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Abstract: This paper presents an extended calibration procedure for mode accelerometers, which
makes it possible to compare the accuracy of sensors of this type from different manufacturers. This
comparison involves determining the upper bound on dynamic error for a given quality criterion, i.e.,
the integral square error and absolute error. Therefore, this article extends the standard calibration
implemented in engineering practice using tests, providing a value for the upper bound on dynamic
error as an additional parameter describing the accelerometer under consideration. This paper
presents the theoretical basis for this type of solution, which is partly based on measurement data
obtained from a standard calibration process and on the results of parametric identification. The
charge mode accelerometer is considered here because this type of sensor is commonly used in the
energy industry, as it can operate over a wide range of temperatures. The calculation results presented
in this paper were obtained using MathCad 5.0 software, and the tests were carried out using an
accelerometer of type 357B21. In the experimental part of this article (Results of Extended Calibration
section), values for the upper bound of the dynamic error were determined for two error criteria and
constrained simulation signals related to these errors. The impact of interference on the results of
accelerometer tests was omitted in this paper.

Keywords: extended calibration; charge mode accelerometer; accuracy of energy systems; upper
bound of dynamic error

1. Introduction

Charge mode accelerometers [1] are widely used in power plants, thermal power
plants, and production plants to monitor vibrations and oscillations in machines and
devices installed there [2,3] due to their wide range of operating temperatures (from −200
to 400 ◦C). These measurements are important in terms of detecting early signs of wear or
damage to machines and equipment, and proper planning of their maintenance [4]. This
type of accelerometer is widely used to detect vibrations in wind turbines, nuclear and
conventional energy generators, nuclear reactors, and hydropower plants and can increase
the efficiency of this type of infrastructure [5,6]. Accelerometers are used to optimize the
positioning of renewable energy sources (wind farms and photovoltaic panels), which
ultimately increases their operating efficiency [7]. They are also used to detect seismic
movement, which is extremely important for the operational safety of nuclear power plants
in many countries [8,9].

In view of the above applications, it can be seen that the accuracy of charge mode
accelerometers, which is verified through a standard calibration process [10], is very impor-
tant. During this process, the amplitude response is determined with the corresponding
sensitivity [11] and linearity characteristics. From the point of view of engineering practice,
these activities are sufficient to ensure the operational reliability of many systems used
in a wide range of industries [12]. However, to ensure even greater accuracy in energy
applications, it seems reasonable to introduce additional criteria for assessing the accuracy
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of vibration detection carried out using charge mode accelerometers [13]. This paper, there-
fore, proposes an additional evaluation criterion defined as the upper bound of the dynamic
error [14,15], and this procedure is referred to as the extended calibration of charge mode
accelerometers [16]. This proposed method is based on measurements of two frequency
responses, i.e., the amplitude and phase [17]. The measurement points for these responses
are determined by means of practical experiments using dedicated calibrators (for mea-
surement of the amplitude response), supplemented with the use of a measurement data
acquisition card [18] and specialized control and measurement software such as LabVIEW
2023 Q2 (for measurement of the phase response) [19]. Based on the measurements of the
frequency responses, the parametric identification [20] of the mathematical model of the
charge mode accelerometer can be carried out [21]. As a result of parametric identifica-
tion, other parameters of the mathematical model of the charge mode accelerometer are
determined in addition to the sensitivity coefficient. Simultaneous approximation of both
responses is achieved using the weighted least squares method [22,23]. The parametric
identification of the accelerometer model constitutes the numerical part of this paper. The
next stage, also numerical, is devoted to determining the upper bound of the dynamic error
and the corresponding simulation input signal with constraints [15,16,24]. Two constraints,
the magnitude and duration of the signal, are considered in this paper [24]. The simulation
signal determined in this way represents the critical case of accelerometer input excitation,
in the sense that any other dynamic signal obtained under the real operating conditions
of the sensor and included in the constraints of the simulation signal produces a dynamic
error at the sensor output with a value at most equal to the value of the critical signal [15,16].
The upper bound of the dynamic error is determined for a quality criterion that is assumed
in advance. The integral-square [25] and absolute error [26] criteria are considered, and
for each of these, the upper bound of the dynamic error is determined together with the
corresponding signal with constraints. The value of this error is calculated in relation to the
reference, which may be a low-pass analog filter [27] with a bandwidth corresponding to
the upper operating frequency of the charge mode accelerometer. An eighth-order Bessel
filter [28] is applied in this work. The order of this filter was selected to ensure that it was
at least twice as high as the order of the accelerometer model.

The relationship between the error criterion (integral-square error and absolute error)
and the test time of the charge mode accelerometer is also presented and discussed in this
paper. This relationship may allow for determining the value of the upper bound of the
dynamic error for any accelerometer testing time, which greatly facilitates the assessment of
its dynamic accuracy [14,15]. As a result, one can compare two charge mode accelerometers
or even the selected group of this type of sensors.

Section 2 of the paper presents the mathematical models of the charge mode ac-
celerometer and the corresponding reference. These mathematical models reflect the
transfer functions of the accelerometer and reference and are presented as the correspond-
ing state-space notation. This section also describes a standard calibration system for this
type of accelerometer and the corresponding calibration and linearity certificates. Section 3
explains the parametric identification of the mathematical model of the charge mode ac-
celerometer using the weighted least squares method applied for both the accelerometer
frequency responses. Section 4 introduces the extended calibration process for charge
mode accelerometers, while Section 5 presents the results of this calibration for the selected
accelerometer of type 357B21.

2. Materials and Methods

Figure 1 shows the block diagram of the extended calibration for the charge mode
accelerometer.
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Figure 1. Block diagram of the extended calibration for the charge mode accelerometer.

The basis for the extended calibration of the charge mode accelerometer is the result
of the standard calibration of this sensor in terms of determining the amplitude response
(charge sensitivity). As a complement to this procedure, the measurement points of the
phase response should be determined. Then, the parametric identification of the mathe-
matical model (transfer function) of the accelerometer is carried out, and the results of this
identification constitute the basis for the implementation of the extended calibration of
this sensor.

The mathematical model of the charge mode accelerometer, represented by the state
equations, has the following form:

Aa =

b1 1 0
b2 0 1
b3 0 0

,

Ba =
[
a1 a2 0

]T
Ca =

[
1 0 0

] (1)

where a1 = 4πSV β f0, a2 = 4π2SV f 2
0, b1 = −(4πτβ f0 + 1)/τ, b2 = −

(
4π2τ f 2

0 + 4πβ f0
)
/τ,

and b3 = −4π2 f 2
0/τ, while SV , τ, β, and f0 are the voltage sensitivity

[
V/ms−2], time

constant [s], damping ratio [-], and non-damped natural frequency [Hz], respectively [21].
The mathematical model of the reference, represented by an eighth-order analog Bessel

filter, is

Ar =


α1 1 · · · 0
α2 0 · · · 0
...

...
. . .

...
α7 0 0 1
α8 0 0 0


Br =

[
0 0 0 0 0 0 0 −2.429·106·a· f c

8]T
Cr =

[
1 0 0 0 0 0 0 0

]
(2)

where α1 = −1.998·101· f c, α2 = −3.013·102· f c
2, α3 = −2.799·103· f c

3, α4 = −2.113·104· f c
4,

α5 = −1.105·105· f c
5, α6 = −4.697·105· f c

6, α7 = −1.229·106· f c
7, and α8 = −2.429·106· f c

8 [28].
Here, a and fc denote the measuring range of the accelerometer and cut-off frequency of
the filter, respectively. The frequency fc corresponds to the operating frequency of the
accelerometer under test.

Equation (1) concerns the input–output description of the charge mode accelerometer,
which is subject to research, while Equation (2) is the input–output description of the
theoretical model, which is a reference to determine the upper bound of the dynamic error.
The above equations are not a direct result of physical modeling for the charge mode
accelerometer, but they present the coordinate transformations that form the optimal model
for the parametric identification of the accelerometer under test.
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The standard calibration of the charge mode accelerometer was carried out using
the portable calibrator shown in Figure 2. The charge mode accelerometer of type 357B21
(1) was connected to the charge amplifier (2) via the connection cable (3) for calibration.
As a result of this calibration, the measurement points of the charge sensitivity Sq were
obtained, as listed in Table 1. The number of measurement points was limited by the
possibility of registering them in the memory of the used portable calibrator. The tests
were carried out for frequencies in the range of 15 Hz to 9 kHz at a constant acceleration of
1 g peak.
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Figure 2. System for the standard calibration of the charge mode accelerometer using the portable
calibrator of type 9110D. 1—accelerometer under test, 2—charge amplifier, 3—connection cable.

Table 1. Measured points of the charge sensitivity.

No. 1 2 3 4 5 6 7 8 9 10

f [Hz] 15 20 30 40 50 60 70 80 90 100
Sq [pC/g] 32.07 32.07 32.06 32.05 32.06 32.03 31.98 31.92 31.85 31.80

No. 11 12 13 14 15 16 17 18 19 20
f [Hz] 125 150 175 200 300 400 500 600 700 800

Sq [pC/g] 31.71 31.69 31.65 31.63 31.50 31.45 31.40 31.39 31.34 31.33

No. 21 22 23 24 25 26 27 28 29 30
f [Hz] 900 1000 2000 3000 4000 5000 6000 7000 8000 9000

Sq [pC/g] 31.32 31.31 31.67 32.35 32.69 33.16 34.14 35.49 37.25 38.61

Figure 3 shows the calibration certificate obtained using the system shown in Figure 2.
The certificate confirms the frequency operating ranges (5% and 10%) of the accelerometer
under test, which are drawn from the datasheet [29].
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Figure 3. Calibration certificate obtained for an accelerometer of type 357B21.

Figure 4 shows the linearity certificate, which represents the relationship between the
amplitude (in pico Coulomb) and acceleration (in g peak). The acceleration was varied
in the range of 0.25 to 3.00 g peak for a constant test frequency of 100 Hz. The range of
changes in acceleration was assumed in advance.

The certificate shows that the nonlinearity is consistent with the permissible range
(≤3%) specified in the datasheet [29].
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Figure 4. Linearity certificate obtained for an accelerometer of type 357B21.

3. Parametric Identification of the Accelerometer Mathematical Model

To carry out parametric identification of the mathematical model of the charge mode
accelerometer, in addition to the data shown in Table 1, the phase shift ϕ was measured
between the output signals of the accelerometer under test and the standard accelerometer
built into the structure of the portable calibrator. These measurements were performed at
the same frequencies as the charge sensitivity measurements in Table 1. Table 2 presents
the measurement results of the phase response for the accelerometer.



Energies 2023, 16, 7619 7 of 14

Table 2. Measured results for the phase response.

No. 1 2 3 4 5 6 7 8 9 10

f [Hz] 15 20 30 40 50 60 70 80 90 100
ϕ [deg.] 0.00 0.00 0.00 0.00 0.00 −0.1 −0.1 −0.1 −0.1 −0.1

No. 11 12 13 14 15 16 17 18 19 20
f [Hz] 125 150 175 200 300 400 500 600 700 800

ϕ [deg.] −0.1 −0.1 −0.1 −0.1 −0.1 −0.1 −0.1 −0.2 −0.2 −0.2

No. 21 22 23 24 25 26 27 28 29 30
f [Hz] 900 1000 2000 3000 4000 5000 6000 7000 8000 9000

ϕ [deg.] −0.3 −0.3 −0.4 −0.6 −0.7 −1.1 −2.0 −2.8 −4.2 −5.8

Table 3 shows the voltage sensitivities SV

[
V

ms−2

]
obtained from a transformation of

the charge sensitivity Sq

[
pC
g

]
using the following formula:

SV =
Sq

g(Ca + Cc)
(3)

where g, Ca, and Cc denote the acceleration due to gravity and the capacitance of the
accelerometer and wire, respectively. This transformation was carried out for the value of g
equal to 9.8105 m

s2 (typical for Cracow in Poland), the capacitance Ca taken from the data
sheet for the accelerometer, and the capacitance Cc calculated for a typical wire length of
1.2 m. The values of the capacitances Ca and Cc are 930 pF and 100 pF, respectively, for an
accelerometer of type 357B21.

Table 3. Transformation of charge sensitivity to voltage sensitivity.

No. 1 2 3 4 5 6 7 8 9 10

f [Hz] 15 20 30 40 50 60 70 80 90 100
SV

[
V

ms−2

]
3.174 3.174 3.173 3.172 3.173 3.170 3.165 3.159 3.152 3.147

No. 11 12 13 14 15 16 17 18 19 20
f [Hz] 125 150 175 200 300 400 500 600 700 800

SV

[
V

ms−2

]
3.138 3.136 3.132 3.130 3.117 3.112 3.107 3.106 3.101 3.101

No. 21 22 23 24 25 26 27 28 29 30
f [Hz] 900 1000 2000 3000 4000 5000 6000 7000 8000 9000

SV

[
V

ms−2

]
3.100 3.099 3.134 3.201 3.235 3.282 3.379 3.512 3.686 3.821

Simultaneous approximation of frequency responses (amplitude and phase) is carried
out using the weighted least squares method based on the formula below:

∼
α =

(
ΛTΣ−1Λ

)−1
ΛTΣ−1Y, (4)

where
∼
α =

(
∼
a1,
∼
a2,
∼
b1,
∼
b2,
∼
b3

)
is the vector of the estimated parameters for the accelerom-

eter model in Equation (1) [17,21]. The 2N-dimensional vector Y is obtained based on the
following equation:

K( fn) = SV( fn)exp[jϕ( fn)] = R( fn) + I( fn) (5)
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where n = 0, 1, ..., N − 1 and N = 30 are the number of measurement points for the
frequency response. R and I are the real and imaginary parts of the transfer function K( fn),
respectively. The vector Y is then

YT = [R( f0) I( f0) R( f1) I( f1) ... R( fn) I( fn) ...R( fN) I( fN)]. (6)

The matrix Λ has the following form:

ΛT =
[
ΛT

0 ΛT
1 . . . ΛT

N

]
(7)

where

Λn =



1 0
0 fn
− f 2

n 0
0 − f 3

n
− f 4

n 0
...

...
I( fn) fn −R( fn) fn
R( fn) f 2

n I( fn) f 2
n

−I( fn) f 3
n R( fn) f 3

n
...

...



. (8)

The 2N × 2N covariance matrix Σ is

Σ =



u2(R( f0))
· · · 0

u2(R( fN−1))
u2(I( f0))

0 · · ·
u2(I( fN−1))

 (9)

where
R( fn) = SV

−1( fn)cos[ϕ( fn)]

I( fn) = −SV
−1( fn)sin[ϕ( fn)]

(10)

and
u2(R( fn)) =

u2(SV( fn))

[SV( fn)]
4 [cos(ϕn)]

2 + u2(ϕ( fn))

[SV( fn)]
2 [sin(ϕn)]

2

u2(I( fn)) =
u2(SV( fn))

[SV( fn)]
4 [sin(ϕn)]

2 + u2(ϕ( fn))

[SV( fn)]
2 [cos(ϕn)]

2.
(11)

Figure 5 shows the results for the simultaneous approximation of both frequency
responses, i.e., the amplitude (represented by the accelerometer sensitivity) and the phase
(the phase shift between the output signals of the accelerometer under test and the cor-
responding reference accelerometer). This approximation was obtained by applying the
weighted least squares method.

The estimates of the parameters of the accelerometer mathematical model obtained

from Equation (4) are as follows:
∼
a1 = 5.59 × 104,

∼
a2 = 1.24 × 109,

∼
b1 = 1.79 × 104,

∼
b2 = 3.96× 108, and

∼
b3 = 2.82× 107. These estimates form the basis for determining the

upper bound of the dynamic error for two quality criteria: the integral-square error and the
absolute error. The values for the dynamic error are obtained from the extended calibration
of the charge mode accelerometer, as described in the next section of this paper.
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4. Extended Calibration of the Charge Mode Accelerometer

The upper bound of the dynamic error for the integral-square criterion is determined
using the following formula [30]:

ISE = a
∫ T

0

[∫ t

0
k(t− τ)x0(τ)dτ

]
dt (12)

where a and T are the magnitude constraints related to the input signal and the testing time
of the accelerometer, respectively, and the signal x0(t) is determined using the fixed-point
algorithm (simulation method) by processing the impulse response k(t), which is defined
using the following formula:

k(t) = ka(t)− kr(t) (13)

where ka(t) and kr(t) are the impulse responses of the accelerometer and the reference,
respectively. The signal x0(t) is constrained in terms of its magnitude a and time T and
produces the upper bound of the dynamic error. It is, therefore, the critical (worst case)
input signal in the sense that any other signal included within its constraints will produce
an error less than its upper value [14,15].

The impulse response ka(t) is determined based on Equation (1) using the follow-
ing formula:

ka(t) = CaeAa·tBa, t = 0, ∆, . . . , T − 1 (14)

where As ∈ Rql , Bs ∈ Rqm, and Cs ∈ Rpn are the state, input, and output matrices, and l, m,
p, and q are the denominator order, numerator order, number of inputs, and the number of
outputs, respectively.

In an analogous way, based on Equation (2), the impulse response kr(t) of the reference
is determined using the formula

kr(t) = CreAr·tBr, t = 0, ∆, . . . , T − 1. (15)

The upper bound on the dynamic error for the absolute error is determined using the
formula [14,15]

AE = a
∫ T

0
|k(t)|dt (16)
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where k(t) is determined using Equation (13).
The signal that produces the error given in Equation (3) is defined using the formula

x0(t) = a·sign[k(T − t)]. (17)

The dynamic error ε(t), which is a function of time and constitutes a response to the
signal x0(t) for both criteria, can be determined using the following integral convolution:

ε(t) =
∫ 0

0
k(t− τ)x0(τ)dτ. (18)

The criteria given in Equations (12) and (16) determine the highest mean and instanta-
neous error values obtained at time (0, T). These criteria may constitute an additional error
function for assessing the accuracy of the charge mode accelerometer.

5. Results of Extended Calibration

In this section, we determine the values of the upper bound of the dynamic error,
defined in this paper as the extended calibration process. These values were determined for
the error criteria presented in Section 4 based on the results of the parametric identification
of the charge mode accelerometer of type 357B21 presented in Section 3. As a reference for
determining the dynamic error, the filter model defined in Equation (2) was used.

The value of the integral-square error was determined using Equation (12) and is
4.36× 10−8 Vs2. The parameter a was assumed to correspond to the accelerometer charge
sensitivity Sq contained in the corresponding data sheet [29], with a value of 30 pC/g.
The time T was assumed to be the steady state of the impulse response k(t), i.e., 1 ms. A
maximum number of iterations for the fixed-point algorithm equal to 50 was also assumed.
Figure 6 shows the shape of the signal x0ISE(t) that produced the upper bound of the
dynamic error and the error εISE(t).
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Figure 6. Shape of the signal x0ISE(t) and the corresponding error εISE(t).

The signal x0ISE(t) has five time switches, while the error εISE(t) is characterized by
three rises and falls over time.

Figure 7 shows the relationship between the ISE and the accelerometer test time T in
the range T ∈

(
0, 0.025× 10−3 s

)
with a step equal to 0.025× 10−3 s.
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Figure 7. Relationship between the ISE and the time T.

The above characteristic shows that the relationship between the ISE and the time T is
linear. This makes it much easier to determine the ISE for higher values of accelerometer
testing times using the properties of the linear function. The equation of this function is
−2.58× 10−9 + 4.61× 10−5 t. To determine the ISE for any time T higher than 2.0× 10−3,
the uncertainty value of the linear regression is also important, which is 1.62× 10−9.

It should be emphasized, however, that a detailed analysis of the characteristic
ISE = f (T) may show that for the time T corresponding to the unsteady impulse response
k(t), this relationship is slightly nonlinear [30]. However, due to the very low value of time,
which corresponds to the steady state of the response k(t), this nonlinearity can be omitted.

The value of the absolute error, determined using Equation (16), was 9.05× 10−3 Vs.
Figure 8 shows the shape of the signal x0AE(t) produced by this error and the error εAE(t).
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Figure 8. Shape of the signal x0AE(t) and corresponding error εAE(t).

Similar to signal x0ISE(t), signal x0AE(t) undergoes five time switches. The error
εAE(t) reaches its highest value for t = T, which is a characteristic property of this criterion.
However, it should be noted that both the signal x0AE(t) and the error εAE(t) at the initial
values of time t reach negative values, unlike both the signal x0ISE(t) and the error εISE(t).

Figure 9 shows the relationship between the AE and the time T for the analogous
accelerometer testing time and quantization step of the calculations.
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Figure 9 shows that the relationship between AE and the accelerometer test time T
increases exponentially for the times t corresponding to the unsteady impulse response
k(t). For the times t with a value higher than the time corresponding to the steady state of
this response, the characteristic AE = f (T) becomes constant and is equal to 9.06 Vs.

The approximation of the measurement points of the characteristics shown in Figure 9
was made using polynomial regression [31]. As a result, the following eighth-order ap-
proximation equation was obtained: −1.20× 10−9 + 80.7 t− 3.14× 105t2 + 6.78× 108t3 −
8.83× 1011t4 + 7.07× 1014t5− 3.40× 1017t6 + 8.98× 1019t7− 1.01× 1022t8. The uncertainty
of this regression is equal to 8.87× 10−9 Vs.

The ISE and AE obtained in this paper can be treated as the result of the extended
calibration of the charge mode accelerometer under consideration. The value of these errors
can constitute an additional criterion for comparing various accelerometers and thus help
improve the accuracy of this type of sensor.

The values of ISE and AE presented above were obtained in response to the rectangular
signals. It is also possible to determine the values of both errors for signals with an
additional constraint regarding the rate of change [24]. However, in such a case, it is
necessary to use much more advanced computational procedures using evolutionary
algorithms [32]. In this case, approximately 40 percent lower dynamic error values are
obtained, and the simulation signals with an additional constraint have a triangular or
trapezoidal shape [14–16].

6. Conclusions

This paper has presented an extended calibration method for charge mode accelerom-
eters, which may enable the accuracy of this type of sensor to be increased for applications
in energy systems. This calibration process is based on the measurement results obtained
from a standard calibration but requires adopting the order and class of the accelerometer
model and determining the parameters of this model through its parametric identification.
The parameters determined in this way form the basis for determining the upper bound of
the dynamic error for the assumed error criterion. This upper bound may be an important
additional criterion for assessing the accuracy of an accelerometer and their mutual compa-
rability in this issue. In this study, we determined the upper bound of the dynamic error for
both the integral-square error and the absolute error. The results are numerical values that
can be easily and quickly used in practical applications, especially in energy systems where
highly accurate sensor measurements are required. Test signals with five constraints were
obtained through a simulation for the charge mode accelerometer under test (type 357B21)
with both error criteria. The relationship between the errors and the accelerometer testing
time was also determined in this paper. Based on the results obtained, it can be concluded
that for the integral-square error criterion, this relationship is linear (linear increase in
the error value), while for the absolute error, this relationship is exponential (exponential
increase until the steady state of the error). It should be stated that the above characteristics
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are useful tools for assessing the accuracy of the charge mode accelerometer at any time of
its operation.

Based on the research conducted in this paper, further directions of research regarding
extended calibration of accelerometers can be indicated:

– Analysis of other dynamic error criteria;
– Analysis of additional limitations regarding the simulation signal exciting the ac-

celerometer;
– Testing of other types of accelerometers, e.g., eddy current accelerometer.
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