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Abstract: The development of methane hydrate extraction technology remains constrained due to
the limited physical understanding of hydrate dissociation dynamics. While recent breakthroughs in
pore-scale visualization techniques offer intuitive insights into the dissociation process, obtaining a
profound grasp of the underlying mechanisms necessitates more than mere experimental observations.
In this research, we introduce a two-phase micro-continuum model that facilitates the numerical
simulation of methane hydrate dissociation at both single- and multiscale levels. We employed
this numerical model to simulate microfluidic experiments and determined the kinetic parameters
of methane hydrate dissociation based on experimental data under various dissociation scenarios.
The simulations, once calibrated, correspond closely to experimental results. By comprehensively
comparing the simulated results with experimental data, the rate constant and the effective diffusion
coefficient were reliably determined to be kd = 1.5 × 108 kmol2/(J·s·m2) and Dl = 0.8 × 10−7 m2/s,
respectively. Notably, the multiscale model not only matches the precision of the single-scale model
but also presents considerable promise for streamlining the simulation of hydrate dissociation across
multiscale porous media. Moreover, we contrast hydrate dissociation under isothermal versus
adiabatic conditions, wherein the dissociation rate is significantly reduced under adiabatic conditions
due to the shifted thermodynamic condition. This comparison highlights the disparities between
microfluidic experiments and real-world extraction environments.

Keywords: methane hydrate; pore-scale simulation; micro-continuum approach

1. Introduction

Addressing global warming and energy shortages necessitates the adoption of clean
and efficient energy alternatives to traditional fossil fuels. Methane hydrates have risen to
prominence as an alternative energy source due to their vast gas storage capacity [1] and
abundant reserves [2]. Remarkably, methane hydrate reserves are estimated to surpass the
combined total of all other fossil fuels on Earth [3,4]. This potential has garnered significant
global interest. The development of a broad range of applications for gas-hydrate-based
technologies has also increased research attention in this field, including CO2 capture
and storage, water desalination, and energy storage [5]. Methane hydrates are crystalline
structures wherein methane molecules are housed within hydrogen-bonded lattices via
intermolecular forces [6]. Their stability demands low-temperature and high-pressure
conditions, leading to their distribution in deep-sea sediments and terrestrial permafrost. To
extract methane from hydrates, methods like thermal stimulation [7], depressurization [8],
and inhibitor injection [9] have been tested, all aiming to disturb the thermodynamic
balance of hydrates. Among these mining methods, depressurization has a higher mining
efficiency and is considered the most promising mining option. However, given varying
reservoir conditions and intricate dissociation mechanisms, the methane hydrate extraction
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efficiency remains constrained, leaving many nations in the preliminary exploration phase.
As a result, there is still a need for a deeper understanding of the hydrate decomposition
mechanism to improve mining operations.

Methane hydrate dissociation is a typical multiscale and multi-physical process and
involves complicated multiphase heat and mass transfer phenomena within sediment
pore structures [10]. Therefore, investigations on methane hydrate dissociation should
be carried out at multiple scales, including the field scale [11], laboratory scale [12–15],
and pore scale [16,17]. Among these works, pore-scale studies provide a more detailed
understanding of the dissociation mechanisms by penetrating the comprehensive process
occurring within the porous structure. With the continuous development of experimental
techniques, pore-scale experimental studies of methane hydrate dissociation have been
carried out in recent years, including micro-CT imaging and microfluidic experiments.
These experimental studies analyze the hydrate dissociation mechanisms by observing
the evolution of gas, water, and hydrate phases during hydrate dissociation. In particular,
microfluidic experiments offer superior spatial and temporal resolutions. Ever since their
introduction by Tohidi et al. [18] for studying gas hydrate formation and dissociation, their
prevalence has grown. Such experiments have enhanced our understanding of dissociation
via depressurization. For instance, Katsuki et al. [19] noted that small-bubble coalescence
creates continuous gas slugs, expediting hydrate dissociation. Almenningen et al. [20]
showed that dissociation is quicker in the presence of free gas and slower when water is
encased. Farahani et al. [21] presented a coupled geophysical–geothermal scheme for the
quantification of hydrates in gas-hydrate-bearing permafrost sediments, which are sensitive
to hydrate saturation and the pore-scale habit. These findings shed light on fluid dynamics’
role in hydrate dissociation. However, solely relying on experimental observations can be
limiting. Pore-scale numerical simulations remain crucial for a deeper comprehension of
the dissociation mechanism.

As computational technology has advanced, pore-scale numerical studies on methane
hydrate dissociation have become more prevalent. Jeong et al. [22] established a pore-
scale model for estimating the dissociation rate of CO2 hydrate using the finite volume
method (FVM) with 3D unstructured mesh. Mohammadmoradi et al. [23] reconstructed
distributions of fluid and hydrate and predicted the relative permeabilities using a direct
pore morphological model. They found that the hydrate dissociation rates are primarily
controlled by the intrinsic permeability, porosity, and water saturation and are barely
affected by the relative permeabilities. Zhang et al. [24] developed a pore-scale model to
simulate methane hydrate dissociation in a singular gas stream, finding the dissociation
rate to be significantly influenced by heat transfer restrictions due to the endothermic
nature of the reaction. Wang et al. [25,26] investigated the impact of ice formation and
mass transfer constraints within the pore structure, incorporating both the heat and mass
transfer of phase transitions in their models. To fully unravel the interaction between gas–
water multiphase flow and interfacial mass transfer during dissociation, Yang et al. [10,27]
conducted pore-scale simulations of multiphase reaction transport during dissociation.
They underscored the significance of mass transfer restrictions on hydrate dissociation
and presented a regime map to detail the multi-faceted interplay between heat and mass
transfer. However, due to constraints on numerical models and computational resources,
current pore-scale simulations can be challenging to align with experimental findings. A
comprehensive quantitative validation remains elusive, underscoring the need for more
refined pore-scale numerical models that facilitate a direct quantitative comparison with
experimental results.

The micro-continuum Darcy–Brinkmann–Stokes (DBS) model was developed to simulate
the reactive flow in porous media via single-field equations due to its ability to handle the
dynamic evolution of the solid–fluid interface without a body-fitted mesh or re-meshing
strategy. For example, Soulaine et al. [28] simulated the mineral dissolution of a single
calcite crystal, and the results agreed with the classic arbitrary Lagrangian–Eulerian solver.
Many numerical studies have demonstrated that the micro-continuum DBS framework is
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reliable in modeling single-phase reactive flows across multiscale porous media [28–31]. The
multiphase micro-continuum model has also been developed in recent years. Horgue [32]
and Soulaine [33] proposed two-phase micro-continuum DBS frameworks to describe
the two-phase flow at both the pore and continuum scales. Carrillo [34] later improved
the multiphase micro-continuum model with a theoretical derivation to asymptotically
match the scale-dependent multiphase model, and Liu et al. proposed corrections to
mitigate spurious velocities at the gas–liquid interface and contact-line regions [35]. Thanks
to these efforts, the multiphase micro-continuum model shows the potential to simulate
multiphase flow across multiscale porous media. In summary, the DBS model demonstrates
a strong ability to simulate multiphase reactive flows in porous media, which is expected to
enable numerical simulations of the hydrate dissociation process. However, the numerical
model should be further developed by coupling the hydrate dissociation kinetics with the
micro-continuum framework.

In this study, we conducted pore-scale numerical simulations of methane hydrate
dissociation and compared the results with data from microfluidic experiments to validate
the developed micro-continuum models. A multiscale simulation method for hydrate
dissociation was developed based on the existing micro-continuum model, which can
simultaneously solve hydrate dissociation problems through resolved micropores within
the sediment and unresolved sub-micropores inside the hydrate and handle the hydrate
evolution without a re-meshing strategy. By aligning the numerical and experimental
outcomes, we can ascertain the kinetic parameters for methane hydrate dissociation. Ad-
ditionally, we implemented multiscale modeling to show the capability of the numerical
model to enhance computational efficiency without compromising accuracy. Finally, the
hydrate dissociation dynamics under isothermal and adiabatic conditions were compared
to understand the importance of heat transfer in predicting the dissociation rate.

2. Mathematical Models

In this section, the mathematical model based on the two-phase micro-continuum DBS
framework is developed to simulate the methane hydrate dissociation process at both the
resolved pore scale (macropores) and the unresolved Darcy scale (micropores), as shown in
Figure 1.
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2.1. Hydrate Dissociation Model

Methane hydrate begins to dissociate when the hydrate phase equilibrium is disturbed
by either depressurizing or heating in hydrate-bearing sediments. The hydrate dissociation
equation can be expressed as

CH4 · nHH2O → CH4 + nHH2O(s), ∆H> 0 (1)

where nH is the hydrate number (in this work, nH = 6), and ∆H is the standard enthalpy
of methane hydrate dissociation. It should be noted that the dissociation process is very
complicated, as it involves the two-phase flow, heat and mass transfer, and hydrate evolu-
tion. Meanwhile, it is difficult to quantify the produced methane that diffuses into the bulk
gas phase and particles that dissolve in the water due to supersaturation and micro- and
nanobubbles. To ensure the numerical stability and computing efficiency, the following
assumptions were made in this study: (1) the fluids are incompressible, and the non-slip
boundary condition is enforced at the fluid–solid interface; (2) the produced methane is
regarded as a dilute solution in water, the diffusion of methane molecules follows Fick’s
law, and the concentration jump at the gas–water interface is described by Henry’s law;
(3) dissociation preferentially occurs from the methane hydrate surface, and hydrate ref-
ormation and ice formation are neglected; (4) the fluid and solid physical properties are
assumed to be constant, and the buoyancy force is neglected.

As the dissociation process can be induced by different methods, such as depressur-
ization, raised temperature, and amalgamative changes in pressure and temperature, the
dissociation flux of methane hydrate is determined by Sean’s rate equation [36] as follows:

FCH4 = kd exp(−∆E
T

)RT ln
xR

xS
(2)

where kd is the rate constant, ∆E is the activation energy, R is the ideal gas constant, T is the
dissociation temperature, xS is the local solubility of methane in the aqueous solution, and
xR is the solubility of methane in an aqueous solution that is hypothetically in equilibrium
with the hydrate phase at the dissociation pressure and temperature, which can be obtained
by extrapolating the solubility curve in the three-phase coexisting region to the two-phase
coexisting region [36]:

xR = 0.001× [−1.0× 10−8P + 2.23× 10−4 exp(0.0319T)] (3)

2.2. Governing Equations

The multiphase micro-continuum approach was employed to simulate methane hydrate
dissolution in the presence of gas and liquid phases in porous media containing both resolved
solid-free regions and unresolved micropore regions. In the micro-continuum framework,
each control volume can contain one or two fluid phases (Vl/Vg) in resolved macropores, an
impermeable solid phase (Vs), or unresolved fluid/solid aggregates (Vl/Vg/Vs). The local
porosity in each control volume is introduced as εf = (Vl + Vg)/V to categorize the complex
multiscale structure into three regions: resolved macropores (εf = 1), the unresolved
porous matrix (0 < εf < 1), and solid regions (εf ≈ 0). Meanwhile, the saturation field is
characterized as the ratio of the liquid volume over the total fluid phase volume within the
control volume αl = Vl/(Vl + Vg). Note that the relations εf + εs = 1 and αl + αg = 1 are
always valid for all computational cells. Therefore, only εs and αl need to be computed to
simulate the evolution of the mineral/pore structure and liquid/gas phase distribution.

By applying volume averaging, all of the physical variables are defined as volume-
averaged quantities over the control volume by βi = (1/V)

∫
Vi

βidV or phase-averaged

quantities over each phase by β
i
i = (1/Vi)

∫
Vi

βidV (i = l, g) to derive the governing partial
differential equations formulated in terms of single fields regardless of the cell content. For
example, vl represents the average liquid velocity in the control volume, pg

g denotes the
average pressure in the gas phase, and cl

l,j defines the average molar concentration of species
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j in the liquid phase. These averages can be related to the local porosity and saturation
via βi = εiαiβ

i
i. In this context, the single-field pressure, velocity, molar concentration, and

temperature can be derived as
p = αl pl

l + αg pg
g (4)

v = vl + vg = εf(αlv
l
l + αgvg

g) (5)

c = αlcl
l + αgcg

g (6)

T = αlT
l
l + αgTg

g (7)

Following the numerical work by Soulaine et al. [33], Liu et al. [35], Maes et al. [37],
and Yang et al. [27], the single-field governing equations can be written as

∇ · v =
.
nCH4

(
−MMH

ρMH
+

MCH4 + 6MH2O

ρl

)
(8)

∂εs

∂t
= − .

nCH4
MMH

ρMH
(9)

1
εf

(
∂ρ v
∂t

+∇ ·
(

ρ

εf
vv
))

= −∇p + ρg +∇ ·
(

µ
(
∇ v +∇vT

))
− µk−1v + Fc (10)

∂εfαl
∂t

+∇ · (αl v) +∇ ·
(
εfαlαgvr

)
=

.
nCH4

MCH4 + 6MH2O

ρl
(11)

∂εfc
∂t

+∇ · (cv) +∇ ·
(

εf
(1− Ha)c
αlHa + αg

αgαlvr

)
= ∇ · (εfDm∗(∇c−ΦCST)) +

.
nCH4 (12)

ρCp
∂T
∂t

+∇ · (ρfCp,fvT) = ∇ ·
(
λ∇T

)
+ SH (13)

where ρMH and ρl are the densities of the methane hydrate and liquid phases,
Mi(i = MH, CH4, H2O) is the molar mass of species i, ρ and µ are the single-field
density and dynamic viscosity, and

.
nCH4 is the dissociation rate of methane hydrate.

ρCp = εsρsCp,s + εfρfCp,f and ρfCp,f = αlρlCp,l + αgρgCp,g are the heat capacity,
λ = εsλs + εfλf is the effective heat conductivity, and the source term SH describes the
endothermic heat rate of hydrate dissociation. The model parameters and reaction source
terms are described in Appendix A.

2.3. Numerical Implementation

In this section, numerical implementations to solve partial differential equations for
single fields εs, αl, p, v, c, and T are introduced and discussed, including special solution
algorithms, equation discretizations, and the numerical workflow. The solver was devel-
oped based on the open-source hybridPorousInterFoam solver [34] and GeoChemFoam
solver (v20-4) [37], which both come from the OpenFOAM 8.0 platform [38]. The solver
employs the finite volume method (FVM) to solve the governing equations on the Eule-
rian grid, mainly composed of Equations (8)–(13). These partial differential equations are
first discretized by integrating them over each control volume to yield a set of algebraic
equations. During discretization, the first-order Euler time scheme is used to discretize
the time derivative ∂/∂t terms. The gradient term ∇ is discretized by the Gauss linear
scheme. Advection terms for ∇ ·

(
ρ
εf

vv
)

(Equation (10)), ∇ · (αlv) (Equation (11)), and
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∇ · (cv) (Equation (12)) are calculated using the second-order and conservative Gauss
vanLeerV scheme [39], while compressive terms, including ∇ ·

(
εfαlαgvr

)
(Equation (11))

and ∇ ·
(

εf
(1−Ha)c
αl Ha+αg

αgαlvr

)
(Equation (12)), are determined using the interfaceCompression

scheme. The second-order Gauss linear corrected scheme is employed to discretize the
Laplace term, including ∇ ·

(
µ
(
∇v +∇vT)) (Equation (10)) and ∇ · (εfDm∗∇c) (Equa-

tion (12)). For numerical stability, the Gauss upwinding scheme is used for the CST term
∇ · (ΦCST) (Equation (12)) with respect to the direction of ±∇αl [37,40].

Sequential coupling strategies were performed to iteratively solve the discretized
equations of the nonlinear problem at each time step, as shown in Figure 2. The main
iteration within a time step is depicted as follows:

(1) The methane hydrate dissolution rate
.
nCH4 and source terms are calculated based on

Equations (A1) and (A2) and with the methane concentration and specific reactive
surface area from the previous iteration/time step.

(2) The volume fraction of methane hydrate εs is explicitly solved by Equation (9). The
local porosity εf and transport properties in the porous matrix are updated.

(3) The saturation equation, Equation (11), is solved using the multidimensional uni-
versal limiter with explicit solution (MULES) algorithm to ensure the saturation
boundedness.

(4) The normal vector ñlg, the curvature of the gas–liquid interface κ, the surface tension
force Fc, the capillary pressure pc, and single-field transport properties
(i.e., al

v, µk−1 and Dm∗
j ) are updated based on the new saturation field.

(5) The discretized DBS momentum equation, Equation (10), is implicitly solved to
obtain the predicted velocity v and mass flux phi, which is the so-called momentum
prediction step.

(6) The predicted velocity is corrected based on a predictor–corrector strategy using the
splitting of operators (PSIO) algorithms [41], which is the so-called momentum correc-
tor step. The pressure equation is then computed and repeated until the convergence
of the pressure and velocity fields. A corrector step number of 2~3 is recommended to
guarantee mass conservation.

(7) The concentration equation, Equation (12), is solved using the sequential operator
splitting algorithm to improve the numerical stability, wherein the advection term is
first solved and then injected as a source term into the diffusion equation [42].

(8) The energy equation, Equation (13), is solved to update the temperature field.

2.4. Numerical Stability

Generally, the Courant number is less than 1 during dynamic time adjustment to
ensure the stability of the implicit simulation using the finite volume method (FVM). For
a two-phase flow with an explicit source term, the interface Courant number is also set
to limit the spurious velocity to an acceptable magnitude at the gas–liquid interface. To
guarantee numerical stability, The maximum time-step size is controlled by the interface
Courant number in the solid-free region, Co = 1

2
∑|Φ|

V ∆t, where Φ is the mass flux at the
gas–liquid interface, denoted by 0.01 < αl < 0.99. In this work, the interface Courant
number is set to 0.1.
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3. Details of Simulation Cases

In this section, four two-dimensional cases are described based on our previous mi-
crofluidic experimental studies on methane hydrate dissociation to validate the numerical
model and identify the kinetic parameters. In the first two cases, the pore-scale simulations
of different driving forces are compared with experimental results to determine the rate
constant and the diffusion coefficient of methane in water. In the third case, the unconsoli-
dated methane hydrate in the second case is replaced by an entire porous region to verify
the model’s applicability in solving reactive flow and transport at a hybrid scale. Finally,
the last case compares hydrate dissociation under isothermal and adiabatic conditions to
provide deep insights into the effects of heat transfer on hydrate dissociation.

3.1. Experimental Conditions

The computing domains and boundary conditions were created according to the
segmented microscopic images captured during the dissociation of methane hydrate in a
high-pressure micromodel. As shown in Figure 3, the experimental system is composed
of a high-pressure micromodel, a microscopic imaging device, fluid injection equipment,
a backpressure regulator, and a cooling system. The microfluidic chip is placed in the
cooling unit filled with a glycol solution to control the required temperature through the
refrigerator bath, ranging from 251.15 to 303.15 K. The pressure within the micromodel is
controlled by the backpressure regulator, ranging from 0.1 to 5 MPa. The pressure at the
inlet and outlet of the micromodel is measured by pressure transmitters with an accuracy
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of 0.25%, and the temperature of the micromodel is measured by Pt100 temperature sensors
placed on the surface of the micromodel, with an accuracy of 0.02 ◦C.
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Figure 3. Schematics of the experimental apparatus.

The formation and dissociation of methane hydrate were realized in the experiment.
After vacuuming, the micromodel was saturated with deionized water at atmospheric
pressure. Then, methane gas was injected to obtain the desired pressure and gas–water
distribution. To accelerate hydrate nucleation, the microfluidic chip was cooled to 253.15 K
to freeze the water and heated to 277.15 K to melt the ice. Then, the pressure and tempera-
ture of the micromodel were controlled at 3.2 MPa and 275.15 K, respectively, to trigger
hydrate formation for about 2 h. Finally, the methane hydrate began to decompose due to
depressurization with different pressure decreases. The experimental results are detailed in
the previous work [43].

3.2. Simulation Configurations

Figure 4 presents the initial distributions of methane hydrate, water, and methane gas
in the first and second cases. In the first case, the dissociation of methane hydrate occurs
at an outlet pressure of 2.4 MPa, which is 0.8 MPa lower than the equilibrium pressure
(3.2 MPa). The computation domain is 525 µm × 375 µm, and the initial methane hydrate
is densely distributed on the surface of the rock structures and covered by a water layer.
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In the second case, the dissociation of methane hydrate occurs at an outlet pressure
of 0.36 MPa, which is 2.84 Mpa lower than the equilibrium pressure. The computation
domains are 843.75 µm × 600 µm, and the initial methane hydrate is loosely distributed
in the pores and covered by a water layer. The impermeable hydrate and rock grains are
approximated by a porosity of εf = 0.05 and a Kozeny–Carman coefficient of kc = 10−15 m2.
Correspondingly, the volume fraction of the methane hydrate is εs = 1 − εf, which is
initialized to 0.95 in the solid region and 0 in the fluid region. The boundary conditions are
listed in Table 1.

Table 1. Boundary conditions of the validation cases.

Variables
Case 1 Cases 2 and 3

Right Others Bottom Others

Porosity, εf Zero gradient

Zero gradient

Zero gradient

Zero gradient

Saturation, αl Fixed, αl = 1 Fixed, αl = 1
Pressure, p Fixed, p = 0 Pa Fixed, p = 0 Pa
Velocity, v Fixed, v = 0 m/s Fixed, v = 0 m/s
Concentration, c Fixed, c = 0.98 kmol/m3 Fixed, c = 0.238 kmol/m3

Temperature, T Fixed, T = 275.15 K Fixed, T = 275.15 K

The third case is the same as the second case, but the hydrate grains are replaced by
an entire porous region with a porosity of εf = 0.6, which is the ratio of the total volume of
the hydrate grains to the volume of the porous region. The absolute permeability varies
from the local porosity based on the Kozeny–Carman relation.

The physical properties and dissociation kinetic parameters used in these cases are
listed in Table 2 and are largely based on Yang’s work [27]. Since the interior of the
micromodel used in the experiments is a three-dimensional thin layer, the upper and lower
walls affect the gas–liquid interface, which makes it different from the gas–liquid interface
in the two-dimensional simulations. In order to ensure the consistent effect of the water
layer on hydrate dissociation, the saturation fields were fixed at the distributions observed
in the experiments in all cases.

Table 2. The physical properties and dissociation kinetic parameters used in simulations of hydrate
dissociation; most of them are the same as in Yang’s work [27].

Category Parameter Value

Physical properties
of methane

Density (kg/m3) 20
Kinematic viscosity (m2/s) 10−5

Thermal conductivity (W/(m·K)) 0.045
Specific heat capacity (kJ/(kg·K)) 3.2
Effective diffusion coefficient in the liquid
phase (m2/s) (0.5~1.5) × 10−7

Diffusion coefficient in the gas phase (m2/s) 1 × 10−5

Henry’s coefficient (-) 0.05

Physical properties
of water

Density (kg/m3) 1000
Kinematic viscosity (m2/s) 10−6

Thermal conductivity (W/(m·K)) 0.55
Specific heat capacity (kJ/(kg·K)) 4.2

Physical properties of
methane hydrate

Density (kg/m3) 900
Thermal conductivity (W/(m·K)) 0.49
Specific heat capacity (kJ/(kg·K)) 2.1

Kinetic parameters of
hydrate dissociation

Rate constant (kmol2/(J·s·m2)) (1~4) × 108

Activation heat (K) 9399
Dissociation heat (kJ/mol) 51.86
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3.3. Mesh Independence

As the micro-continuum framework lies in the local porosity field and single-field
equations to describe the complex geometry of porous media and handle the dynamic
evolution of the solid–fluid interface without body-fitted grids and a re-meshing strategy,
Cartesian grids were used to discretize the computing domains in the simulation cases.
The mesh sensitivity analysis was performed based on the first validation case with four
meshes, labeled “Coarse”, “Normal”, “Fine”, and “Finer”, as shown in Table 3. The average
volume fraction of the remaining methane hydrate and simulated Henry’s coefficient at
100 s are calculated and compared as follows:

εMH =

∫
V εMHdV∫

V dV
(14)

Ha,sim = cl/cg
∣∣
gas−liquid interface (15)

Err(Ha) = 100%× Ha,sim − Ha,set

Ha,set
(16)

Err(εMH) = 100%× εMH,i − εMH,M4

εMH,M4
, (i = M1, M2, M3) (17)

Table 3. Mesh sensitivity analysis using four meshes, labeled “Coarse”, “Normal”, “Fine”,
and “Finer”.

Mesh No. Grid
Number

Grid Size
(µm)

¯
εMH Err(

¯
εMH) Ha,sim Err(Ha)

Coarse 105 × 75 5.0 0.1277 −4.06% 0.0498 −0.4%
Normal 175 × 125 3.0 0.1321 −0.75% 0.0501 0.2%

Fine 350 × 250 1.5 0.1329 −0.15% 0.0499 −0.2%
Finer 525 × 375 1.0 0.1331 / 0.0500 0.0%

As can be seen, the “Normal” mesh provides acceptable results and requires minimum
time consumption, so it was used as the mesh size for the following validation cases.

4. Simulation Results
4.1. Estimation of Kinetic Parameters

As the rate constant is related to the system scale (e.g., pore scale, reactor scale, and
field scale) and the dissociation conditions (e.g., temperature, pressure, and agitation),
it is reliable to determine the rate constant from the experimental data. In addition, the
formation of micro- and nanobubbles (MNBs) during hydrate dissociation in water was
identified in previous studies, which accelerated the transport of dissolved methane to
the gaseous phase. Considering the effect of MNBs, the equivalent diffusion coefficient
of dissolved methane may be significantly improved by 1–2 orders of magnitude. Con-
sequently, the value of the effective diffusion coefficient is difficult to specify, and data
fitting is required to find a reasonable assignment. The normalized masses of methane
hydrate from the experimental results and simulations of depressurization at small and
large pressure differences were compared to determine the rate constant kc0 and effective
diffusion coefficient of methane in water Dl.

When evaluating the numerical results, the normalized mass of methane hydrate is
determined as follows:

m∗MH(t) =

∫
V εMH(t)dV∫

V εMHdV|t=0
(18)



Energies 2023, 16, 7599 11 of 25

To quantify the agreement between experimental data and simulation results using
different parameters, the mean square error (MSE) of the normalized mass from 300 s to
2700 s is calculated as follows:

MSE(m∗MH) =

√√√√ 1
N

N

∑
i=1

(
m∗MH,sim −m∗MH,exp

m∗MH,exp

)
i

2 (19)

The normalized dissociation rate is also calculated based on the normalized mass at
the adjacent time:

r∗MH

(
t2 + t1

2

)
=

m∗MH(t2)−m∗MH(t1)

t2 − t1
(20)

Figure 5 shows the normalized mass evolution during hydrate dissociation under a small
pressure difference (0.8 MPa). When the effective diffusion coefficient is Dl = 0.5 × 10−7 m2/s,
the normalized mass deviates most significantly from experimental data, where the sim-
ulated dissociation rate is much smaller compared to the experimental rate, irrespective
of the rate constant. However, when the effective diffusion coefficient is adjusted to
Dl = 1.0 × 10−7 m2/s, and the rate constant is established at kd = 2.0 × 108 kmol2/(J·s·m2),
the normalized mass aligns most closely with the experimental data, exhibiting a mean
square error of 4.08%. Further variations are observed for cases employing an effective
diffusion coefficient of 1.5 × 10−7 m2/s, as detailed in Table 4.
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Table 4. The mean square errors of the simulated normalized mass in case 1 compared to the
experimental data.

Case Description Case No. kd (×108 kmol2/(J·s·m2)) Dl (×10−7 m2/s) MSE(
.

m*
MH)

Case 1:
Hydrate dissociation
with a pressure
difference of 0.8 MPa

1a 1.0 0.5 30.22%
1b 1.0 1.0 16.03%
1c 1.0 1.5 9.50%
1d 2.0 0.5 29.16%
1e 2.0 1.0 4.08%
1f 2.0 1.5 6.86%
1g 4.0 0.5 20.37%
1h 4.0 1.0 8.62%
1i 4.0 1.5 26.31%
1j 1.5 0.8 12.39%
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Meanwhile, Figure 6 compares the variation in the dissociation rate with the effective
diffusion coefficient for different rate constant values of 1.0 × 108 kmol2/(J·s·m2) and
4.0 × 108 kmol2/(J·s·m2), respectively. The dissociation rate rises as the rate constant
increases from 1.0 × 108 m/s to 4.0 × 108 kmol2/(J·s·m2), particularly before t = 600 s.
Additionally, with an equivalent rate constant, the time-averaged dissociation rate also
increases with the effective diffusion coefficient. These quantitative findings suggest
that the dissociation rate is influenced by both the kinetics and diffusion in the initial
dissociation period. At a rate constant of 1.0 × 108 kmol2/(J·s·m2), the dissociation rate
displays minimal change over time. Conversely, the dissociation rate increases when the
rate constant kd = 4.0 × 108 kmol2/(J·s·m2) decreases with time across all cases. This
phenomenon is attributed to a substantial increase in the water layer thickness during rapid
dissociation, leading to intensified diffusion resistance. It is noteworthy that, over time,
the temporal dissociation rate tends to converge, regardless of the rate constant. Therefore,
it implies that hydrate dissociation is predominantly governed by diffusion as the water
layer thickens in the late stages of decomposition.
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To ascertain the rate constant and effective diffusion coefficient with greater accuracy,
the simulated distributions of residual methane hydrate at different times are compared
with the experimental images. Figure 7 compares the hydrate dissociation under a small
pressure difference. Experimental observations reveal a non-uniform initial hydrate thick-
ness, with prominent methane hydrate preferentially dissociating within the initial 600 s.
Subsequently, the dissociation front aligns essentially parallel to the gas–liquid interface,
gradually progressing over the next 2100 s. This progression implies that methane dif-
fusion in the water film begins to govern the dissociation rate. The hydrate evolution in
Figure 7c,d shows consistent trends with the experiment images. Conversely, for an effec-
tive coefficient of 1.5 × 10−7 m2/s, the dissociation front in Figure 7e advances uniformly
at all positions from the beginning, indicating that the dissociation is reaction-dominated.
This simulation stands in contrast to the experimental results. Therefore, considering the
comprehensive assessment encompassing the quantitative residual mass, dissociation rate,
and visual evolution of the dissociation front, we deduce that the effective diffusion rate is
approximately 1.0 × 10−7 m2/s in the simulation of case 1.
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Furthermore, Figure 8 compares the concentration of methane dissolved along the
direction of the water layer thickness for different values of the effective diffusion coefficient.
The selection of simulation results at different time points ensures a consistent water layer
thickness whenever possible. Observably, the hydrate at the dissociation front constitutes a
porous region with an approximate thickness of 10 microns, wherein the volume fraction
of the hydrate gradually transitions from 1 to 0. On the left of the dissociation front resides
methane hydrate in the solid phase, exhibiting a methane concentration equivalent to the
hypothetical equilibrium solubility of methane hydrate. With the increase in the effective
diffusion coefficient, both the concentration gradient and the concentration proximate to the
dissociation front diminish, thereby augmenting the driving force of hydrate dissociation.
When the effective diffusion coefficient is fixed at Dl = 1.0 × 10−7 m2/s, the produced
methane does not significantly increase in concentration near the dissociation front with
the increasing reaction rate constant. Thus, the local concentration in the water layer near
the dissociation front is mainly determined by the effective diffusion coefficient.
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To comprehensively validate the applicability of the numerical model and associated
parameters across varying dissociation rates, additional simulation cases were conducted
based on experiments involving hydrate dissociation under a substantial pressure difference
(2.84 MPa). Compared to case 1, the diffusion coefficient and rate constant that best
agree with the experimental data are slightly different, as shown in Figure 9. Cases 2e
(kd = 1.0× 108 kmol2/(J·s·m2), Dl = 1.0× 10−7 m2/s) and 2g (kd = 2.0× 108 kmol2/(J·s·m2),
Dl = 0.5 × 10−7 m2/s) are in good agreement with the experimental data, yielding mean
square errors of 15.05% and 7.5%, respectively, as listed in Table 5. Several factors contribute
to this variance: (1) the measurement uncertainty in temperature and pressure, which have
a more pronounced impact on the experiment under a small pressure difference; (2) the
distribution of hydrate along the thickness direction in the microfluidic chip, which cannot
be observed in the experimental image; (3) the influence of the upper and lower wall
surfaces of the microfluidic chip on hydrate dissociation, methane diffusion, and nucleation,
which is not considered in the two-dimensional simulation.
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Table 5. The mean square errors of the simulated normalized mass in case 2 compared to the
experimental data.

Case Description Case No. kd (×108 kmol2/(J·s·m2)) Dl (×10−7 m2/s) MSE(
.

m*
MH)

Case 2:
Hydrate dissociation
with pressure
difference of 2.84 MPa

2a 0.5 0.5 103.54%
2b 0.5 1.0 75.74%
2c 0.5 1.5 50.97%
2d 1.0 0.5 59.72%
2e 1.0 1.0 15.05%
2f 1.0 1.5 33.59%
2g 2.0 0.5 7.50%
2h 2.0 1.0 53.13%
2i 2.0 1.5 67.01%
2j 1.5 0.8 19.82%

Similar to case 1, hydrate dissociation under a large pressure difference is also
diffusion-dominated. Figure 10 shows the initial loose distribution of methane hydrate in
the pores, with dissociation initiating from particles near the gas–liquid interface. Notably,
the left-side hydrate layer dissociates more rapidly than the right side due to the sparsity
and thinness of hydrate in that region. As the water layer thickens, the dissociation rate
gradually decelerates. The hydrate evolution in cases 2e (kd = 1.0 × 108 kmol2/(J·s·m2),
Dl = 1.0 × 10−7 m2/s) and 2j (kd = 1.5 × 108 kmol2/(J·s·m2), Dl = 0.8 × 10−7 m2/s) is in the
best agreement with the experimental images.

Combining the most consistent parameters in cases 1 and 2, we tested the simula-
tions (cases 1j and 2j) with a rate constant of 1.5 × 108 kmol2/(J·s·m2) and an effective
diffusion coefficient of 0.8 × 10−7 m2/s. The mean square errors of cases 1j and 2j are
12.39% and 19.82%, respectively, which are acceptable compared to other parameters. By
comprehensively comparing the simulated dissociation rate curves and hydrate evolution
with the experimental data for different pressure differences, the rate constant and the
effective diffusion coefficient are reliably determined to be kd = 1.5 × 108 kmol2/(J·s·m2)
and Dl = 0.8 × 10−7 m2/s, respectively. The magnitude of the effective methane diffusion
coefficient in water is close to Yang’s pore-scale numerical work based on the lattice Boltz-
mann method. The controlling mechanism of hydrate dissociation obtained in this paper
also agrees with Yang’s work [10], which indicates that the intensified diffusion limitation
with increased water saturation governed the hydrate dissociation rate.
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4.2. Verification of Unresolved Darcy-Scale Simulations

Loose hydrate particles usually contain sub-pore structures that are much smaller than
the pores between sediment grains. If fine grids are used to characterize these sub-pores
structures, the required grid number may be at least one order of magnitude higher than
that of the sediment pores. To reduce computational resource consumption, it is feasible to
replace the loose hydrate particles with a porous region with the porosity of their average
volume fraction, as shown in Figure 11. The porosity and specific surface area of the porous
region are calculated as follows:

εp =

∫
V εMHdV∫

Vp
dV

(21)

As,p =
∥∥∇(εp/εp,ini

)∥∥ (22)

where V and Vp represent the entire computational domain and the porous region, respec-
tively, and εp,ini represents the initial porosity of the porous region. Figures 12 and 13 show
that the dissociation rate and hydrate evolution with this method are in good agreement
with the experimental data and simulations with the same diffusion coefficients and rate
constants in case 2. The mean square errors are also similar to those of the fine structure
in case 2. Thus, it is feasible to replace the complex structure of hydrate particles with a
sub-grid porous region, which can effectively reduce the mesh size as the sediment pore is
usually several times larger than that of hydrate particles.
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4.3. Effect of Temperature on Hydrate Dissociation

Among the existing microfluidic experiments on hydrate dissociation, the micromodel
is usually immersed in a coolant, so depressurization-induced hydrate dissociation occurs
in isothermal conditions. In contrast, hydrate dissociation at reactor and field scales is often
accompanied by reservoir temperature changes. The heat required for dissociation is first
supplied by the reservoir’s sensible heat and then by the ambient heat transfer. Due to
the low thermal conductivity of the reservoir, the dissociation rate is fast at the beginning
and gradually slows down as the temperature decreases. From the perspective of the pore
scale, the initial stage of actual hydrate dissociation is more like adiabatic conditions than
isothermal conditions. In this case, hydrate dissociation under isothermal and adiabatic con-
ditions is compared to exhibit the difference between microfluidic experiments and actual
exploitation conditions. The initial distribution of methane hydrate, water, and methane
gas is shown in Figure 4a. The boundary conditions of the isothermal case are the same
as those of case 1, while the adiabatic case changes the right boundary condition to a zero
gradient. In order to avoid water freezing at a temperature below 0 ◦C, this case increases
the equilibrium temperature and pressure of the methane hydrate phase. The hydrate
equilibrium pressure is 7.2 MPa, and the dissociation pressure is 3 MPa. Figures 14 and 15
show that heat absorbed by hydrate dissociation under adiabatic conditions decreases
the reservoir temperature, which slows down the dissociation rate. In contrast, under
isothermal conditions, the local temperature and the corresponding equilibrium pressure
are constant, and thus, the dissociation rate is only affected by the concentration of methane
in the liquid phase. Therefore, the rate of hydrate dissociation under adiabatic conditions
is lower than that under isothermal conditions with increasing time. At 3000 s, the total
mass of dissociated hydrate under adiabatic conditions is 55% of that under isothermal
conditions, and the dissociation rate under adiabatic conditions is only 36% of that under
isothermal conditions. The observed disparities in dissociation behavior can be attributed
to the incorporation of heat transfer considerations, specifically the heat absorption linked
to the endothermic dissociation process. This inclusion allows for the prediction of a con-
tinuous temperature decrease, concurrent with a shift in equilibrium conditions toward
the lower-pressure zone. As the equilibrium pressure diminishes, hydrate dissociation
tends to reach equilibrium more readily, resulting in earlier termination and a reduced
yield of methane production, thereby influencing the overall dissociation dynamics. This is
consistent with the trend of the hydrate dissociation rate with time in experiments at a large
scale. Therefore, microfluidic experiments under isothermal conditions may overestimate
the amount of dissociated hydrate and the dissociation rate during the depressurization
process. Especially when the sensible heat is close to exhaustion, the dissociation rate under
actual exploitation conditions may be at least one order of magnitude lower than that
under isothermal conditions. However, the evolution of hydrate profiles under isothermal
and adiabatic conditions shows similarities, as shown in Figure 16. At 100 s, the amount
and distribution of residual hydrate are basically the same since the temperature drop
under adiabatic conditions is not significant at this time. Although the dissociation rate is
significantly reduced under adiabatic conditions, the hydrate distribution is close to that
under isothermal conditions with the same amount of residual hydrate. Therefore, the
hydrate evolution observed in microfluidic experiments is still useful for practical methane
hydrate exploitation.
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5. Conclusions

A multiscale numerical model based on the multiphase micro-continuum DBS frame-
work was developed to simulate methane hydrate dissociation in porous media, including
two-phase flow, heat and mass transfer, dissociation kinetics, and hydrate structure evo-
lution. The proposed model was validated by microfluidic experiments. Experimental
observations under different dissociation conditions were compared with a series of nu-
merical simulations to determine the kinetic parameters of methane hydrate dissociation.
By aligning the numerical and experimental results, the range of the rate constant and
the effective diffusion coefficient are determined to be kd = (1~2) × 108 kmol2/(J·s·m2)
and Dl = (0.5~1) × 10−7 m2/s, respectively. Both the experimental and simulated hydrate
evolution results indicate that the diffusion of methane in the thick water film dominates
the dissociation rate.

To reduce the computational demand, we propose conducting multiscale simulations
based on a micro-continuum framework. Herein, the loose hydrate structure is treated as
an effective porous medium, while the sediment pore is distinctly maintained as a pure
fluid zone. The dissociation rate and hydrate evolution stemming from this methodology
exhibit good agreement with experimental data and fine single-scale simulations utilizing
equivalent diffusion coefficients and rate constants. These consistent simulations under-
score the viability of conducting multiscale modeling for hydrate dissociation on massive
grids, striking a balance between computational efficiency and accuracy.

To the best of our knowledge, few studies have been devoted to such calibration and
validation between pore-scale simulations and experiments. Compared to the previous
model, the calibrated pore-scale numerical model can provide a more confident capacity
to simulate hydrate dissociation and thus offer more accurate insight into the underlying
mechanism. Furthermore, comparisons between simulations of hydrate dissociation under
isothermal and adiabatic conditions highlight distinctions between microfluidic experi-
ments and practical exploitation scenarios. Specifically, under adiabatic conditions, the
dissociation rate experiences a significant reduction. However, the distribution of hydrate
closely resembles that under isothermal conditions with an equivalent residual hydrate
quantity, underscoring the utility of microfluidic experiments in understanding certain
dissociation dynamics.

In future work, the proposed multiscale micro-continuum model will be used to
investigate the evolution and control mechanism of hydrate dissociation in multiscale
porous media. Different hydrate occurrence modes and operating conditions, such as the
driving force, hydrate pore habits, and the initial distribution of gas and water, will be
considered in numerical research to better understand the multi-physical processes and
mechanisms involved in hydrate dissociation.
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Nomenclature

c Single-field concentration, kmol·m−3

Cp Single-field heat capacity, kJ·kg−1·K−1

Cp,s Heat capacity of solid, kJ·kg−1·K−1

Cp,f Heat capacity of fluid, kJ·kg−1·K−1

Cp,l Heat capacity of water, kJ·kg−1·K−1

Cp,g Heat capacity of methane gas, kJ·kg−1·K−1

Dm∗ Effective diffusion coefficien, m2·s−1

Dg Diffusion coefficient of methane in gas phase, m2·s−1

Dl Diffusion coefficient of methane in liquid phase, m2·s−1

∆E Activation energy of methane hydrate dissociation, K
Fc Surface tension force, kg·m·s−2

FCH4 Dissociation flux of methane hydrate, kmol·s−1·m−2

kd Rate constant of methane hydrate dissociation, kmol2·J−1·s−1·m−2

Ha Henry’s constant
∆H Standard enthalpy of methane hydrate dissociation, kJ·kg−1

MMH Molar mass of methane hydrate, kg·kmol−1

MCH4 Molar mass of methane gas, kg·kmol−1

MH2O Molar mass of water, kg·kmol−1

nH Hydrate number
.
nCH4 Source term in concentration equation, kmol·s−1·m−3

ñlg Normal vector of gas–liquid interface
p Single-field pressure, MPa
pc Capillary pressure, MPa
R Ideal gas constant, 8.314 J·mol−1·K−1

SH Source term in energy equation, J·m−3

T Single-field temperature, K
T Dissociation temperature, K
v Single-field velocity, m·s−1

xR Solubility of methane in an aqueous solution that is hypothetically
in equilibrium with the hydrate phase

xS Local solubility of methane in an aqueous solution
Greek letters
αg Volume fraction of gas phase
αl Volume fraction of liquid phase
εf Volume fraction of fluid phase, namely, porosity
εs Volume fraction of solid phase, εs = 1− εf
λ Single-field thermal conductivity, W·m−1·K−1

λs Thermal conductivity of solid phase, W·m−1·K−1

λg Thermal conductivity of methane gas, W·m−1·K−1

λl Thermal conductivity of water, W·m−1·K−1

µ Single-field dynamic viscosity, N·s·m−2

µg Dynamic viscosity of gas phase, N·s·m−2

µl Dynamic viscosity of liquid phase, N·s·m−2

θ Contact angle, ◦

ρ Single-field density, kg·m−3

ρg Density of gas phase, kg·m−3

ρl Density of liquid phase, kg·m−3

ρs Density of solid phase, kg·m−3

Appendix A. Details of Model Parameters and Source Terms

Appendix A.1. Source Terms

The dissociation rate of methane hydrate is given by

.
nCH4 = AsFCH4 (A1)
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where As is the specific surface area, which is evaluated using the porosity gradient,
As = ‖∇εf‖.

The source term SH describes the endothermic heat rate of hydrate dissociation:

SH = − .
nCH4 ∆H (A2)

Appendix A.2. Parameters in Momentum Equation

The single-field density ρ and drag force coefficient µk−1 can be written as

ρ =

{
ρlαl + ρgαg, in resolved macropore regions(
ρlMl + ρgMg

)
M−1, in unresolved porous regions

(A3)

µk−1 =

0, in resolved macropore regions

k−1
0

(
kr,l
µl

+
kr,g
µg

)−1
, in unresolved porous regions

(A4)

where Mi = k0kr,i/µi (i = l, g) is the mobility of fluid phase i, M = Ml + Mg is the total
mobility, k0 is the absolute permeability of the porous medium, and kr,i is the relative
permeability of fluid phase i. The absolute permeability is usually described by the Kozeny–
Carman relation with respect to the local porosity, while the relative permeability for
different saturations can be given by the Brooks and Corey model [44].

The capillary force Fc follows the relation

Fc =

−ε−1
f σ∇ ·

(
nlg

)
∇αl, in resolved macropore regions[

M−1(Mlαg −Mgαl
)( ∂pc

∂αl

)
− pc

]
∇αl, in unresolved porous regions

(A5)

where σ is the surface tension, nlg = ∇αl/‖∇αl‖ is the normal to the gas–liquid interface,
and pc is the capillary pressure. In the macropores, the capillary force Fc reduces to the
well-known continuum surface force (CSF) formulation to balance the pressure gradient
according to the Young–Laplace law. In the unresolved porous domain, the capillary force
Fc is derived such that the DBS momentum equation can match the two-phase Darcy
equation [34]. The relationship between the capillary pressure and the saturation can be
given by the Van Genutchen model [45]. Numerically, the face-centered interface norm
nlg, f is employed to calculate the term ∇ ·

(
nlg

)
(the magnitude of the interface curvature)

based on the Gaussian scheme. In order to improve the numerical accuracy of the interface
curvature and reduce the spurious velocity around the gas–liquid interface, a hybrid
scheme is used to compute nlg, f as follows [35]:

nlg, f = Clg

〈
∇α

‖∇α‖

〉
c→ f

+
(

1− Clg

) 〈∇αl〉c→ f∥∥∥〈∇αl〉c→ f

∥∥∥ (A6)

where Clg is the mixing coefficient, set as 0.6 in this work, and 〈〉c→ f denotes the interpola-
tion operator from the cell-centered field to the face-centered field.

The relative velocity vr is expressed as [34]

vr =


Cαmax(

∣∣∣v∣∣∣) ∇αl
‖∇αl‖

, in resolved macropore regions

ε−1
f

 −
(

Ml
αl
− Mg

αg

)
∇p +

(
ρl Ml

αl
− ρg Mg

αg

)
g

+
(

Mlαg
αl

+
Mgαl

αg

)
∇pc −

(
Ml
αl
− Mg

αg

)
pc∇αl

, in unresolved porous regions
(A7)

where Cα is the interface compression coefficient to adjust the magnitude of the compressive
velocity normal to the gas–liquid interface for a trade-off between the interface thickness
and spurious velocity in the macropore regions.
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At the porous/solid boundary, the gas–liquid interface nlg is modified to enforce the
wall adhesion condition with the prescribed contact angle θ by

ñlg =
cos θ − cos θI cos(θI − θ)

1− cos2 θI
np +

cos(θI − θ)− cos θI cos θ

1− cos2 θI
nlg (A8)

where ñlg is the local modified normal vector, np = ∇εf/‖∇εf‖ is the normal to the porous
boundary, and θI = cos−1(np · nlg) is the contact angle before correction. To reduce the
spurious velocity at the contact line, nlg should first be revised based on the extrapolated
saturation from the solid-free region to the nearby porous region [35]. Meanwhile, np is
smoothed to improve its perpendicularity to the curved and sloped porous boundary by

ñ∗p =
∥∥np

∥∥〈〈ξnp
〉

c→ f

〉
f→c

/
〈
〈ξ〉c→ f

〉
f→c

(A9)

Appendix A.3. Parameters in Concentration Equation

In a two-phase system, the chemical species can be present in both gas and liquid
phases. The conservation equation should be coupled with the flux continuity and thermo-
dynamic equilibrium condition at the gas–liquid interface. The latter can be modeled using
Henry’s law.

(ci(vi −w)− Di∇ci) · nlg = 0, at Alg (A10)

cl
l = Hacg

g (A11)

where w is the interface velocity, and Ha is Henry’s constant. Following Maes et al.’s
work [40], the multiscale compressive equation (MC-CST) is derived to describe the
methane concentration in the fluid phase as follows:

∂εfc
∂t

+∇ · (cv) +∇ ·
(

εf
(1− Ha)c
αlHa + αg

αgαlvr

)
= ∇ · (εfDm∗(∇c−ΦCST)) +

.
nCH4 (A12)

where Dm∗ is the effective diffusion coefficient in porous media, accounting for microstruc-
tural effects, such as porosity and tortuosity [46]. For simplification, Dm∗ = εfDm is used
in this work. ΦCST is the CST flux arising from the concentration jump at the gas–liquid
interface. Following previous work [47,48], the weighted mean of the effective diffusion
coefficient and CST flux can be expressed as

Dm =
αlHaDl + αgDg

αlHa + αg
(A13)

ΦCST =
(Ha − 1)c
αlHa + αg

∇αl (A14)

To accurately recover the zero-flux boundary condition, the gradient terms ∇c and
∇αl are forced to zero at the solid wall via the variable extrapolation scheme according
to Equations (A15) and (A16). To be more specific, the saturation and concentration of
the solid-free region are extrapolated to the nearby solid region, leading to equal fields on
either side of the solid wall and the elimination of the gradient terms there.

χ =

{
1, in the macropore and porous region
0, in the solid region

, χ f = ceil
(
〈χ〉c→ f

)

αl,corr =


χαl + (1− χ)

〈
χ f 〈αl〉c→ f ,harmonic

〉
f→c

〈χ f 〉 f→c
, αl,solid = 1

1−
(

χ(1− αl) + (1− χ)

〈
χ f 〈1−αl〉c→ f ,harmonic

〉
f→c

〈χ f 〉 f→c

)
, αl,solid = 0

(A15)
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χ1 = (1− χ) ‖∇χ‖
‖∇χ‖+δ

c01 = (c− cmin)/(cmax − cmin),

c01,corr =


(1− χ1)c01 + χ1

〈
χ f 〈c01〉c→ f ,harmonic

〉
f→c

〈χ f 〉 f→c
, c01,solid = 1

1−
(
(1− χ1)(1− c01) + χ1

〈
χ f 〈1−c01〉c→ f ,harmonic

〉
f→c

〈χ f 〉 f→c

)
, c01,solid = 0

ccorr = c01,corr × (cmax − cmin) + cmin

(A16)

where χ is an indicator function representing whether the grid block belongs to the macrop-
ore and porous regions or the solid region, χ1 is an indicator function representing the first
layer of the grid adjacent to the macropore and porous regions in the solid region, and δ is
a very small number to avoid dividing by zero. 〈〉c→ f denotes the interpolation operator
from the cell-centered field to the face-centered field, and 〈〉 f→c denotes the interpolation
operator from the face-centered field to the cell-centered field. The subscript “harmonic”
denotes the harmonic-mean scheme used in the interpolation.
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