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Abstract: Voltage-induced heating defect is a type of defect that may occur in transformation substa-
tion equipment. Although this type of defect is less common compared to current-induced heating
defects, it is crucial to identify it due to its association with severe insulation degradation problems
that require prompt intervention. However, the temperature variations caused by these defects may
be relatively subtle, making it challenging to distinguish them in thermal images. In this work,
considering the characteristics of voltage-induced heating defects and the scarcity of defect data, we
propose a two-stage method for defect detection. In the first stage, we employ oriented R-CNN to
detect oriented parts of the equipment, accurately localizing the centerline of each part. In the second
stage, we extract the temperature distribution along the centerline of specific parts and discretize
them as features. Subsequently, we train one-class support vector machines based on the features ex-
tracted from normal images for defect diagnosis. Experimental results demonstrate that the proposed
method is capable of accurately detecting defects while maintaining a low false positive rate.

Keywords: electrical equipment defect detection; voltage-induced heating defect; thermal image
analysis; oriented object detection

1. Introduction

Thermal infrared (IR) technology [1], also known as thermography, is a non-contact
imaging technique that captures the thermal radiation emitted by objects. The captured
thermal images visualize the temperature distribution on the surface of objects, enabling
the identification of abnormal temperature patterns that may indicate potential defects
or malfunctions. Due to its non-contact nature, thermography has found widespread
application in the inspection of electrical power equipment [2–6]. By detecting hotspots or
other abnormal temperature patterns, thermography helps to identify issues such as loose
connections, overloaded circuits, faulty components, or insulation problems that may occur
in transformation substation equipment [7,8]. The timely identification of anomalies allows
for targeted interventions, ensuring that necessary maintenance or corrective measures
are implemented promptly, thereby reducing the risk of accidents, electrical hazards, and
potential harm to personnel.

However, detecting and analyzing defects in thermal infrared images pose certain
challenges. These challenges primarily stem from the following two aspects [9]: (1) Ther-
mal patterns captured in infrared images can be influenced by various factors, including
ambient temperature, environmental conditions, and equipment operating conditions.
Therefore, it requires expertise and experience to accurately interpret thermal infrared
images and distinguish between actual defects and benign temperature variations. (2) The
interpretation of thermal infrared images requires knowledge of the specific equipment
being inspected and an understanding of the expected thermal patterns under normal
operating conditions. For instance, in the case of substation equipment, two common types
of defects are current-induced heating defects and voltage-induced heating defects. As
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depicted in Figure 1, current-induced heating defects often manifest as noticeable hotspots
or areas of excessive heat, which can be relatively easier to detect. On the other hand,
voltage-induced heating defects manifest as uneven temperature distributions within a
single phase or across multiple phases of the equipment. The temperature variations caused
by these defects can be relatively subtle and may not be easily distinguishable from normal
temperature fluctuations [9].

（a） （b） （c） 

（d） （e） （f） 

Figure 1. Typical examples of defects in substation equipment. Images (a–c) illustrate current-induced
heating defects, which often manifest as hotspots on the equipment and are relatively easier to detect.
Images (d–f) demonstrate voltage-induced heating defects, which result in uneven temperature
distributions within a single phase or across multiple phases of the equipment. These defects are not
easily detected by simply identifying regions of excessive heat, as the temperature variations may
be subtle.

In this work, we primarily focus on the detection of voltage-induced heating defects.
Although these defects may be less common compared to current-induced heating defects,
they are of utmost importance to identify due to their association with insulation degra-
dation problems that are severe and require prompt intervention. Furthermore, detecting
voltage-induced heating defects poses greater challenges and remains relatively unexplored
in the field.

Considering the scarcity of images with defects compared to the abundance of normal
images, we propose a two-stage method to detect voltage-induced heating defects. In
the first stage, we utilize oriented R-CNN [10], trained on a large number of normal
images, to accurately localize various equipment parts such as bushings, flanges, and arc-
extinguishing chambers. In the second stage, based on the localized equipment parts, we
extract the temperature distribution along the centerline of bushings or arc-extinguishing
chambers for defect diagnosis. Specifically, we discretize the temperature distribution and
use it as features to train two one-class support vector machines (OC-SVM) [11] using
normal samples. These OC-SVMs are then used to detect abnormal temperature patterns
within single-phase and multiple-phase equipment parts, respectively. By combining
deep model-based part localization with OC-SVM-based defect diagnosis, we effectively
leverage the abundance of normal images while addressing the challenge posed by the
limited number of defect images. This methodology enables accurate localization of
equipment parts and reliable detection of defects, as validated in our experiments. Through
comprehensive evaluations, we demonstrate the effectiveness of our approach in detecting
voltage-induced heating defects, even with a limited number of defect images.
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The remaining sections of this paper are organized as follows. In Section 2, we provide
a brief review of related work. Section 3 introduces the characteristics of voltage-induced
heating defects, whereas Section 4 presents our proposed method for detecting these defects.
In Section 5, we present the experimental results, and finally, Section 6 concludes the paper.

2. Related Works

Since our method comprises equipment localization and defect detection stages, in
this section, we provide a brief review of related works in these two aspects and highlight
the differences between our method and previous approaches.

2.1. Electrical Equipment Localization

Object localization plays a crucial role in thermal image analysis for electrical equip-
ment. Previous studies have explored various techniques to localize electrical equipment.
For instance, two-stage object detection methods such as Faster R-CNN [12] and one-stage
methods like YOLO [13] and CenterNet [14] are commonly used to detect various substa-
tion or transmission equipment [15–18]. Segmentation methods such as DeepLab [19] and
cross-guidance network [20] are also applied to segment equipment regions. However, as
shown in Figure 2, these object detection methods producing upright bounding boxes may
include irrelevant background regions when the equipment or part is slanted, leading to
background interference. Although segmentation methods provide pixel-level identifica-
tion, they are sensitive to boundaries, resulting in inaccurate temperature distributions
along the centerlines of the equipment parts. To address this issue, Gong et al. [21] proposed
an oriented YOLO to detect tilted equipment parts, whereas Zheng et al. [22] designed a
rotation region network for detecting tilted equipment. In this work, we adopt oriented
R-CNN [10] for equipment part detection, which has demonstrated superior performance
in our experiments.

(a) (b) (c) (d)

Figure 2. Illustration of various equipment localization methods. (a) is a thermal image, (b) is
segmentation result obtained by DeepLab, (c) is object detection result obtained by YOLO, and
(d) shows the result obtained by oriented R-CNN. Compared to (b,c), the oriented bounding boxes
detected in (d) help us to localize the centerline of equipment parts more accurately.

2.2. Electrical Defect Detection

Extensive methods have been developed for electrical defect detection in thermal im-
ages. However, most of these methods primarily focus on detecting current-induced heating
defects and rarely explore voltage-induced heating defect detection. Typically, these meth-
ods adopt segmentation techniques to extract equipment or heating areas and subsequently
extract features for analysis. For example, Huda and Taib [7] extracted several hand-crafted
features from segmented regions and utilized a multilayer perceptron (MLP) for classify-
ing the defective conditions of electrical equipment. Zou and Huang [23] employed the
K-means algorithm to cluster electric equipment regions, followed by feature extraction
and input to a support vector machine (SVM) for defect classification. Ullah et al. [24]
utilized AlexNet [25] to extract features and then employed SVM to classify defective and
non-defective high voltage electrical equipment. In addition, Li et al. [26] adopted various
instance segmentation models such as Mask R-CNN [27] and YOLACT [28] to segment
equipment instances first and then used a defect determination strategy to recognize de-
fects based on the temperature probability density distribution extracted within segmented
regions. Whereas these methods have shown effectiveness in detecting current-induced
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heating defects, there is a lack of exploration and research on voltage-induced heating
defect detection. This highlights the need for further investigation and development of
methods specifically tailored to address voltage-induced heating defects in thermal im-
ages. Moreover, although support vector machines (SVM) have been employed in the
works of Zou and Huang [23] and Ullah et al. [24], they require both normal and abnormal
samples for training. In contrast, we adopt one-class SVM [11], which only needs normal
samples for learning and is therefore better suited to our scenario where defective images
are extremely scarce.

3. The Characteristics of Voltage-Induced Heating Defects

We first analyze the causes and manifestations of voltage-induced heating defects,
which help us design an appropriate method for detecting such defects. As introduced in
the power industry national standard DLT664-2016 [29], voltage-induced heating defects
are mainly caused by dielectric degeneration. These defects can occur due to various
factors, including contamination or moisture in the insulator bushing, insufficient oil in
the oil-filled bushing, or blockages in the oil or gas paths of the high-voltage bushing. In
these cases, the electrical insulation material continuously consumes electrical energy and
generates heat as a result of the alternating electric field causing changes in the dielectric
polarization direction. This leads to the overall heating of the bushing, although the
temperature increase may be subtle, whereas voltage-induced heating defects are less
common compared to current-induced heating defects, they should not be overlooked due
to their potential severity. Once voltage-induced heating defects occur, they often fall into
the category of severe or critical defects and require prompt intervention. Therefore, it is
of utmost importance to detect and diagnose these defects promptly to prevent further
damage or potential hazards.

In diagnosing voltage-induced heating defects, traditional manual analysis methods
typically involve comparing and analyzing temperature differences within a single phase
or between multiple phases of the equipment, as illustrated in Figure 3. This highlights
the importance of accurately detecting equipment and precisely localizing the centerline
of each piece of equipment. Moreover, we also observe that different parts of equipment,
such as bushings and bellows, may exhibit distinct temperature patterns. This observation
motivates us to localize finer-grained equipment parts for more accurate analysis.

（a）Temperature varying within one component （b）Temperature varying across different components 

Figure 3. Typical examples of voltage-induced heating defects and temperature distribution along
the centerline of each equipment component [29]. In (a), we observe abrupt temperature changes
within a single-phase equipment, whereas (b) shows variations in temperature distribution across
two phases of the equipment.
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4. The Proposed Method

Based on our understanding of voltage-induced heating defects, we propose a two-
stage approach in this work to effectively detect such defects. In the first stage, we employ
oriented R-CNN [10], a state-of-the-art oriented object detection method, to detect various
equipment parts that might appear slanted in thermal images due to random capturing
angles. By utilizing oriented R-CNN, we can accurately localize the centerline of each
part based on the produced oriented bounding boxes. In the second stage, we extract the
temperature distribution along the centerline of bushings or arc-extinguishing chambers,
which are the major equipment parts where voltage-induced heating defects occur. We
then extract features from the temperature distributions of single-phase or multiple-phase
equipment parts. Next, one-class SVMs [11] are trained based on these features extracted
from normal images for defect diagnosis. Figure 4 provides an overview of the entire
framework of our proposed method. In the following sections, we will delve into the
details of each stage and explain how they contribute to the overall defect detection process.

(a) Thermal image (b) Detected parts (c) Centerlines (d) Temperature  
distributions 

(e) Feature extraction 

Phase 1 

Phase 2 

(f) One-class SVM classification 

Phase 1 

Phase 2 

Stage 1: Oriented part detection Stage 2: Defect diagnosis 

Difference 

Figure 4. An overview of the proposed two-stage approach for voltage-induced heating defect
detection. The first stage is to localize oriented equipment parts by the oriented R-CNN model. The
second stage first extracts features from the temperature distributions along the centerlines of the
target parts and then trains one-class SVMs for defect diagnosis.

4.1. Oriented R-CNN-Based Part Detection

As discussed in Section 3, the accurate localization of the centerline of equipment parts
is crucial for diagnosing voltage-induced heating defects. Moreover, due to the random
capturing angles in daily inspections, equipment parts in thermal images may appear
tilted to varying degrees. Therefore, we adopt the oriented R-CNN [10] method to detect
equipment parts. Compared to conventional upright object detection methods, oriented
R-CNN allows us to accurately detect and handle the slanted appearance of various
equipment parts, providing more reliable results while reducing background interference.

Figure 5 illustrates the architecture of oriented R-CNN. It utilizes the feature pyramid
network (FPN) [30] as the backbone for feature map extraction, followed by an oriented
region proposal network (RPN) and an oriented R-CNN head. The oriented RPN generates
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high-quality oriented proposals, whereas the oriented R-CNN head performs proposal
classification and regression. The details of these two modules are introduced as below.

 
 
 
 
 

FPN backbone 

 
 
 
 
 
 
 

Module 1: Oriented RPN Feature map 

Objectness score 

 
 
 
 
 
 
 

Module 2: Oriented R-CNN Head 

Classification 

Regression 

Conv Decoding 

Rotated RoIAlign 

FC1 FC2 

Figure 5. The architecture of oriented R-CNN. It employs the feature pyramid network (FPN) [30] as
the backbone to extract feature maps, followed by an oriented region proposal network (RPN) and
an oriented R-CNN head. The RPN is responsible for generating oriented proposals, whereas the
R-CNN head performs the classification and regression of these proposals.

4.1.1. Oriented RPN

The oriented RPN takes five levels of features generated from FPN as input. For each
level of features, the oriented RPN attaches a head consisting of a 3× 3 convolutional layer
and two sibling 1× 1 convolutional layers. One of the sibling layers generates A proposals
at each location of a feature map, where A is the number of anchors at a location. Each
proposal is represented by (x, y, w, h, ∆α, ∆β), where (x, y) denotes the center coordinate of
the predicted proposal, w and h represent the width and height of the external rectangle
box, and ∆α and ∆β are the offsets relative to the midpoints of the top and right sides of
the external rectangle. The other sibling layer in the RPN estimates the objectness score for
each proposal, indicating the likelihood of an object being present within the proposal.

4.1.2. Oriented R-CNN Head

The oriented R-CNN head takes the feature maps and a set of oriented proposals
as input. Each proposal utilizes rotated region of interest (RoI) alignment to extract a
feature vector, which is then passed through two fully connected (FC) layers, followed
by two sibling FC layers. One of the sibling layers generates the classification probabil-
ities {p0, p1, . . . , pK} for the proposal, indicating the likelihood of it belonging to one of
the K + 1 classes (K object classes and 1 background class). In our work, we consider
K = 6 classes, which include bushing, bellows, grading ring, bushing coupler, flange, and
arc-extinguishing chamber. These classes correspond to the parts appearing on four major
electrical equipment types: current transformers, voltage transformers, surge arresters, and
circuit breakers. Moreover, the other sibling layer produces the offsets of the proposal for
each of the K object classes. These offsets are used to refine the localization of the proposal,
ensuring accurate alignment with the boundaries of the detected component.

4.2. One-Class SVM-Based Defect Diagnosis

When designing an approach for voltage-induced heating defect detection, we primar-
ily consider the following characteristics: (1) Although there are abundant thermal images
collected during routine inspections, the number of images containing voltage-induced
heating defects is extremely limited. (2) The voltage-induced heating defects mainly occur



Energies 2023, 16, 8036 7 of 13

on two types of equipment parts: bushings and arc-extinguishing chambers. The abnormal
patterns are often manifested as noticeable temperature variations within a single phase or
between multiple phases of these equipment parts.

Considering the scarcity of defect data, we adopt one-class SVMs [11] that are trained
on normal images for defect detection. The features used for the one-class SVMs are ex-
tracted based on the results of the aforementioned oriented part detection. In the following
section, we will provide a detailed explanation of the feature extraction process and the
utilization of the one-class SVMs.

4.2.1. Feature Extraction

Given a thermal image along with its associated temperature matrix and the re-
sults of oriented part detection, we first select the parts belonging to the bushing or
arc-extinguishing chamber classes. Then, we extract the temperature distribution along
the centerline of these parts, as shown in Figure 4c,d. When extracting features from
these temperature distributions, we need to consider the following two factors: (1) The
temperature distribution varies due to weather and environmental changes, such as sig-
nificant temperature differences between winter and summer. (2) There are significant
differences in temperature distribution among different equipment parts. For example,
the temperature of the bellows connecting two sections of a bushing may be lower than
the overall temperature of the bushing. To mitigate these interferences, we subtract the
mean of the distribution and remove the distributions outside the bushings. Then, for each
single-phase scenario, we discretize the processed distribution to obtain a 256-dimensional
feature. When multiple phases exist in one image, we additionally discretize the difference
between the processed distributions of each pair of phases to obtain another type of feature
with a dimension of 256 as well. Each type of these features is used to train a one-class
SVM for defect diagnosis. The entire flowchart is illustrated in Figure 6.

Temperature matrix + Oriented equipment parts 

Select parts belonging to 
bushing and arc-extinguishing chamber classes 

Extract temperature distribution over the  
centerline of these parts 

If there are more than 
 one phase 

Subtract the mean of the temperature distribution from itself 

Predict with single-phase OC-SVM 

No 

Is outlier No 

Non-defective 

Yes 

Defective 

Yes 

Obtain the difference of two temperature distributions 

Predict with multi-phase OC-SVM 

Figure 6. The flowchart of feature extraction and one-class SVM-based defect diagnosis.

4.2.2. One-Class SVM

Different from the conventional support vector machine (SVM) used in [23,24] that
requires both normal and abnormal samples for learning, we adopt a one-class support
vector machine (OC-SVM) [11] that is trained solely on normal data. OC-SVM learns a
decision boundary that maximizes the separation between normal samples and the origin,
considering outliers lying on the other side of the decision boundary as abnormal data.
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Formally, given a set of features {x1, . . . , xN} extracted from normal samples, OC-SVM
separates the feature set from the origin by solving the following quadratic problem:

min
ω∈F,ξi∈RN ,ρ∈R

1
2
||ω||2 + 1

νN

N

∑
i=1

ξi − ρ (1)

subject to ωφ(xi) ≥ ρ− ξi, ξi ≥ 0.

Here, ν ∈ (0, 1) is a parameter controlling the lower and upper bounds of samples.
φ() is a function mapping a feature into a dot product space F.

OC-SVM then creates a hyperplane characterized by ω and ρ. The decision function is

f (x) = sign

(
N

∑
i=1

αiφ(xi) · φ(x)− ρ

)
, (2)

where the coefficients αi are found as the solution of the dual problem:

min
α

1
2

αiαjφ(xi) · φ(xj) (3)

subject to 0 ≤ αi ≤
1

νN
,

N

∑
i=1

αi = 1.

Once the one-class SVM is trained and a feature x of a test sample is provided, the
sign of f (x) indicates whether the sample is an outlier or not. A positive sign indicates a
normal sample, whereas a negative sign indicates that the sample is an outlier, potentially
exhibiting a defect.

5. Experiments
5.1. Dataset and Evaluation Metrics

We begin by evaluating the performance of our oriented component detection module
on a dataset that we constructed by ourselves. This dataset is collected using hand-held
thermal cameras in multiple transformer substations and includes four major types of
transformer equipment: current transformers (CT), voltage transformers (VT), surge ar-
resters (SA), and circuit breakers (CB). Within this dataset, we manually label six types of
components that appear in the four types of equipment, namely bushing, bellows, grading
ring, bushing coupler, flange, and arc-extinguishing chamber, as shown in Figure 7d. The
statistics of the number of images, equipment, and parts are listed in Table 1, and typical
labeled samples are presented in the last column in Figure 7. To evaluate the one-class
SVM-based defect diagnosis module, we randomly collect 1000 normal images with a
single-phase bushing and 900 normal images with multi-phase bushings for training. Ad-
ditionally, we have 103 normal images and 9 images with voltage-induced heating defects
(due to the scarcity of data) for testing.

For the evaluation of oriented part detection, we follow the common practice of using
the Average Precision (AP) for each class and the mean Average Precision (mAP) for all
classes as the metrics. The AP measures the area under the precision-recall curve for a
class. When computing precision and recall, we consider a predicted bounding box to be a
true positive if the Intersection over Union (IoU) with the ground truth is greater than a
threshold of 0.5, denoted as AP@50. In the case of defect detection, we utilize the defect
recall rate and defect false positive rate as evaluation metrics.
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Table 1. The number of different parts, equipment, and images in the dataset.

Part
Equipment Current

Transformer
Potential

Transformer Arrester Breaker Total No. of
Parts

Bushing 2365 1641 1506 1771 7283

Bellows 2365 0 0 0 2365

Grading ring 0 478 1506 0 1984

Bushing coupler 0 334 0 0 334

Flange 0 1737 1847 0 3584

Arc-extinguishing chamber 0 0 0 2019 2019

Total no. of equipment (no. of images) 2365 (1123) 1641 (1159) 1506 (644) 1984 (1136) 7283 (4062)

5.2. Implementation Details

We implement our method in PyTorch and conduct all experiments on a single Nvidia
GeForce RTX 3090 GPU. The training time for the oriented R-CNN model is approximately
10 h, whereas the one-class SVM model only takes around 2 s to train. The training batch
size is set to 2. We adopt the AdamW algorithm with β1 = 0.9, β2 = 0.999, and a weight
decay of 0.05 to train the oriented R-CNN model. The initial learning rate is set to 0.0001,
and it is decreased by a factor of 10 at epochs 8 and 11.

During the training of the oriented part detection model, we apply the following data
augmentation techniques to all training images: (1) Padding: we pad the shorter side of
each image to ensure equal dimensions. (2) Resizing: the padded image is then resized to a
fixed size of 1024 × 1024 pixels. (3) Random flipping: we randomly flip each image along
the horizontal, vertical, and diagonal directions. (4) Mean-variance normalization: we
normalize the images using the mean and variance of the training dataset. By incorporating
these data augmentation techniques, the model can learn from a broader range of data
variations, enhancing its ability to generalize and improve its robustness.

5.3. Effectiveness of Oriented Part Detection

We first conduct an investigation to assess the effectiveness of Oriented R-CNN for
oriented part detection. To this end, various settings of this model, including different
backbones (ResNet50 and Swin-T), training epochs, and various data augmentation strate-
gies have been tested. The performance results are presented in Table 2. The table shows
that the Swin-T-based backbone, trained for 40 epochs with horizontal flipping data aug-
mentation, achieved the highest mean Average Precision (AP) for all classes, reaching an
impressive 95.4%.

Table 2. The performance of oriented part detection obtained by the oriented R-CNN model under
different settings. Here, ‘H’, ‘V’, and ‘D’ refer to random flips along the horizontal, vertical, and
diagonal directions, respectively.

Backbone Epochs Augmentation mAP (%)

ResNet50
12 H, V, D 89.8

H 90.5

40 H, V, D 93.3
H 94.5

Swin-T 40 H, V, D 93.8
H 95.4

We also compare this model to other typical object detection models, including Faster
R-CNN [12], YOLO [13], and oriented YOLO [21]. The comparison results are reported in
Table 3, whereas Figure 7 presents some qualitative comparisons. Table 3 demonstrates
that Oriented R-CNN achieves the highest Average Precision (AP) for each class and the
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highest mean Average Precision (mAP) across all classes. The results in Figure 7 show that
Oriented R-CNN retrieves oriented bounding boxes more accurately and aligns better with
the oriented parts.

Table 3. The comparison of part detection results in terms of AP (%) and mAP (%).

Method
Part Bushing Bellows Bushing Coupler Grading Ring Flange Arc-Extinguishing

Chamber mAP (%)

Faster R-CNN [12] 82.9 84.8 95.0 90.8 95.2 54.5 83.9

YOLO [13] 78.1 81.7 94.3 87.2 91.0 53.5 81.0

Oriented YOLO [21] 82.0 83.3 90.3 95.3 93.5 71.8 86.0

Oriented R-CNN 90.9 90.9 99.8 99.9 99.9 90.9 95.4

Figure 7. The qualitative comparison results obtained by different part detection methods. From top
to bottom, the equipment is arrester, potential transformer (PT), breaker, and current transformer
(CT), respectively.

5.4. Effectiveness of Defect Diagnosis

In order to investigate the effectiveness of our one-class SVM-based defect diagnosis
method, we randomly selected 103 images containing bushings or arc-extinguishing cham-
bers from the remaining dataset. Unfortunately, due to the rarity of voltage-induced heating
defects, we were only able to collect nine defective images. We used both these normal
and defective images for testing. Among the nine defective images, eight were correctly
detected as defects. Among the 103 normal images, only one image is mistakenly classified
as abnormal. This indicates a recall rate of 88.89% and a false positive rate of 0.97%.

Figure 8 presents typical examples that are correctly diagnosed. As shown in the
first row, the voltage-induced heating defect leads to a temperature distribution with
noticeable variation. The normal example in the second row shows very subtle temperature
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variations over the entire bushing. Figure 9 presents two failed cases, where the first
case is defective but detected as normal, and the second one is normal but detected as
defective. The reason for the failure in the first example is the absence of the top part of the
bushing, where the defect occurs. In the second example, the failure lies in the inclusion
of temperature distributions from equipment parts other than bushings, which exhibit
significant differences.

Single-phase distribution 

(a) Thermal image (b) Detected parts (c) Centerlines (d) Temperature distributions 

Single-phase distribution 

Difference of distributions 

Figure 8. Correctly diagnosed examples. The first row shows an example with voltage-induced
heating defect, in which the temperature distribution exhibits a noticeable variation. The second row
is a normal example, with very subtle temperature variations over the entire bushing.

(a) Thermal image (b) Detected parts (c) Centerlines (d) Temperature distributions 

Difference of distributions 

Single-phase distribution 

Single-phase distribution 

Figure 9. Failed cases. The first row shows an example with a defect but detected as normal, and the
second one is a normal example detected as defective.

6. Conclusions

In this work, we have presented a two-stage method for effectively detecting voltage-
induced heating defects. Due to the limited availability of defective samples and the
abundance of normal images, we trained both the oriented part detection model in the
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first stage and the one-class SVM model in the second stage using normal samples only.
The experimental results on our self-collected dataset demonstrate the effectiveness of our
proposed method. The part detection model achieves an mAP of 95.4%, whereas the defect
detection achieves a recall rate of 88.89% and a false positive rate of 0.97%. These results
highlight the accuracy of our approach in detecting voltage-induced heating defects while
maintaining a low false positive rate. This research is particularly valuable considering the
scarcity of defect data and the specific characteristics associated with these types of defects.
By contributing to the improvement of defect detection techniques, our work enhances the
overall safety and performance of such equipment.
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