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Abstract: The grid-forming virtual synchronous generator (GFVSG) with large virtual inertia can
provide a friendly grid-connected operational mode for power electronic converters, but it may
also introduce the active power dynamic oscillation problems similar to traditional synchronous
generators. In view of this, the dynamic equivalent circuit model of the GFVSG grid-tied active power-
angle is established firstly, and, then, the understanding of the GFVSG active power oscillations under
variable disturbances is revealed from the perspective of circuit energy flow in this paper. On this
basis, an active power dynamic oscillation damping method based on an energy reshaping mechanism
for the GFVSG is proposed, and a parameter design method using the second-order equivalent
reduced-order control model is given. The MATLAB 2016a simulation as well as experimental test
platforms of a 100 kV·A GFVSG grid-connected system are established, then, both the feasibility
and effectiveness of the proposed active power dynamic oscillation damping method are verified by
using the simulation and experimental comparison results.

Keywords: grid-forming virtual synchronous generator (GFVSG); virtual inertia; active power
dynamic oscillation; damping method; energy reshaping mechanism; parameter design

1. Introduction

The grid-forming virtual synchronous generator (GFVSG) can provide a certain degree
of voltage regulation and inertial support for the grid-connected operation of power
electronic converters (PECs) by simulating the primary voltage equation and rotor motion
equation of traditional synchronous generators (TSGs), which improves the operation
reliability of large-scale renewable energy integration to the power grid, and has attracted
wide attention in recent years [1,2]. However, GFVSG with large virtual inertia will
inevitably exhibit the grid-connected active power dynamic oscillation problems similar to
TSGs when dealing with different disturbances such as the active power command step
and the power grid frequency change [3,4]. As the overcurrent tolerance of PECs is usually
weak, the large instantaneous current in the GFVSG active power dynamic oscillation
process is easy to cause overcurrent protection action or even equipment damage to PECs,
thus reducing the GFVSG operation reliability [5].

Damping control methods play a very important role in suppressing the dynamic oscil-
lations of the GFVSG grid-connected active power and its output frequency, which mainly
includes three types: the adaptive parameter adjustment method, feedback channel-based
compensation method, and feedforward path compensation method [6]. Among them,
the adaptive parameter adjustment method improves the ability of GFVSG to suppress
its active power dynamic oscillation through the adaptive adjustment of virtual inertia,
virtual damping, virtual impedance, or primary frequency modulation parameters. In [7,8],
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the adaptive adjustment method of the virtual inertia parameter is achieved by detecting
the change rule of the GFVSG output frequency. In [9,10], the damping of the GFVSG
grid-connected system is further optimized by taking advantage of the fact that both the
virtual inertia and the virtual damping parameters of GFVSG can be adjusted adaptively.
The damping optimization method of a GFVSG grid-connected system based on an adap-
tive virtual impedance scheme is proposed in [11]. A GFVSG transient damping control
algorithm based on the adaptive adjustment of the GFVSG primary frequency modulation
parameter according to different frequency segments is achieved in [12]. It is worth point-
ing out that the adaptive parameter adjustment method in [7–12] has the disadvantages of
the parameter adjustment range being difficult to determine and the design process being
complicated, and the nonlinear change in adaptive parameters will also affect the operation
stability of the GFVSG grid-connected system.

The feedback channel-based compensation method mainly introduces the angular
frequency variation or the active power variation into the GFVSG control loop through a
feedback channel to suppress the GFVSG active power dynamic oscillation. In [13,14], a
first-order low-pass filter (LPF) is used to detect the angular frequency dynamic deviation,
which is then fed back to the GFVSG active power command through a proportional
link. In [15,16], the dynamic deviation between the GFVSG angular frequency and the
grid angular frequency detected using phase locked loop (PLL) is fed back to the GFVSG
control loop via a proportional link to simulate the function of the damping windings of
TSGs, but the introduction of the PLL will create an undesired negative damping effect
on the GFVSG stable operation. In [17,18], both the dynamic variations in the angular
frequency and the active power are introduced into the GFVSG control loop through
feedback channels to enhance the dynamic damping of the system. It is worth pointing
out that, although the above-mentioned damping methods based on feedback channel
compensation can effectively suppress the GFVSG active power dynamic oscillation, their
damping effects only take effect after the deviation of the controlled variable, which has
a certain passivity. Therefore, for a GFVSG grid-tied system with large virtual inertia, if
the system disturbance is frequent and large enough, continuous active power dynamic
oscillations may be observed in the dynamic response process, which requires a long
regulation time to ensure that the GFVSG grid-connected system reaches a new steady
state [19].

The damping method based on feedback channel compensation is biased towards
passive feedback tracking, while the damping method based on feedforward path compen-
sation is biased towards active feedforward compensation. In [20,21], the GFVSG angular
frequency variation is fed forward to its reactive power control loop by referring to the
principle of a power system stabilizer, but the dynamic coupling between the active power
and reactive power control loops is induced, so that the complex nonlinear characteristics
may be introduced into the dynamic response process of the system. In [22], a GFVSG
damping optimization method based on the active power command feedforward is pro-
posed, but the control parameter design has the problems of a high dependence on the
accuracy of the line impedance parameters and poor applicability to the scenario of the
power grid frequency disturbance. In [23,24], a GFVSG damping improved control strategy
based on phase feedforward compensation is proposed from the perspective of a recon-
structed damping controller, which effectively solves the problem of the high dependence
on the system parameters that existed in [22]. However, the open-loop gain of the GFVSG
control system has a reduced decline slope in the high frequency band, which weakens the
ability of the GFVSG system to resist high-frequency noise. In [25], two GFVSG damping
improved control methods based on the active-power differential feedback compensation
(ADFC) and the active-power differential feedforward compensation (ADFF) are proposed
to enhance the ability to suppress high-frequency noise, but the active power regulation
time or the frequency overshoot of the GFVSG system still need to be further improved.

To address the above issues, this paper further proposes an active power dynamic
oscillation damping method based on energy reshaping mechanism (ERM) for GFVSG
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(hereafter referred to as ERM-GFVSG). ERM-GFVSG enhances its ability to suppress the
active power dynamic oscillation by introducing the feedback channel-based compensation
damping method using the dynamic variations in the angular frequency and the active
power into the GFVSG control structure. Compared with the existing damping control
methods, the proposed ERM-GFVSG significantly obtains a better disturbance rejection
ability and dynamic response performance. The main contributions made in this paper as
well as their significance are summarized as follows:

(1) Both the closed-loop small signal model and the dynamic equivalent circuit model
of GFVSG are established successively. Therefore, it reflects that the active power
command step and the power grid frequency disturbance are regarded as excitation
sources to inject dynamic oscillation energy into the GFVSG from the perspective of
circuit energy flow.

(2) Compared with GFVSG, ERM-GFVSG increases the total amount of the consumed
energy and the consumption speed of the dynamic oscillation energy on the premise
of keeping the total dynamic oscillation energy and the total stored energy unchanged.
Accordingly, it is equivalent to increasing the system damping, so as to enhance the
ability of suppressing the active power dynamic oscillation.

(3) The proposed active power dynamic oscillation damping method only works in
the dynamic response process, so it does not affect the active power steady-state
deviation. Practically, compared with the existing methods, ERM-GFVSG has the
smallest frequency overshoot under the active power command step and the shortest
active power regulation time under the power grid frequency disturbance.

The rest of the paper is organized as follows. In Section 2, the closed-loop small signal
model as well as the dynamic equivalent circuit model of GFVSG are established and the
active power dynamic oscillation mechanism is analyzed. In Section 3, the ERM-GFVSG
control method is proposed and its parameter design method is presented. In Section 4, the
simulation and experimental comparison results are provided. Finally, the conclusions are
drawn in Section 5.

2. Control Model and Active Power Dynamic Oscillation Mechanism of GFVSG
2.1. Overview of GFVSG Grid-Connected System

Figure 1 illustrates the circuit topology and the control block diagram of GFVSG
grid-connected system [4].
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Figure 1. Circuit topology and control block diagram of GFVSG grid-connected system. Figure 1. Circuit topology and control block diagram of GFVSG grid-connected system.

The power stage consists of a DC source, denoted by Udc, a line equivalent impedance
Zline, a three-phase PEC and an LC filter, where Lf and Cf are the filter inductor and filter
capacitor, respectively. uabc, iabc, ugabc, and u∗abc are the output voltage, output current,
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power grid voltage, and output voltage command, respectively. The GFVSG control
principle mainly consists of the power calculation, the stator electrical equation, the rotor
motion equation, and the inner control loop. A traditional cascaded voltage and current
controller can be used in the inner control loop to achieve a better dynamic response
performance [5]. According to Figure 1, the rotor motion equation and the primary voltage
equation of GFVSG can be expressed as follows:

Pref − Pe = Jω0
d(ω−ω0)

dt
+ Dω0(ω−ω0), (1)

E = E0 + kq(Qref −Qe), (2)

where Pref, Pe, Qref, and Qe are the active power command, active power, reactive power
command, and reactive power, respectively; J, D, ω0, and ω are the virtual inertia, virtual
damping, rated angular frequency, and output angular frequency, respectively; kq, E0, and E
are the primary voltage regulation coefficient, rated voltage amplitude, and output voltage
amplitude, respectively.

Note that this paper focuses on the GFVSG active power dynamic oscillation derived
from the active power control loop rather than the reactive power control loop. Taking
into account the AC filter inductor or a transformer on the power grid side, it is assumed
that the line equivalent impedance Zline is inductive, leading to the control loops of the
active power and reactive power being decoupled. Meanwhile, the control bandwidth
of the inner control loop is commonly designed to be much higher than that of the outer
power control loop to maintain the command tracking and stability [6]. To simplify the
theoretical analysis, the reactive power control loop and the inner control loop are omitted
in the subsequent analysis.

2.2. Small Signal Model of GFVSG and Its Active Power Dynamic Oscillation Analysis

The equivalent power transmission model of GFVSG grid-connected system is illus-
trated in Figure 2, where XL, RL, Ug, and δ are the line reactance, line resistance, power
grid voltage amplitude, and power factor angle, respectively.
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In this paper, the line equivalent impedance Zline is assumed to be purely inductive,
neglecting the line resistance RL, to simplify the system model. From Figure 2, the active
power Pe of GFVSG can be expressed as

Pe =
3UgE
2XL

δ = Kδ =
3UgE(ω−ωg)

2XLs
, (3)

where K = (3UgE)/(2XL) and ωg are the synchronization voltage coefficient and power
grid angular frequency, respectively. By combining Equations (1) and (3), the GFVSG
closed-loop small signal control model can be obtained as shown in Figure 3, where “∆”
denotes the small signal disturbance amount.

According to Figure 3, it is not difficult to find that the change in active power com-
mand ∆Pref can be regarded as an internal disturbance, while the change in power grid
angular frequency ∆ωg can be regarded as an external disturbance. Both the ∆Pe and the
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∆ω of GFVSG are affected by the two disturbances ∆Pref and ∆ωg, and the corresponding
closed-loop transfer functions can be obtained as follows:

G1_G (s) = ∆Pe(s)
∆Pref(s)

∣∣∣
∆ωg=0

= K
Jω0s2+Dω0s+K

G2_G(s) =
∆Pe(s)
∆ωg(s)

∣∣∣
∆Pref=0

= − (Jω0s+Dω0)K
Jω0s2+Dω0s+K

, (4)


G3_G(s)=

∆ω(s)
∆Pref(s)

∣∣∣
∆ωg=0

= s
Jω0s2+Dω0s+K

G4_G(s) =
∆ω(s)
∆ωg(s)

∣∣∣
∆Pref=0

= K
Jω0s2+Dω0s+K

, (5)

where the subscript “G” or the later “E” are applied to declare that the function or variable is
definitely used for the GFVSG or ERM-GFVSG. According to Equation (4), the active power
steady-state deviation ∆Pe0 (∆Pe0 = ∆Pe − ∆Pref) of GFVSG can be obtained as follows:

∆Pe0 = Lim
s→0

G2(s)∆ωg = −Dω0∆ωg, (6)

According to Equations (4) and (5), it is found that the GFVSG closed-loop control sys-
tem is a typical second-order oscillation system, and its characteristic function is as follows:

Jω0s2 + Dω0s + K = 0, (7)

where the natural oscillation angular frequency ωn_G and its damping ratio ξG of the
GFVSG closed-loop control system are expressed as

ωn_G =
√

K/(Jω0), ξG = 0.5Dω0

√
1/(KJω0), (8)

It can be seen from Equations (6) and (8) that both ωn_G and ξG decrease with the
increase in J, which represents the slower dynamic response speed and the more intense
dynamic oscillation of Pe or ω under the two disturbances of ∆Pref and ∆ωg. In addition,
both ξG and ∆Pe0 increase with the increase in D, that is, the stronger the ability to inhibit
the power active dynamic oscillation, but the larger the steady-state deviation of the
active power.
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2.3. Equivalent Circuit Model of GFVSG and Its Active Power Dynamic Oscillation Analysis

According to Figure 3, the differential equations can be obtained as follows:

∆ω− ∆ωg =
1
K

d∆Pe

dt
, (9)

∆Pref − ∆Pe − Dω0∆ω = Jω0
d∆ω

dt
, (10)

Table 1 shows the analogy relationships between the electromechanical and electro-
magnetic variables [26]. In Table 1, L, C, u, i, and Ψ are the inductance, capacitance, voltage,
current, and flux linkage, respectively.

According to Table 1, Equations (9) and (10) can be likened to the circuit equations
expressed by Equations (11) and (12), respectively.

L
diL
dt

= uL, (11)
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C
duC

dt
= iref − iL −

uC

R
, (12)

where uL, iL, uC, and R = 1/(Dω0) are the inductance voltage, inductance current, ca-
pacitance voltage, and resistance, respectively. According to Equations (11) and (12), the
GFVSG closed-loop small-signal control model in Figure 2 can be likened to the dynamic
equivalent circuit model shown in Figure 4, where ∆Pref, Dω0, sJω0, s/K, ∆Pe, ∆ω, and ∆ωg
are equal to the current source, conductance, capacitive susceptance, inductive reactance,
equivalent current flowing through the inductor 1/K, electromotive force, and voltage
source, respectively, and ∆Pref and ∆ωg can also be used as two excitation sources in the
GFVSG dynamic equivalent circuit.

Table 1. The analogy relationships between the electromechanical and electromagnetic variables.

Types Variables

Electromechanical 1/K Jω0 ω Pe δ
Electromagnetic L C u i Ψ
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According to Figure 4, the dynamic oscillation energies W1 and W2 injected into the
circuit by the current source ∆Pref and the voltage source ∆ωg can be expressed as

W1 =
∫ t

0
∆Pref∆ωdt, W2 = −

∫ t

0
∆Pe∆ωgdt, (13)

It is worth pointing out that, in the GFVSG dynamic response process, ∆Pref and
∆ω always maintain the same sign, while ∆Pe and ∆ωg always maintain a different sign.
Therefore, the integral calculation results W1 and W2 are always positive, which means
that the total dynamic oscillation energy (W1 + W2) is always injected into the equivalent
circuit under the two disturbances of ∆Pref and ∆ωg. In Figure 4, W3, W4, and W5 are the
energy consumed by the equivalent resistance 1/(Dω0), the kinetic energy stored by the
equivalent capacitance (Jω0), and the potential energy stored by the equivalent inductor
(1/K), respectively. Similarly, W3, W4, and W5 can be expressed as

W3 =
∫ t

0
Dω0∆ω2dt, W4 =

Jω0∆ω2

2
, W5 =

∆P2
e

2K
, (14)

By multiplying Equation (9) by ∆Pe and Equation (10) by ∆ω, and then integrating
both sides of the equation over time, the correspondences between Equations (13) and (14)
can be acquired, as shown in Equation (15).

∫ t

0
∆Pref∆ωdt−

∫ t

0
∆Pe∆ωgdt︸ ︷︷ ︸

Injected energy(W1+W2)

=
Jω0∆ω2

2
+

∆P2
e

2K︸ ︷︷ ︸
Stored energy(W4+W5)

+
∫ t

0
Dω0∆ω2dt︸ ︷︷ ︸

Consumed energy(W3)

, (15)

According to Equation (15), it is not difficult to find that the dynamic equivalent
circuit of GFVSG can meet the law of the energy conservation, that is, the total dynamic
oscillation energy (W1 + W2) injected into the circuit by the two disturbances of ∆Pref and
∆ωg is equal to the sum of the consumed energy W3 and the total stored energy (W4 + W5),
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where W4 and W5 can be converted into each other. Meanwhile, the value of W3 represents
the capacity to consume the total dynamic oscillation energy, that is, due to the existence
of the equivalent resistance 1/(Dω0), the total dynamic oscillation energy is decreasing
continuously and the system eventually reaches a new steady state.

It can also be found from Equation (15) that under a certain disturbance of ∆Pref or
∆ωg, the larger the J value of GFVSG, the larger the stored energy W4, and the longer the
system takes to consume W4, so the regulation time of the system will be longer. The larger
the D value of GFVSG, the larger the consumed energy W3, and the shorter the system takes
to consume (W1 + W2), the stronger the ability to suppress the system dynamic oscillation.
The above results are in one-to-one correspondence with the conclusions from Equation (8).

In summary, for GFVSG grid-connected systems, the active power dynamic oscillation
can be suppressed by the following four main methods. First, the method of reducing the
stored energy, that is, the adaptive parameter adjustment method using adaptive virtual
inertia, adaptive virtual impedance, or other adaptive parameters. Second, the method of
reducing the injected energy, that is, the feedforward path compensation method using
active power command, grid angular frequency, or other variables. Third, the method of
increasing consumed energy, that is, the feedback channel-based compensation method
using angular frequency change, active power change, or other changes. Fourth, any
combination of the above three methods.

3. The Proposed ERM-GFVSG Control Method
3.1. Control Principle of ERM-GFVSG

To solve the problem of the active power dynamic oscillation existing in the GFVSG
grid-connected system, the third method of increasing the consumed energy is used by
ERM-GFVSG. In other words, ERM-GFVSG introduces a feedback channel-based compen-
sation method, using the dynamic variations in the angular frequency and the active power
in the GFVSG control structure to improve its ability to suppress the active power dy-
namic oscillation. For ERM-GFVSG, the differential Equations (9) and (10) can be rewritten
as follows:

∆ω− ∆ωg − kb1∆Pe =
1
K

d∆Pe

dt
, (16)

∆Pref − ∆Pe − Dω0∆ω− kb2∆ω = Jω0
d∆ω

dt
, (17)

where kb1 and kb2 are the active power feedback parameter and angular frequency feedback
parameter, respectively. According to Table 1, Equations (16) and (17) can also be likened to
the circuit equations expressed by Equations (18) and (19), respectively.

L
diL
dt

= uL−kb1iL︸ ︷︷ ︸
UI

, (18)

C
duC

dt
= iref − iL −

uC

R
− uC

kb2︸ ︷︷ ︸
IU

, (19)

where UI and IU are the current controlled voltage source (CCVS) and voltage controlled
current source (VCCS), respectively. According to Equations (18) and (19), the dynamic
equivalent circuit model of the ERM-GFVSG grid-connected system can also be maintained,
as shown in Figure 5, where kb1 is equal to the resistance, and kb2 is equal to the conductance.
W6 is the energy consumed by the equivalent resistance kb1, and W7 is the energy consumed
by the equivalent resistance (1/kb2). Similarly, W6 and W7 can be expressed as

W6 =
∫ t

0
kb1∆P2

e dt, W7 =
∫ t

0
kb2∆ω2dt, (20)
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Next, by multiplying Equation (16) by ∆Pe and Equation (17) by ∆ω, and then inte-
grating both sides of the equation over time, the following can be obtained:

∫ t

0
∆Pref∆ωdt−

∫ t

0
∆Pe∆ωgdt︸ ︷︷ ︸

Injected energy(W1+W2)

=
Jω0∆ω2

2
+

∆P2
e

2K︸ ︷︷ ︸
Stored energy(W4+W5)

+
∫ t

0
Dω0∆ω2dt +

∫ t

0
kb1∆P2

e dt +
∫ t

0
kb2∆ω2dt︸ ︷︷ ︸

Consumed energy(W3+W6+W7)>W3

, (21)

Compared with Equations (15) and (21), it can be seen that ERM-GFVSG can effectively
increase the consumption speed of (W1 + W2) by increasing the total consumed energy from
W3 to (W3 + W6 + W7) on the premise of keeping (W1 + W2) and (W4 + W5) unchanged.
That is, it is equivalent to increasing the value of D to enhance the damping of the GFVSG
grid-connected system and its ability to suppress the active power dynamic oscillation.

In this paper, the two fluctuation variables ∆Pe and ∆ω contained in Equation (21) are
extracted by second-order LPFs, which are then fed back to the ERM-GFVSG active power
command through kb1 and kb2, respectively. Therefore, by combining Equations (16) and (17),
the ERM-GFVSG closed-loop small signal control model can be obtained as shown in
Figure 6. In Figure 6, ωc and Q are the cutoff angular frequency and quality factor of the
second-order LPF, respectively. The second-order LPF is introduced to effectively filter out
the high-frequency harmonics generated by differential operation. It is worth pointing out
that the purpose of moving the feedback variable (kb1∆Pe) forward to the virtual inertia
control link is to filter (kb1∆Pe) again by using the first-order LPF 1/(sJω0 + Dω0), which is
composed of the virtual inertia link and the virtual damping link on the forward channel
in Figure 6.
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3.2. Parameter Design Method of ERM-GFVSG

Likewise, according to the closed-loop small signal control model of ERM-GFVSG grid-
connected system shown in Figure 6, the closed-loop transfer functions of ERM-GFVSG
can be obtained as follows:

G1_E(s)=
∆Pe(s)

∆Pref(s)

∣∣∣
∆ωg=0

= Ks2+Kωc/Qs+Kω2
c

Jω0s4+M3s3+M2s2+M1s+Kω2
c

G2_E(s) =
∆Pe(s)
∆ωg(s)

∣∣∣
∆Pref=0

= − KJω0s3+N2s2+N1s+Dω0Kω2
c

Jω0s4+M3s3+M2s2+M1s+Kω2
c

, (22)


G3_E(s)=

∆ω(s)
∆Pref(s)

∣∣∣
∆ωg=0

= s3+ωc/Qs2+ω2
c s

Jω0s4+M3s3+M2s2+M1s+Kω2
c

G4_E(s) =
∆ω(s)
∆ωg(s)

∣∣∣
∆Pref=0

= Ks2+K(ωc/Q+kb1ω2
c )s+Kω2

c
Jω0s4+M3s3+M2s2+M1s+Kω2

c

, (23)
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where M1 = ωc(Dω0ωc + Kkb1ωc + K/Q); M2 = Jω0ωc
2 + Dω0ωc/Q + K+kb2ωc

2;
M3 = ω0(Jωc/Q + D); N1 = Kωc(Jω0ωc + Dω0/Q + kb2ωc); and N2 = Kω0(Jωc/Q + D).
Referring to the parameter selection principle of the second-order LPF in [25], on the one
hand, when the filtering time constant τ of the first-order LPF 1/(τs + 1) is set to τ = 1/ωc,
a second-order LPF can be equivalently reduced to a first-order LPF. On the other hand,
to weigh the filtering effect, dynamic response speed, and the influence on the system
operating stability of the second-order LPF, τ = 0.007 s (ωc = 1/τ = 142.86 rad /s) and
Q = 0.5 are set here to simplify the theoretical analysis process and the system parame-
ter design method. In view of this, Equations (22) and (23) after the order reduction are
approximately as follows:

G1_E(s)=
∆Pe(s)

∆Pref(s)

∣∣∣
∆ωg=0

≈ Kτs+K
Jω0τs3+M21s2+M11s+K

G2_E(s) =
∆Pe(s)
∆ωg(s)

∣∣∣
∆Pref=0

≈ − KJω0τs2+N11s+Dω0K
Jω0τs3+M21s2+M11s+K

, (24)


G3_E(s)=

∆ω(s)
∆Pref(s)

∣∣∣
∆ωg=0

≈ τs2+s
Jω0τs3+M21s2+M11s+K

G4_E(s) =
∆ω(s)
∆ωg(s)

∣∣∣
∆Pref=0

≈ K(τ+kb1)s+K
Jω0τs3+M21s2+M11s+K

, (25)

where M21 = Jω0 + Dω0τ + kb2; M11 = Dω0 + Kkb1 + Kτ; and N11 = K(Jω0 + Dω0τ + kb2).
By comparing Equations (4) and (24), or Equations (5) and (25), it is not difficult to find
that compared with GFVSG, the closed-loop control system of ERM-GFVSG upgrades the
system order of the former to the third order, and adds a zero as well as a pole, so the
former can effectively improve the ability to suppress the active power dynamic oscillation
by optimizing the configurations of an additional zero and an additional pole.

Meanwhile, combined with the parameter design method based on the second-order
equivalent reduced-order control model proposed in [25], that is, the influence of the
control items containing variable τ in Equations (24) and (25), the order of which is
larger than that of one order is ignored. Based on the above order reduction principle,
Equations (24) and (25) are further reduced to an equivalent second-order control system
as shown in Equations (26) and (27).

G1_E(s)=
∆Pe(s)

∆Pref(s)

∣∣∣
∆ωg=0

≈ Kτs+K
(Jω0+kb2)s2+M11s+K

G2_E(s) =
∆Pe(s)
∆ωg(s)

∣∣∣
∆Pref=0

≈ − N11s+Dω0K
(Jω0+kb2)s2+M11s+K

, (26)


G3_E(s)=

∆ω(s)
∆Pref(s)

∣∣∣
∆ωg=0

≈ s
(Jω0+kb2)s2+M11s+K

G4_E(s) =
∆ω(s)
∆ωg(s)

∣∣∣
∆Pref=0

≈ K(τ+kb1)s+K
(Jω0+kb2)s2+M11s+K

, (27)

Therefore, the parameters kb1 and kb2 of ERM-GFVSG can be designed directly using
the second-order control system described by Equation (26) or (27). The characteristic
function of the ERM-GFVSG grid-connected system can be written as

(Jω0 + kb2)s2 + (Dω0 + Kkb1 + Kτ)s + K = 0, (28)

where the natural oscillation angular frequency ωn_E, the damping ratio ξE, the phase angle
margin γE, and the cut-off angular frequency ωc_E of the ERM-GFVSG closed-loop control
system can be expressed as

ωn_E =

√
K

Jω0 + kb2
, ξE =

Dω0 + Kkb1 + Kτ

2
√
(Jω0 + kb2)K

, (29)
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γE = arctan
2ξE√√

1 + 4ξ4
E − 2ξ2

E

, ωc_E = ωn_E

√√
1 + 4ξ4

E − 2ξ2
E (30)

In order to ensure that ERM-GFVSG has good operating stability and to eliminate its
active power dynamic oscillation, it is necessary to set ξE ≥ 1 and γE ≥ 45◦. Therefore, by
substituting the set characteristic values ξE and γE into Equations (29) and (30), the optimal
designs of kb1 and kb2 for ERM-GFVSG can be achieved. To sum up, according to the main
parameters of 100 kV·A GFVSG included in Table 2, the ωn_G = 19.62 rad /s, ξG = 0.16,
τ = 0.007 s, ωc = 1/τ = 142.86 rad/s, Q = 0.5, kb1 = 0.12, kb2 = 2000, ωn_E= 14.64 rad /s, and
ξE = 1.05 > 1 and γE = 77.6◦ > 45◦ can be calculated.

Table 2. The main parameters of a 100 kV·A GFVSG.

Symbol Parameter Value

E0 Rated voltage amplitude 311 V
Udc DC bus voltage 700 V
ω0 Rated angular frequency 314.15 rad/s
J Virtual inertia 8 kg·m2

kq Primary voltage regulation coefficient 1.4 × 10−4 V/var
D Virtual damping 50.66 J/rad
Lf Filter inductance 50.6 mH
Cf Filter capacitor 270 uF
f s Sampling frequency 5 kHz
XL Line reactance 0.15 Ω

By bringing the above parameters into the G1_E(s) in Equations (22), (24), and (26)
successively, the comparison results of the step response of ERM-GFVSG under different
order control models can be obtained as shown in Figure 7. As can be seen from Figure 7,
the step response curves of the three are almost identical, that is, the three have a very
similar dynamic response performance, which indicates that it is reasonable and feasible
to simplify the design of the system parameters by using the ERM-GFVSG second-order
equivalent reduced-order control model as described in Equation (26).
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Moreover, based on the proposed ERM-GFVSG control method, the closed-loop
Bode diagrams of ∆Pe(s)/∆Pref(s), ∆Pe(s)/∆ωg(s), ∆ω(s)/∆Pref(s), and ∆ω(s)/∆ωg(s) in the
GFVSG grid-connected system shown in Figure 1 are compared in Figures 8a, 8b, 8c and 8d,
respectively.

As explained before, the GFVSG closed-loop control system is a typical second-order
oscillation system. Hence, when the value of ξG (ξG = 0.16 < 1) is too small, all the Bode
diagrams of GFVSG have a resonance peak before the cutting frequency, as shown in
Figure 8, which means that a dynamic oscillation exists at the resonance frequency. Thus,
both the Pe and the ω of GFVSG with ξG = 0.16 inevitably have the dynamic oscillations
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under both the disturbances of the Pref and the ωg. And, unlike GFVSG, it can be seen from
Figure 8 that the resonance peak in all the Bode diagrams of ERM-GFVSG is eliminated
effectively by increasing the value of ξE (ξE = 1.05 > 1), which illustrates that a dynamic
oscillation does not occur at the resonance frequency. Therefore, both the Pe and the
ω of ERM-GFVSG with ξE = 1.05 do not have any dynamic oscillations under both the
disturbances of the Pref and the ωg. According to the above theoretical analysis, the
proposed ERM-GFVSG can solve the dynamic oscillation problems existing in the Pe and
the ω of GFVSG under different disturbances.
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Figure 8. Comparison of the frequency response characteristics of GFVSG and ERM-GFVSG:
(a) ∆Pe(s)/∆Pref(s); (b) ∆Pe(s)/∆ωg(s); (c) ∆ω(s)/∆Pref(s); (d) ∆ω(s)/∆ωg(s).

4. Simulation Comparison Results

The simulation test platform of a 100 kV·A GFVSG grid-connected system shown in
Figure 1 is established by using the Matlab2016a/Simulink simulation software to verify
the effectiveness of the proposed ERM-GFVSG in damping the active power dynamic
oscillation. Meanwhile, comparison studies between the other damping control methods
and the proposed ERM-GFVSG have also been implemented on the simulation test platform,
including the GFVSG1 (D = 50.66 J/rad), the GFVSG2 (D = 335.16 J/rad), the active-power
fractional differential correction (AFDC) [3], the ADFC [25], and the ADFF [25]. In order to
achieve a fair comparison, a general rule is used to make each damping control method
obtain the optimal dynamic performance in consideration of both the disturbances of the
Pref and the ωg.

In this simulation, τ = 0.007 s, ωc = 142.86 rad/s, and Q = 0.5 are selected. The main
parameters used in each damping control method are summarized in Table 3 and the other
parameters are shown in Table 1.

Figure 9 shows the response waveforms of the Pe and the output frequency f for
various damping control methods when the Pref steps from 20 kW to 60 kW at 4 s.
Figure 9a illustrates the Pe response waveforms, whereas Figure 9b illustrates the f response
waveforms. In Figure 9a, as the damping is only provided by the D (D = 50.66 J/rad) in
the GFVSG1 (ξG = 0.16), the damping effect is limited and not enough to suppress the
active power dynamic oscillation. On the other hand, there is no oscillation in the GFVSG2
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(D = 335.16 J/rad), the AFDC-GFVSG, the ADFC-GFVSG, the ADFF-GFVSG, and the ERM-
GFVSG. In terms of the dynamic response speed, the regulation time of the ERM-GFVSG
and the ADFC-GFVSG is very similar, which is much longer than the other three damping
control methods, and the regulation time of the GFVSG2 is slightly longer than that of the
AFDC-GFVSG and the ADFF-GFVSG.

Table 3. The main parameters of each damping control method.

Method Symbol Parameter Value

AFDC-GFVSG µ Fractional differential order 0.8

ADFC-GFVSG
KB Differential feedback parameter 0.08
ξB Damping ratio 1.02

ADFF-GFVSG
KF Differential feedforward parameter 0.08
ξF Damping ratio 1.02

GFVSG1
D Virtual damping 50.66 J/rad
ξG Damping ratio 0.16

GFVSG2
D Virtual damping 335.16 J/rad
ξG Damping ratio 1.07

ERM-GFVSG
kb1 Active power feedback parameter 0.12

Kb2
Angular frequency feedback

parameter 200

ξE Damping ratio 1.05
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In Figure 9b, the response waveform of f in the GFVSG1 (ξG = 0.16) is obviously
oscillatory when the Pref steps from 20 kW to 60 kW. Although the frequency overshoot
exists in all damping control methods, the frequency overshoot of the ERM-GFVSG is
smallest with a soft change slope at 4 s. Meanwhile, the frequency overshoot of the AFDC-
GFVSG and the ADFF-GFVSG is similar with a severe change slope at 4 s, which is much
larger than the other four damping control methods.

Figure 10 shows the response waveforms of the Pe and the f for various methods when
the power grid frequency f g changes from 50 Hz to 49.95 Hz at 7 s.

Figure 10a illustrates the Pe response waveforms, whereas Figure 10b illustrates the f
response waveforms. In Figure 10a, the damping ratio of the GFVSG1 (D = 50.66 J/rad) is
small and not large enough to suppress the active power dynamic oscillation. Although
the damping effect of the GFVSG2 (ξG = 1.07) is large enough to suppress the active power
dynamic oscillation by increasing the D (D = 335.16 J/rad), a large active power steady
state deviation ∆Pe0 (∆Pe0 = 28.1 kW) can be observed under the condition that the f g
deviates from 50 Hz. On the other hand, there is no oscillation in the AFDC-GFVSG, the
ADFC-GFVSG, the ADFF-GFVSG, and the ERM-GFVSG when the f g drops from 50 Hz to
49.95 Hz. It should be noted that in terms of the dynamic response speed, ERM-GFVSG
has a relatively small active power overshoot, so its active power regulation time is slightly
shorter than in the other damping control methods.
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In Figure 10b, the response waveform of f in the GFVSG1 (ξG = 0.16) is obviously
oscillatory when the f g changes from 50 Hz to 49.95 Hz. For the other five damping control
methods, the slopes of the frequency changes at 7 s of the AFDC-GFVSG, the ADFC-GFVSG,
the ADFF-GFVSG, and the ERM-GFVSG are all steeper than that of the GFVSG2. However,
their frequency response time is much shorter than that of the GFVSG2. Moreover, the
damping performance of the ERM-GFVSG is satisfactory under the disturbance of the f g
change, as it has a slightly dynamic smaller frequency drop than that of the AFDC-GFVSG,
the ADFC-GFVSG, or the ADFF-GFVSG, and the steady-state frequency drop of each
damping method described above, including the GFVSG with D = 335.16, is 49.95 Hz.

5. Experimental Comparison Results

In order to further validate the feasibility of the proposed ERM-GFVSG control method,
experimental tests were carried out on a microgrid experiment platform, as shown in
Figure 11 [25]. A structure diagram and a photograph of the microgrid platform are shown
in Figure 11a and 11b, respectively. Figure 11c presents the test process of a 100 kV·A
GFVSG, the main parameters of which are given in Tables 1 and 3. The 100 kV·A GFVSG
was controlled by an independent DSP TMS320F28335, which implemented the various
damping control methods, as discussed in the above sections.

Figure 12 shows the response waveforms of the Pe and the f for various damping
control methods when the Pref steps from 20 kW to 60 kW. Figure 12a illustrates the
Pe response waveforms, whereas Figure 12b illustrates the f response waveforms. In
Figure 12a, the damping effect of the GFVSG1 (D = 50.66 J/rad) is limited and not enough
to suppress the active power dynamic oscillation. However, there is no oscillation in the
GFVSG2 (D = 335.16 J/rad), the AFDC-GFVSG, the ADFC-GFVSG, the ADFF-GFVSG, and
the ERM-GFVSG, and the regulation time of the ERM-GFVSG and the ADFC-GFVSG is
very similar, which is much longer than the other three damping control methods. The
regulation time of the GFVSG2 is slightly longer than that of the AFDC-GFVSG and the
ADFF-GFVSG, which is consistent with Figure 9a.

In Figure 12b, the response waveform of f in the GFVSG1 (ξG = 0.16) is obviously
oscillatory when the Pref steps from 20 kW to 60 kW. Although the frequency overshoot
exists in all damping control methods, the frequency overshoot of the ERM-GFVSG is
smallest with a soft change slope, which can correspond to Figure 9b. However, the
frequency overshoot of the AFDC-GFVSG and the ADFF-GFVSG is similar with a severe
change slope, which is much larger than the other four damping control methods.

Figure 13 shows the response waveforms of the Pe and the f for various damping
control methods when the f g drops from 50 Hz to 49.95 Hz. Figure 13a illustrates the
Pe response waveforms, whereas Figure 13b illustrates the f response waveforms. In
Figure 13a, the damping ratio of the GFVSG1 (D = 50.66 J/rad) is not large enough to
suppress the active power dynamic oscillation. Although the GFVSG2 (ξG = 1.07) is able
to suppress the active power dynamic oscillation by increasing the D (D = 335.16 J/rad),
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the ∆Pe0 = 28.3 kW can be observed when the f g deviates from 50 Hz in the steady state.
And there is no oscillation in the AFDC-GFVSG, the ADFC-GFVSG, the ADFF-GFVSG, and
the ERM-GFVSG when the f g changes from 50 Hz to 49.95 Hz. In terms of the dynamic
response speed, the regulation time of the ERM-GFVSG is slightly smaller than the other
five damping control methods, which is shown in Figure 10a.
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In Figure 13b, the response waveform of f in the GFVSG1 (ξG = 0.16) is obviously
oscillatory when the f g drops from 50 Hz to 49.95 Hz. The slopes of the frequency changes
in the AFDC-GFVSG, the ADFC-GFVSG, the ADFF-GFVSG, and the ERM-GFVSG are all
steeper than the GFVSG1 or the GFVSG2. However, their frequency response speed is much
faster than the GFVSG1 or the GFVSG2. And the damping performance of the ERM-GFVSG
is satisfactory considering the disturbance of the f g change, as it has a smaller frequency
drop than that of the AFDC-GFVSG, the ADFC-GFVSG, or the ADFF-GFVSG, which is
consistent with Figure 10b.
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Figure 13. Comparative experimental results of various damping control methods when the f g drops
from 50 Hz to 49.95 Hz: (a) the Pe response waveforms, (b) the f response waveforms.

6. Conclusions

To solve the dynamic oscillation problems existing in the Pe and the ω of GFVSG
under the two disturbances of the Pref step and the f g change, an active power dynamic
oscillation damping method based on ERM for the GFVSG is proposed in this paper.
Through the theoretical analysis, mathematical modeling, energy reshaping, parameter
design, simulation, and experimental validations, the following conclusions are drawn:

(1) From the perspective of energy flow, the larger the J value of GFVSG, the larger
the stored energy and the longer the system takes to consume the stored energy, so the
regulation time of the system will be longer. Meanwhile, the larger the D value, the larger
the consumed energy and the shorter the system takes to consume the dynamic oscillation
energy, the stronger the ability to suppress the active power dynamic oscillation.

(2) Although the Pe and the ω of the AFDC-GFVSG, the ADFC-GFVSG, the ADFF-
GFVSG, and the proposed ERM-GFVSG all have neither dynamic oscillation nor active
power steady-state deviation under the two disturbances, the frequency overshoot of
the ERM-GFVSG under the Pref step disturbance is the smallest at the expense of the
Pe regulation time, and the Pe regulation time of the ERM-GFVSG under the f g step
disturbance is the shortest. Therefore, in the practical application of the ERM-GFVSG, the
parameters kb1 and kb2 of ERM-GFVSG need to be selected in a compromise to balance the
relationship between the regulation time and the frequency overshoot.

It is worth pointing out that the ERM-GFVSG control method is proposed based on
the closed-loop small signal control model of a GFVSG grid-connected system, so the
applicability and effectiveness of the active power oscillation damping method based on
the ERM in islanded microgrids with multiple GFVSGs still need to be further studied.
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Nomenclature

Pref, Qref, u∗abc Command of active power, reactive power, and output voltage
Pe, Qe Grid-connected active power and grid-connected reactive power
J, D Virtual inertia and virtual damping
Udc DC source
Lf, Cf AC filter inductor and AC filter capacitor
uabc, iabc, ugabc Output voltage, output current, and power grid voltage
ω0, ω Rated angular frequency and output angular frequency
XL, RL Line reactance and line resistance
δ Power factor angle
kq Primary voltage modulation coefficient
E0, E Rated voltage amplitude and output voltage amplitude
Ug, ωg Grid voltage amplitude and gird angular frequency
ωn_G, ωn_E Natural oscillation angular frequency
ξG, ξE Damping ratio
kb1 Active power feedback parameter
kb2 Angular frequency feedback parameter
Q Quality factor of the second-order LPF
ωc, ωc_E Cut-off angular frequency
τ Filtering time constant of the first-order LPF
γE Phase angle margin
f, f g Output frequency and power grid frequency

Abbreviations
The following abbreviations are used in this manuscript:
GFVSG Grid-forming virtual synchronous generator
PECs Power electronic converters
TSGs Traditional synchronous generators
LPF Low-pass filter
PLL Phase locked loop
ERM Energy reshaping mechanism
ERM-GFVSG GFVSG with the active power dynamic oscillation damping method based on ERM
CCVS Current controlled voltage source
VCCS Voltage controlled current source
AFDC Active-power fractional differential correction
ADFC Active-power differential feedback compensation
ADFF Active-power differential feedforward compensation
AFDC-GFVSG GFVSG with AFDC control algorithm
ADFC-GFVSG GFVSG with ADFC control algorithm
ADFF-GFVSG GFVSG with ADFF control algorithm
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