table 6. Correlations of quantitative and qualitative variables with energy consumption.

A/A Quantitative Variables Pearson Coefficient

1 Treatment Capacity 0.999 **
2 Flow Rate 0.998 **
3 Influent Load 0.997 **
4 Served Population 0.997 **
5 Sludge Treatment Line 0.520 **
6 Wastewater Treatment Line 0.271
7 Aeration 0.240

Note: N = 31; ** p < 0.01, two-tailed significance.

3.6. Neural Network Development

The NNs were created using the FANN Tool 1.2 application, which is freely available
software. Users have the option to choose one of the following learning algorithms: FANN
Train Incremental (gradual increase), FANN Train Batch (clustering), FANN Train Rprop
(Resilient backpropagation), and FANN Train Quickprop [48].

The fundamental operations provided by the software include:

• NN→ Detect→ Optimum training algorithm: Each available training algorithm is ap-
plied for multiple epochs. All other parameters are fixed, and the weight initialization
is identical. The training algorithm that yields the lowest MSE is selected [49].

• NN→ Detect→ Optimum activation functions: Each available activation function is
applied for multiple epochs. All other parameters are fixed, and the weight initializa-
tion is identical. The activation function that results in the lowest MSE is chosen [49].

• NN→ Training→ Normal: training with a fixed topology: Neural network’s size and
topology are predetermined, and training adjusts the weights to reduce the difference
between the desired output values and the actual output values [49].

• Neural network→ Train→ Cascade: Evolving topology training. Training begins
with an empty ANN, containing only input and output neurons. Hidden neurons and
connections are dynamically added during the training process, aiming to achieve the
same objective as fixed-topology training [49].

The current research also aims to identify the most effective input variable combi-
nations to optimize prediction accuracy. Concerning the neural network structure and
associated equations, the application is responsible for searching and identifying them to
establish the best design and parameter settings, employing its ‘cascade’ function each time.

3.7. Neural Network Models Based on Quantitative Variables

Table 5 displays the available variables pool for constructing NN models for fore-
casting EC. NN models are presented in Table 7, including their input variables and the
corresponding MSE. These models are arranged in ascending order based on their MSE
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values. The first model to be implemented used as a single input neuron the top correlated
variable. Subsequent models were created by adding every time a new, additional, variable,
following the ranking based on correlation coefficient. Table 7 displays the resulting models.

Table 7. NN models based on quantitative variables.

Model Combination Input Variables MSE

1 All variables Treatment Capacity, Flow Rate, Influent
Load, Served Population 8.99899 × 10−5

2 Top three Treatment Capacity, Flow Rate, Influent
Load 9.09519 × 10−5

3 Top two Treatment Capacity, Flow Rate 9.32792 × 10−5

4 Single top correlated Treatment Capacity 9.71212 × 10−5

The top-performing model comprises all the quantitative variables, specifically treat-
ment capacity, flow rate, influent load, and served population.

3.8. Neural Network Models Based on Both Quantitative and Qualitative Variables

The order of variables from ‘treatment capacity’ to ‘served population’ mirrors the
ranking determined through the corresponding correlation analysis. The models used
in the previous tests remain unchanged. The research focused only on the ‘sludge treat-
ment’ variable and the combination with the rest of quantitative independent variables.
It is important to mention that the variables of ‘wastewater treatment line’ and ‘aeration’
display a Pearson correlation coefficient of less than 0.3, along with a two-tailed significance
greater than 0.05. As a result, they will not be incorporated into the NN models. Table 8
includes the proposed models. Figure 4 displays the MSE variations for both quantitative
and qualitative variables.
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Table 8. NN based on both quantitative and qualitative variables.

Model Combination Input Variables MSE

1 All variables Treatment Capacity, Flow Rate, Influent
Load, Served Population 8.99899 × 10−5

2 Top three Treatment Capacity, Flow Rate,
Influent Load 9.09519 × 10−5

3 Top two Treatment Capacity, Flow Rate 9.32792 × 10−5

5 Top five
Treatment Capacity, Flow Rate, Influent

Load, Served Population, Sludge
Treatment Line

9.60919 × 10−5

4 Single top correlated Treatment Capacity 9.71212 × 10−5

Model 5, which incorporates the sole qualitative variable, ranks fourth in performance.
This consists of the highest-ranked five variables according to their correlation ranking:
treatment capacity, flow rate, influent load, served population, and sludge treatment line.

3.9. WEKA Software for Selecting Attributes

WEKA is a popular open-source software tool used for data mining and machine
learning tasks. WEKA offers a range of tools for tasks such as data preprocessing, regres-
sion, classification, clustering, association rule mining, and data visualization. Furthermore,
it serves as an effective platform for the development of novel machine learning method-
ologies [50].

The WEKA 3.8.4 software was utilized to discover subsets of crucial variables within
the variables. The evaluator chosen was ‘CfsSubsetEval-P1-E1’, and the selected search
method was ‘BestFirst-D1-N5’. This analysis considered the four most correlated variables:
treatment capacity, flow rate, influent load and served population. WEKA identified two at-
tributes: treatment capacity and flow rate. These two chosen attributes were previously
utilized as input neurons in Model 3, as shown in Tables 7 and 8. The application of this
NN resulted in an MSE equal to 9.32792 × 10-5. This makes it the third-best model.

3.10. Neural Network Architecture

Table 9 depicts information about the neural network configuration. More specifically:

• Model 1 is composed of 11 layers: an input layer with 4 neurons (treatment capacity,
flow rate, influent load, served population); 9 hidden layers; and an output layer with
a single neuron, the EC. The NN uses the FANN_TRAIN_RPROP training algorithm.
The output activation function is FANN_SIGMOID_SYMMETRIC, while the activation
function used in hidden layers is FANN_ELLIOT_SYMMETRIC.

• Model 2 is composed of 12 layers: an input layer with 3 neurons (treatment capacity,
flow rate, influent load); 10 hidden layers; and an output layer with a single neuron,
the EC. The NN uses the FANN_TRAIN_RPROP training algorithm. The output
activation function is FANN_SIN_SYMMETRIC, while the activation function used in
hidden layers is FANN_COS_SYMMETRIC.

• Model 3 is composed of eight layers: an input layer with two neurons (treatment
capacity, flow rate); six hidden layers; and an output layer with a single neuron, the EC.
The NN uses the FANN_TRAIN_RPROP training algorithm. The output activation
function is FANN_SIGMOID_SYMMETRIC_STEPWISE, while the activation function
used in hidden layers is FANN_SIGMOID_STEPWISE.

• Model 4 is composed of two layers: an input layer with one neuron (treatment capacity),
and an output layer with a single neuron, the EC. The NN uses the FANN_TRAIN_RPROP
training algorithm. The output activation function is FANN_ELLIOT-SYMMETRIC.

• Model 5 is composed of seven layers: an input layer with five neurons (treatment capacity,
flow rate, influent load, served population, sludge treatment); five hidden layers; and
an output layer with a single neuron, the EC. The NN uses the FANN_TRAIN_RPROP
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training algorithm. The output activation function is FANN_SIN_SYMMETRIC, while
the activation function used in hidden layers is FANN_GAUSSIAN.

Table 9. Neural network configuration.

Model.
No

Input
Layer—Neurons No

No of Hidden
Layers Best Train Algorithm Activation Functions

Used in Hidden Layers
Output Activation

Function

1 4 9 FANN_TRAIN_RPROP FANN_ELLIOT_
SYMMETRIC

FANN_SIGMOID_
SYMMETRIC

2 3 10 FANN_TRAIN_RPROP FANN_COS_
SYMMETRIC

FANN_SIN_
SYMMETRIC

3 2 6 FANN_TRAIN_RPROP FANN_SIGMOID_
STEPWISE

FANN_SIGMOID_
SYMMET-

RIC_STEPWISE

4 1 0 FANN_TRAIN_RPROP - FANN_ELLIOT-
SYMMETRIC

5 5 5 FANN_TRAIN_RPROP FANN_GAUSSIAN FANN_SIN_
SYMMETRIC

3.11. Discussion

In this paper, a methodological approach was employed to construct efficient and
reliable NN models for predicting the energy consumption (EC) of WWTPs based in Greece.

Concerning the sample and database, the treatment capacity statistics reveal a wide
range of capacities among wastewater treatment plants, with an average capacity of approx-
imately 291,632.26 p.e. The statistics indicate significant diversity in treatment infrastructure
within our study area. The served population statistics demonstrate the substantial reach
of wastewater treatment plants, serving an average of around 192,626.16 p.e per plant.
The descriptive statistics underscore the varying demands and demographics across the
communities served by these facilities.

The methodology employed involved conducting a correlation analysis using the IBM
SPSS 29.0 software. The primary objective was to assess the extent of correlation between
the independent variables (both quantitative and qualitative) with the dependent variable
of EC. Concerning the outcomes of the correlation analysis, significant attention was given
to the acquired Pearson coefficient values and their comparative evaluations.

Regarding the correlation of the quantitative independent variables with the depen-
dent variable of EC, what has emerged is the very high degree of correlation they have.
The results reveal high correlation coefficients for all the independent variables: treatment
capacity (0.999 **), flow rate (0.998 **), influent load (0.997 **), and served population
(0.997 **). The double asterisks (**) suggest a high degree of statistical significance, in-
dicating strong relationships between these independent variables and EC. The strong
correlations indicate that each of the independent variables (treatment capacity, flow rate,
influent load, and served population) has a significant impact on EC. This suggests that
changes or variations in these factors will likely result in corresponding changes in EC
by wastewater treatment plants. All four of the independent variables—treatment capac-
ity, flow rate, influent load, and served population—exhibit nearly identical correlation
coefficients (0.999, 0.998, and 0.997).

When considering the qualitative independent variables group, the results reveal that
among the three qualitative variables, only the sludge treatment line (0.520**) exhibits
a strong correlation with EC, while the wastewater treatment line and aeration method do
not demonstrate significant correlations. Furthermore, the sludge treatment line is the only
variable with a high degree of statistical significance, indicating a strong relationship with
EC. This suggests that changes or variations in the sludge treatment line are likely to result
in corresponding changes in EC in wastewater treatment plants.

Following the described methodological approach, the next step involved the creation
of NN models. Initially, models were constructed using quantitative variables. The best-
performing model incorporates the top four most correlated variables: treatment capacity,
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flow rate, influent load, and served population. The next most efficient model comprises the
three most correlated variables: treatment capacity, flow rate, and influent load. The third
most efficient model includes the two most correlated variables: treatment capacity and
flow rate.

In models that include quantitative and mixed quantitative and qualitative variables,
the four most highly correlated variables remain the same across both scenarios. Only one
qualitative variable, the sludge treatment line, is added, ranking as the fifth most correlated
with EC. A new efficient model was identified, incorporating the top four quantitative
independent variables and the one qualitative variable based on their correlation rankings,
namely treatment capacity, flow rate, influent load, served population, and sludge treatment
line. In terms of MSE, this model ranked fourth in performance compared to the previously
mentioned ones.

The WEKA 3.8.4 application identified a potential input neuron subset for the FANN
Tool. Notably, the subset included the variables of ‘treatment capacity’ and ‘flow rate’. The
resulting model was constructed using a combination of variables that had already been
used, specifically the one that gave the third-best model. This indicates that the application
of WEKA did not yield a new, more efficient model containing previously unused input
variable combinations.

In general, the models created are considered highly reliable in their EC predictions,
as all of them exhibited very low MSE values, typically on the order of 10−5.

Regarding the architecture of neural network models, it emerges that all neural net-
works (NNs) have the same output layer with one neuron for energy consumption, and
they all use the FANN-TRAIN-RPROP training algorithm. This advanced batch training
algorithm consistently delivers good results for most problems [49]. Overall, these models
demonstrate the versatility of NN in accommodating different input combinations and
layer compositions to address the prediction of EC. The selection of activation functions
plays a crucial role in shaping the network’s behavior and its ability to learn and generalize
from the data. Activation functions play a crucial role in neural networks, as they intro-
duce nonlinearity into the model, allowing it to capture complex relationships in the data.
The choice of activation functions, such as FANN_SIGMOID, FANN_ELLIOT, FANN_SIN,
and others, can significantly impact the network’s learning capability and its ability to
adapt to different types of data.

The same methodology implemented in this research has been successfully used
for estimating attributes of construction projects. More specifically, this method has been
employed to predict the actual construction cost of highway projects, resulting in neural
network models with an MSE on the order of 10−5 [39]. It has also been applied to predict
both the actual construction cost and duration of bridge projects, yielding neural network
models with an MSE on the order of 10−5 [40]. Furthermore, it has been utilized to predict
the actual duration of highway projects, resulting in neural network models with a MSE
on the order of 10−6 [41]. The methodology is versatile and can be broadly applied for
predicting various attributes of projects. It has demonstrated its effectiveness in estimating
costs, durations, and EC for different types of construction projects, indicating its potential
for broader use in the prediction of project attributes.

In the context of estimating the energy consumption of WWTPs using machine learn-
ing, there are relatively few available studies in the international literature. The current
study is pioneering in that it incorporates qualitative variables, such as wastewater treat-
ment line, sludge treatment line, and aeration, as independent variables for predicting
EC in WWTPs using machine learning. To enable a meaningful comparison between the
results of this study and those of other research utilizing different machine learning meth-
ods, it is imperative that both studies employ the same variables and database. Therefore,
in a potential extension of this study, it may be beneficial to explore the use of alternative
machine learning methods for predicting energy consumption (EC).
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4. Conclusions

This paper addressed the problem of predicting the EC of WWTPs. After collecting
data from 31 WWTPs operating in Greece and applying IBM SPSS 29.0 for correlation
analysis and WEKA 3.8.4 software, it identified critical factors affecting EC of WWTPs.
Additionally, several NN models were proposed to predict EC based on available data.

The results of this study can inform decision making and promote energy efficiency in
WWTPs. They can also be valuable during the planning stage of a WWTP. By accurately
estimating the required EC, the influential factors can be optimized, resulting in cost and
energy savings within the operational systems. These findings are valuable for WWTP
operating authorities, project-awarding authorities, contractors, software development
companies, and researchers.

Today, the synergy of technological progress and substantial managerial expertise in
modern and intricate projects empowers the effective operational management of existing
projects and the precise planning of new projects during their early stages. Through this
NN approach, it becomes possible to predict EC, employing customized models based on
historical data. The primary objective is to provide users with the ability to easily analyze
and investigate the EC of a WWTP using a simple model, incorporating values of variables
known during plant operation and even before project construction when we are in the
planning phase. Each contractor can apply the NN with their organization’s historical
project data and develop customized models for predicting EC.

The constructed NN models assist stakeholders in obtaining a swift and precise esti-
mation of the EC of either existing WWTPs or plants in the planning stages, utilizing data
that are known even from the project conception phase. Swift and accurate EC prediction
benefits operational authorities by enabling precise cost management, efficient resource
planning, and environmental optimization. They enable precise cost management, ensuring
that funds are allocated efficiently for the energy needs of WWTPs. Additionally, EC predic-
tions support efficient resource planning, allowing operators to optimize energy resource
allocation based on anticipated demand, thus reducing waste. Moreover, these predictions
contribute to environmental optimization by minimizing the carbon footprint of WWTPs
and reducing their environmental impact through judicious energy use. This integrated ap-
proach enhances operational efficiency, environmental responsibility, and cost-effectiveness
for WWTPs. Long-term forecasts aid infrastructure planning and compliance with energy
efficiency regulations. They help in planning for the future needs of the WWTPs, such as
expansion or upgrades, by providing insights into the expected energy demands. Addi-
tionally, these forecasts assist in ensuring compliance with energy efficiency regulations,
as WWTPs can prepare to meet or exceed efficiency standards. Furthermore, the forecasts
inform investment decisions for energy-saving technologies by providing valuable insights
into the future energy needs of WWTPs. By having a clear picture of their anticipated energy
demand, the operational authorities can make informed investment decisions regarding
energy-saving technologies. In emergencies, anticipated demand guides backup power
preparations, ensuring essential services. By knowing the anticipated energy demand, the
operational authorities can plan and deploy backup power sources effectively, preventing
disruptions in wastewater treatment operations. This ensures the protection of public health
and the environment during emergencies. Overall, energy predictions empower WWTP
operators to work sustainably, economically, and efficiently. Accurate EC predictions in
WWTPs are also vital for project-awarding authorities. They inform decision making at
all project stages, estimating long-term costs, evaluating cost-effective contractor bids,
ensuring energy efficiency compliance, and efficient funding allocation. The estimation
of long-term costs can be conducted from the initial planning and design phases through
construction and operation, assisting awarding authorities in allocating resources efficiently.
Additionally, accurate EC predictions enable project-awarding authorities to effectively
evaluate contractor bids by assessing whether the proposed costs align with the predicted
energy consumption, helping them select the most cost-effective and reliable contractors.
Also, by using the forecasts, project-awarding authorities can verify that proposed projects
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meet energy-efficient standards and align with sustainability objectives. By having precise
EC predictions, project awarding authorities can allocate funding efficiently. They can
distribute resources according to the expected energy needs, ensuring that projects remain
economically viable while minimizing waste. Furthermore, these forecasts align projects
with sustainability goals. After implementation, they become essential benchmarks for
monitoring energy efficiency and project performance, ensuring economic viability and
environmental responsibility. Predicting EC accurately in WWTPs using the constructed
models of the present study provides contractors with numerous benefits. It enables precise
bidding, efficient resource allocation, energy-efficient designs, regulatory compliance, risk
mitigation, and improved client satisfaction. The precision in estimations helps contractors
offer competitive bids closely aligned with actual energy costs, increasing their chances
of winning contracts. It also aids them in effective resource allocation, ensuring optimal
utilization of energy resources, materials, and labor to minimize waste and maximize effi-
ciency. Accurate predictions for WWTP design prioritize energy efficiency by optimizing
equipment, processes, and technologies, reducing energy consumption throughout the
facility’s life. Contractors can design WWTPs that meet regulatory requirements, ensuring
compliance and avoiding penalties. Accurate EC predictions assist contractors in identi-
fying potential risks and challenges related to energy consumption early in the project,
enabling the implementation of effective risk mitigation strategies. These predictions em-
power contractors to deliver cost-effective, environmentally responsible WWTP projects,
contributing to project success and client satisfaction while minimizing operational risks.
The utilization of the NN models of the present study offers researchers valuable tools for
advancing various aspects of work. Researchers can explore and refine NN models, analyze
data to uncover EC patterns, assess energy efficiency, and study the environmental impact
of WWTPs. Regarding software development companies, the utilization of NN models for
EC in WWTPs offers software opportunities to develop customized software solutions.

The primary strategy for advancing the current models is to continuously enhance the
existing database. A larger sample size enhances the models’ reliability. Equally significant
is the inclusion of supplementary variables in the analysis, such as climate conditions,
influent characteristics, and operational parameters. These models’ outcomes can then be
compared to derive valuable insights.

Regarding the prediction of EC, the preferred model is the quantitative version with
the lowest MSE (8.99899 × 10−5). Shared variables in both models encompass treatment
capacity, flow rate, influent load, and served population. These constitute the overall count
of variables within the first model. The fewer variables needed, the more straightforward it
becomes to record or gather the required data, simplifying the model’s implementation.
Every variable is distinct. Each parameter is susceptible to external events. Considering
this, the predictive variables can be ranked or evaluated based on their vulnerability or
the risk associated with each variable. Consequently, the vulnerability of each generated
model can also be assessed by measuring the vulnerability of each included variable.

The research methodology employed to identify the most effective variables and build
suitable models can be applied and executed in various project types. The suggested mod-
els, particularly the most efficient, show considerable potential. The best model included
the four independent variables mentioned earlier. These data are readily available, reliable,
and entail low risk in the calculations. Simultaneously, these data are commonplace in all
WWTPs. Based on the aforementioned factors, there is the belief that the suggested model
has the potential for success in other WWTPs in Greece. However, it is prudent to note
that expanding the number of projects used as training data could enhance the model’s
predictive capacity and reliability. Additional research in this domain might emphasize
the development and evaluation of outcomes using alternative methods and approaches.
An intriguing comparison would involve assessing the results relative to those produced
by other ML methods, such as RF, SVM, regression methods, and Monte Carlo. Moreover,
to encompass any trends and correlations that may not have been identified in this study,
it is essential to include a more extensive dataset of projects in future research. Furthermore,
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a comprehensive analysis could be achieved by incorporating additional variables, such as
climate parameters, influent characteristics, and operational parameters. Additionally,
this research could be extended by exploring additional combinations of highly correlated
independent input variables with the dependent variable of energy consumption, generat-
ing new neural network models. For instance, combinations involving the second, third,
fourth, and fifth most correlated variables, or just the third and fourth, or the second and
fourth, among others, could be considered. This extension could yield new models, some
of which may prove to be more efficient than those discovered in the current research.
This study identified the optimal combination of input variables and achieved the best
prediction results among the combinations generated through the specific methodological
approach followed. Lastly, it is important to emphasize that when creating neural network
models, the responsibility of selecting and constructing the most suitable neural network
structure lies with the application itself. In this case, the cascade method was selected for
designing the NN. There is ample room for the experimentation of users to propose their
own network designs, which could potentially result in even more high-performing models.

The limitations of this study primarily revolve around the scope of the data source,
which is confined to Greece, and the relatively small number of cases in the dataset, even
if they represent 60% of the Greek population. Firstly, the limited geographical focus on
Greece raises questions about the generalizability of the models to other regions with
different environmental and climatic conditions. WWTPs in other countries might exhibit
distinct energy consumption patterns influenced by variations in climate, population
density, or treatment methods. Secondly, the relatively small number of cases, while being
a characteristic of the available dataset, may not encapsulate the full spectrum of factors
influencing energy consumption. A larger dataset would potentially capture more diverse
operational scenarios, which could enhance the robustness of the models. In addition,
these limitations may influence the precision of the models when applied to WWTPs that
differ significantly from those in Greece. However, despite these limitations, the models
presented here still serve as valuable proof of concept and can potentially be used as a
foundation for further research and model development in different geographical contexts.
Future work should strive to collect more extensive and diverse datasets to ensure the
generalizability and applicability of the models in broader global contexts.
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54.113/Services/Pages/Browse.aspx (accessed on 3 September 2023).

44. Gkoliopoulos, N. Assessment and Recording of Energy Consumption and Greenhouse Gas Emissions in Wastewater Treatment
Plants in Greece. Master’s Thesis, National Technical University of Athens, Athens, Greece, 2019. (N.Γκoλιóπoυλoς, Eκτίµηση
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46. Dimopoulou, A.I. Comparative Assessment of Energy Consumption and Greenhouse Gas Emissions in Wastewater Treatment Plants
(WWTPs); National Technical University of Athens: Athens, Greece, 2011; (A.I. ∆ηµoπoύλoυ, Συγκριτική αξιoλóγηση ενεργειακής
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