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Abstract: Part of the widely discussed problem in electrical power systems is the optimal reactive
power dispatch (ORPD) due to its reliability and economical operation of electrical power systems.
The ORPD is a complex and nonlinear optimization problem. The pathfinder algorithm (PFA) is
a newly developed algorithm that inspires the group movement of prey with a leader called a
pathfinder when hunting for food. The inertia weight is added to the PFA and is called an improved
pathfinder algorithm (IPFA) to support the proper random work of the swarm to avoid the decrease in
searchability of the PFA. The IPFA was proposed in this work to diminish the active power loss while
improving the voltage profile. The IPFA was validated on the IEEE 30 and 118 bus systems along
with particle swarm optimization (PSO) and the teaching–learning-based optimizer (TLBO). The
proposed IPFA provides the best result as the losses of the IEEE 30 and 118 test systems were reduced
to 16.035 and 115.048 MW from the initial base of 17.89 and 132.86 MW, respectively. The losses of
PSO and the TLBO were 16.1568 and 16.1607 MW for the IEEE 30 bus system, respectively, while for
the IEEE 118 bus system, the PSO provided 117.9129 MW and the TLBO provided 118.0524 MW. The
two test systems’ reduction percentages (%) were 10.37% and 13.41%, respectively. The results were
compared with those of other algorithms in the literature, and the IPFA provided a superior result,
thereby suggesting the superiority of IPFA methods in diminishing the power loss and improving
the system’s voltage profile.

Keywords: diminished active power loss; improved pathfinder algorithm; ORPD; pathfinder algorithm

1. Introduction

The challenge facing the power system is the complexity of the network. A power
system consists of a generation, transmitting, and distributing network; it expects to
consume little resources while providing adequate reliability and the security of the system.
At present, the power system has experienced an increase in voltage instability, leading
to voltage collapse and blackouts in many countries, which has resulted in economic
losses. Another challenge is increased transmission losses that lead to low efficiency and
limit the power system’s operation. Considering these challenges, this study motivates
future research into how the optimal reactive power dispatch (ORPD) is important for the
optimal power flow (OPF), which dramatically impacts the system’s security, operation, and
economy. The objective of the ORPD is to redistribute the reactive power, which diminishes
the system’s active power loss while improving the voltage profile and maintaining the
constraints [1–3]. The control variables provided by the ORPD are the generator voltage
magnitude, shunt capacitors, and transformer tap settings. Many classical optimization
techniques have been applied to solve the ORPD problems but failed because of low
precision and the inability to determine the global optimal [1,4]. Examples of such classical
optimization techniques are linear programming, interior point, quadratic programming,
Newton techniques, and gradient point [4–8].
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In order to overcome the demerits of classical techniques, researchers have applied meta-
heuristic and evolutionary algorithms. These include the genetic algorithm (GA) [9], particle
swarm optimization (PSO) [10], the enhanced Jaya optimization method (e-JAYA) [11], differ-
ential evolution (DE) [12], the modified stochastic fractal search algorithm (MSFSA) [13], the
improved social spider algorithm (ISSA) [14], the improved ant lion optimizer (IALO) [15], a
modified version of the sine–cosine method (ISCA) [16], success-history-based adaptive dif-
ferential evolution (SHADE) [17], the tree seed algorithm (TSA) [18], the Jaya optimization
algorithm (JAYA) [12,19], the backtracking search (BS) method [20], the whale optimization
algorithm (WOA) [21], the Gaussian bare-bones water cycle optimizer (GBBWCO) [22], the
moth–flame optimizer (MFO) [23], the ant lion optimizer (ALO) [24], the chaotic krill herd
algorithm (CKHA) [25], particle swarm optimization with an aging leader and challengers
(ALC-PSO) [26], the grey wolf optimizer (GWO) [27], the modified teaching–learning al-
gorithm with differential evolution (MTLA-DE) [28], the artificial bee colony (ABC) [29],
the gravitational search algorithm (GSA) [30], the big bang–big crunch (BB-BC) [31], com-
prehensive learning particle swarm optimization (CLPSO) [32], the modified pathfinder
algorithm (mPFA) [33], and the HPSO-PFA [34].

The PFA has been applied to solve the ORPD problem combined with other techniques
due to its simplicity and because it has few parameters to tune without changing the whole
process of the algorithm. However, the PFA decreases searchability when the problem’s
dimensions increase [33]. To overcome this challenge, this study proposed using inertia
weight (w) to improve the vibration coefficient (ε) and the fluctuation coefficient (A) of the
PFA. It provided adequate support for random prey walks at the diversification stage and
enabled the prey to reach the optimum global minimum in the search space. This proposed
method is called the improved PFA (IPFA). Two other algorithms were tested along with
the IPFA: PSO and the teaching–learning-based optimizer (TLBO). This study aimed to
diminish the transmission active power loss and improve the voltage profile while the
system constraints were maintained. The optimized control variables were the transformer
tap setting, generator voltage, and reactive compensator. The IPFA method was tested
on the IEEE 30 and 118 bus systems. The result of the IPFA was compared with other
algorithms to establish its favorable performance for these applications. The proposed IPFA
also provided superior results compared with other methods reported in the literature. The
contribution of this paper is as follows:

a. Inertia weight (w) was added to the parameter of the PFA (i.e., the vibration coefficient
(ε) and fluctuation coefficient (A)) to improve the random walk of prey. The w that
was added to ε and A enhanced the ability to transit between exploration and
exploitation and was proposed to solve the ORPD problem to diminish active power
loss and to overcome the challenges of the PFA in reducing the searching ability
when the problem becomes complex for the reliability and effective operation of the
power systems.

b. The penalty function combined with the objective function for better performance by
including the load bus voltage, reactive power generation, and apparent power flow
to avoid violation.

c. The results obtained from the proposed IPFA with other algorithms showed that the
proposed IPFA provided superior results compared with others.

The remaining part of the paper is organized as follows: Section 2 discusses the ORPD
formulation, and Section 3 discusses the overviews of the PFA and IPFA. Section 4 presents
the results and discussion of the simulation, and Section 5 includes the conclusion and
future recommendation of the study.
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2. Problem Formulation

This research aimed to diminish/reduce the active power loss while keeping the
constraints. Equation (1) was used as the objective function [1]:

Min f = Ploss =
NL

∑
K=1

Gk

(
v2

i + v2
j − 2ViVj cos θij

)
(1)

where Ploss is the active power loss, Gk is the branch, NL is the overall number of transmis-
sion losses, k is the branch between bus i and j, θij is the voltage angle between bus i and j,
Vi is the voltage at the ith bus, Vj is the voltage at the j-th bus.

2.1. Equality Constraints

The equality constraint in the transmission networks arethe LF equations, given as:

Pgi − Pdi −Vi

NB

∑
K=1

Vj(Gk cos θij + BK sin θij) = 0 (2)

Qgi −Qdi −Vi

NB

∑
K=1

Vj(Gk sin θij + BK cos θij) = 0 (3)

where NB is the overall number of buses/nodes, Pgi is the real power generation, Qgi is the
reactive power generation, Pdi and Qdi are the active and reactive load power demand at
the ith bus, and BK is the mutual susceptance.

2.2. Inequality Constraints

The inequality constraints are given in upper and lower limits.

2.2.1. Generator Constraints

These are the generators of the bus voltage, together with the generations of the active
and reactive power:

Vmin
gi ≤ Vgi ≤ Vmax

gi i = 1 . . . , Ng (4)

Qmin
gi ≤ Qgi ≤ Qmax

gi i = 1..., Ng (5)

Pmin
gi ≤ Pgi ≤ Pmax

gi i = 1..., Ng (6)

where Ng = the overall number of generators.

2.2.2. Reactive Power Compensation Limits

The reactive power compensator limits are constraints by minimum and maximum
limits, as shown below.

Qmin
ci ≤ Qci ≤ Qmax

ci i = 1 . . . , NC (7)

where NC = the overall number of reactive power compensations.

2.2.3. Transformer Tap Ratio Constraints

The transformer tap setting are constraints by minimum and maximum limits.

Tmin
k ≤ Tk ≤ Tmax

k i = 1 . . . , NT (8)

where NT = the overall number of transformers.
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2.2.4. Line Flow Limits

The line flow limits are the voltage restriction on transmission line loading and load
buses. Their limits are shown below.

Vmin
ki ≤ Vki ≤ Vmax

ki i = 1 . . . , NB (9)

Sk ≤ Smax
k i = 1 . . . , NK (10)

Of all the variables mentioned above, the reactive power generation (RPG), load
bus voltage, and apparent power flow were the dependent variables combined with the
objective function and the use-penalty coefficient to avoid unrealistic solutions. Therefore,
the objective function in Equation (1) has now become,

fT = f + λV

NB

∑
K=1

(Vi −Vlim
i )2 + λg

NB

∑
K=1

(Qgi −Qlim
gi )2 + λT

NB

∑
K=1

(Si − Slim
i )2 (11)

Here,
λV , λg, λT are the penalty factors (12)

V lim
i =

{
V lim

i , i f Vi < Vmin
i

V lim
i , i f Vi > Vmax

i
(13)

Qlim
gi =

{
Qlim

gi , i f Qgi < Qmin
gi

Qlim
gi , i f Qgi > Qmax

gi
(14)

Slim
i =

{
Slim

i , i f Si < Smin
i

Slim
i , i f Si > Smax

i
(15)

3. Pathfinder Algorithm

The PFA was proposed [35]. It is a swarm intelligence technique (SIT). The PFA
mimics the animal movement group with a leading member. This algorithm allows random
movement in the search location and follows the pathfinder/leader. If a member finds a
better place, the member is selected as a leader. The leading member is called the pathfinder.
The movements of the members and pathfinder are different [33]. The PFA consists of three
positions: the initialization, pathfinder, and followers. Mathematically, Equation (16) is
used for initialization, allowing all the swarm/prey to randomly move in the search area.
Equation (17) is used to move other members to the next phase, while the pathfinder uses
Equation (18):

xG
i,j = xmin

j + rand
(

xmax
j − xmin

j

)
(16)

xk+1
i = xk

i + R1

(
xk

j − xk
i

)
+ R2

(
xk

p − xk
i

)
+ ε (17)

xk+1
p = xk

p + 2r3

(
xk

p − xk−1
i

)
+ A (18)

R1 = αr1 and R2 = βr2 (19)

ε =

(
1− k

ki

)
u1Dij (20)

ki = kmax (21)

Dij = ‖xi − xj‖ (22)

A = u2e
− 2k

ki (23)

where R1 and R2 are random variables, xp is the vector position of the pathfinder, k is
the current iteration, xi and xj are the positioned vector of members i and j, r1 and r3 are
random variables between (0,1) and α, and β are chosen between (1,2), kmax is the total
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number of iterations, Dij is the distance between two members and u1 and u2 are random
vectors between (−1, 1), A is the fluctuation coefficient, ε is the vibration coefficient.

3.1. Proposed Improved PFA (IPFA)

In order to obtain a global optimum solution and avoid the reduction in searchability of
problems with the PFA, this study improved the PFA by introducing inertia weight (w) into
the A and ε of the PFA. The reason for this modification was to provide proper fluctuation
(A) and vibration (ε) coefficients with a random movement and to transit between the
diversification (exploration) and intensification (exploitation). Since the inertia weight w
has been effective in PSO to improve the particle search to explore more search areas [36],
this principle was adopted and we added the inertia weight to the A and ε of the PFA for a
better search and to obtain a global solution.

The inertia weight provided adequate support when moving the prey/swarm to the
next stage, which controlled the movement in the search area and reduced premature
convergence, which was achieved using Equation (24). The inertia weight added to ε
in Equation (25) supported the prey to attain a global optimum solution in the search
place. The proper value for A and ε helped in achieving the best solution. Therefore, the
w incorporated is given in Equation (26) [2,37]. The flowchart of the proposed IPFA is
presented in Figure 1.

xk+1
p = xk

p + 2r3

(
xk

p − xk−1
i

)
+ w× A (24)

xk+1
i = xk

i + R1

(
xk

j − xk
i

)
+ R2

(
xk

p − xk
i

)
+ w× ε (25)

w1 = wmax −
wmax − wmin

ki
× z (26)

where wmax and wmin = maximum and minimum inertia weight, z is the current iteration.
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3.2. Implementation of the IPFA to the ORPD Problem

1. Parameter initialization (size of the population, number of iterations, search space
size, and system data).

2. Run Newton–Raphson (NR) LF and calculate the fitness.
3. Update counter (i.e., k = k + 1).
4. Allow the swarms to randomly move using Equation (16).
5. Determine the total power loss using Equation (11).
6. Use Equations (24) and (25) to update and move the pathfinder and follower to the

next position.
7. Check the control variable if it is in a permissible range.
8. Then select and store the best value.
9. Are the stopping criteria satisfied? If not, go back to step 2; if YES, go to step 10.
10. Display the result and end.

4. Result and Discussion

For the adequate verification of the proposed IPFA to solve the ORPD problem,
the IEEE 30 and 118 bus systems were used to investigate the method’s performance in
diminishing the active power loss in electric transmission systems. The differences between
the two considered systems were (1) the 30 bus system consisting of 30 small nodes, while
the 118 bus system consisted of 118 nodes; (2) the 30 bus system consisted of six generators,
of which node/bus 1 was a reference/slack bus, and the others were 2, 5, 8, 11, and 13.
It consisted of 4 transformer taps located at branches 6–9, 6–10, 4–12, and 28–27. The
shunt compensation was 2 and was situated on buses 10 and 24. Moreover, the number
of variables that were optimized was 12, while the 118 bus system contained 77 control
variables, of which 9 were transformer taps (5–8, 25–26, 17–30, 37–38, 59– 63, 61–64, 65–66,
68–69, and 80–81), 54 were generators (1, 4, 6, 8, 10, 12, 15, 18, 19, 24, 25, 26, 27, 31, 32, 34,
36, 40, 42, 46, 49, 54, 55, 56, 59, 61, 62, 65, 66, 69, 70, 72, 73, 74, 76, 77, 80, 85, 87, 89, 90, 91, 92,
99, 100, 103, 104, 105, 107, 110, 111, 112, 113, and 116 ), and 14 were reactive compensations
(5, 34, 37, 44, 45, 46, 48, 74, 79, 82, 83, 105, 107, and 110). The setting of the algorithm is
tabulated in Table 1. MATLAB 2018b software was used for the simulation for this research
on a personal HP computer consisting of the following specifications: a corei5, 2.6 GHz
processor, 8 GB of RAM, and 500 HDD. Each test case was run for 30 independent trials.
The population size was set to 50 for the two cases, and the number of iterations was 200
and 300 for the IEEE 30 and 118 test systems, respectively. The maximum and minimum
inertia weights Wmax and Wmin were set to 0.9 and 0.4, respectively. The boundary of the
control variables of the IEEE 30 test system is given in Table 2 [38]. The individual test case
parameters are shown in Table 3.

Table 1. Settings of the algorithms.

Parameter Name Value

Number of iterations 200 and 300

Particle number 50

Wmax 0.9

Wmin 0.4

A w× A

ε w× ε
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Table 2. The control variable boundaries of the IEEE 30 bus system, reproduced with permission
from [38], Institution of Engineering and Technology (IET), 2007.

Variables Upper Limits (p.u) Lower Limits (p.u)

The voltage of the load bus 1.1 0.9

Transformer tab 1.1 0.9

Shunt compensator 0.04 0

Table 3. Parameter of the test systems.

IEEE Test Systems 30 Bus System 118 Bus System

Number of buses 30 118

Generators 6 54

Transformers 4 9

Shunt compensator 2 14

Control variables 12 77

Base case power loss (MW) 17.89 132.86

4.1. IEEE 30 Bus System

This test system contained six (6) generators, of which the node/bus one (1) was a
reference/slack bus, and the others were 2, 5, 8, 11, and 13. It consisted of 4 transformer
taps located at branches 6–9, 6–10, 4–12, and 28–27. The shunt compensation was 2 and was
situated on buses 10 and 24. The number of variables to optimize was 12. The schematic
diagram is given in Figure 2. The upper and lower limits of the load bus voltage were 1.1
and 0.9 p.u, respectively. Moreover, the transformer tap setting was 1.1 and 0.9 p.u, and the
shunt compensations were 0.04 and 0 with a base 100 MVA. The convergence curve is shown
in Figure 3, and the proposed improved pathfinder algorithm (IPFA) method gave the best
result out of the particle swarm optimization (PSO), teaching–learning-based optimization
(TLBO), and pathfinder algorithm (PFA). It is noticed that TLBO had a disappointing
performance at the final stage. This showed a weakness in attaining diversity to the final
stage, whereas, at the initial stage, it had a good performance.

Table 4 compares the best power loss, worst MW, mean MW, standard deviation (STD),
and the percentage of reduction (%) of the proposed IPFA compared with other algorithms.
It shows that IPFA reduced the loss to 16.035 MW from the base case of 17.89 MW and
provided the highest percentage reduction of 10.37%. Also, the proposed IPFA method
was compared with PSO [39], evolutionary programming (EP) [40], differential evolution
(DE) [38], etc., which provided the losses of 16.1810, 16.3896, and 16.4939 MW, respectively.
The IPFA method outperformed the other reported algorithms in the literature. This
provided adequate suitability of the proposed method for solving the ORPD problem. The
voltage profile of PSO, the PFA, TLBO, and the IPFA were compared with the base case,
which is given in Figure 4. It is seen that the Newton–Raphson (NR) method (i.e., the
conventional method) showed lower voltage magnitude at the base case than the IPFA,
the PFA, PSO, and TLBO, which were the optimization methods, due to the inability of
NR to explore different search space to give the optimum solution. This suggested the
effectiveness of the IPFA, the PFA, PSO, and TLBO in improving the voltage magnitude
more than the NR method. However, the proposed IPFA increased the voltage profile more
than the other methods for most of the buses of the test system. Moreover, the voltage
profile was within the limits of 1.1 p.u for the upper limits and 0.9 for the lower limits of all
buses. It can be seen that there was an increase in voltage between buses 10 to 15; this was
due to the generator at buses 11 and 13 providing reactive support to avoid the voltage
falling below the limits. This showed that the proposed IPFA method effectively improved
the bus voltage profile.
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Table 4. Comparison of IPFA with other algorithms.

Algorithms Best MW Worst MW Mean STD % of Loss
Reduction

IPFA 16.035 17.053 16.544 0.71983 10.37

PFA 17.4469 17.982 17.71445 0.37844 2.52

PSO 16.1568 18.214 17.206 1.42553 9.58

TLBO 16.1607 17.983 17.07185 1.28856 9.67

DE [41] 16.2184 16.6060 - 0.0895 -

DE-ABC [41] 16.2163 16.2164 - 2.34 × 10-5 -

ABC [41] 16.2325 17.693 - 0.34919 -

PSO [39] 16.1810 - - - -

DE [38] 16.4939 - - - -

EP [40] 16.3896 - - - -
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4.2. IEEE 118 Bus System

The ORPD problem was performed on the IEEE 118 bus system, which contained
77 control variables, of which 9 were the transformer taps, 54 were generators, 186 were
transmission lines, and 14 were reactive compensations. Furthermore, the load demand was
4242 MW and the Ploss was 132.863 MW. The limit of the control variable was reported [23]
with a base of 100 MVA. The upper and lower limits of the load bus voltage were 1.1 and
0.95 p.u, respectively. Moreover, the transformer tap settings were 1.1 and 0.9 p.u and the
shunt compensations were 20 and −40 MVar [23]. The test case schematic diagram is given
in Figure 5.

Table 5 illustrates the best power loss, worst, mean, STD, and the percentage of
reduction (%) of the proposed improved pathfinder algorithm (IPFA) compared with
other algorithms. The IPFA (this study) reduced the active power loss to 115.048 MW,
while the CSA [14], MFO [23], HICA-PSO [42], GWO [27], and ALC-PSO [26] reduced the
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losses to 130.96, 116.4254, 127.82, 120.65, and 121.53 MW, respectively. From the compared
results, the proposed IPFA provided the best results in finding the optimum solution to
the ORPD problem among the algorithms reported in the literature. The convergence
curve of the improved pathfinder algorithm (IPFA) is provided in Figure 6. It can be seen
that the proposed improved pathfinder algorithm (IPFA) provided the best result out of
particle swarm optimization (PSO), teaching–learning-based optimization (TLBO), and the
pathfinder algorithm (PFA). From Figure 6, the IPFA and PFA looked like they did not have
a convergent power loss value at the iteration of 0 steps, but it was a value (i.e., a number).
Also, if it were a zero value, it would have passed the origin line, but it did not draw to
the origin line in this case. This showed that the IPFA method effectively reduced the
active power loss and provided the optimum result. This validated the superiority of the
proposed IPFA in obtaining the optimum solution without stocking to the local optimum
when handling the ORPD problem.
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Table 5. Comparison with other techniques.

Algorithms Best MW Worst MW Mean MW STD % Save

IPFA 115.048 118.758 116.903 2.62337 13.41

PFA 120.1287 123.425 121.7769 2.3308 9.58

PSO 117.9129 123.873 120.8930 4.2144 9.75

TLBO 118.0524 119.895 118.9737 1.30291 11.15

MFO [23] 116.4254 - - - 12.37

HICA-PSO [42] 127.82 - - - -

GSA [30] 127.76 - - - 3.84

FA-APTFPSO#4 [6] 129.8815 146.6919 136.9296 4.2154 46.60
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Table 5. Cont.

Algorithms Best MW Worst MW Mean MW STD % Save

ALC-PSO [26] 121.53 132.99 - 91 × 10-10 -

CPVEIHBMO [44] 124.098 - - - 6.60

GWO [27] 120.65 - - - 9.19
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5. Conclusions

In this work, the IPFA was proposed to solve the ORPD problem by introducing
inertia weight (w) to the A and ε of the PFA to support the proper random work of prey at
the initial stage and to allow the prey to reach the best location when searching for food
without reducing the searchability that arises in PFA. The proposed method maintained
the balance between diversification and intensification in the search area and attained the
optimum solution. The inertia weight supported the proper movement of the swarm to
the next stage, which regulated the movement in the search area and lowered premature
convergence. In other words, it helped to attain the best solution to a problem. The proper
value for A and ε helped in achieving the best solution. The method was tested on the
IEEE 30 and 118 bus systems to diminish the active power loss. The active power loss of
the IEEE 30 bus system was reduced to 16.035 MW for the IPFA, 17.4469 MW for the PFA,
16.1568 MW for PSO, and 16.1607 MW for TLBO from the initial value of 17.89 MW.

The proposed method was compared with DE, DE-ABC, ABC, PSO, and EP, providing
losses of 16.2184, 16.2163, 16.2325, 16.1810, and 16.3896 MW, respectively. The proposed
IPFA provided a lower loss reduction than all the compared methods. Moreover, for the
IEEE 118 bus system, the losses were reduced to 115.048 MW for the IPFA, and 120.1287,
117.9129, and 118.0524 MW for the PFA, PSO, and TLBO, respectively, from the initial case
of 132.863 MW. The proposed IPFA was compared with the CSA, MFO, HICA-PSO, GWO,
and ALC-PSO, which had higher losses of 130.96, 116.4254, 127.82, 120.65, and 121.53 MW,
respectively. This showed the feasibility and superiority of the proposed IPFA to attain
optimum power loss reduction. The percentage reduction for the two test systems was
10.37% and 13.41%, respectively. The result obtained was compared with other techniques
in the literature, and the result of IPFA yielded the best solution. This proved the superiority
of the proposed method over other techniques for effectively diminishing the power loss in
electrical power systems and improving the voltage profile of the systems. Future work
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should focus on optimizing more objective functions and using the method to solve the
ORPD problem and for the optimum placement of distributed generation to improve the
systems’ voltage profile. Also, the IPFA is an efficient technique that can solve several
complex problems in engineering fields.
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Abbreviations

Symbols Meaning
Ploss is the active power loss
Gk is the k branch
NL is the overall number of transmission losses

k is the branch between bus i and j
θij is the voltage angle between bus i and j
Vi and Vj are the voltages at the ith and jth bus, respectively
NB is the overall number of buses/nodes
Pgi and Qgi are the active and reactive power generations, respectively
Pdi and Qdi are the active and reactive load power demands at the ith bus, respectively
BK is the mutual susceptance
Ng is the overall number of generators
NC is the overall number of reactive power compensation
NT is the overall number of transformers
R1 and R2 are random variables equal to αr1 and βr2, respectively
xp is the vector position of the pathfinder
kp is the current iteration
xi and xj are the positioned vectors of members i and j
α and β are randomly chosen between (1,2) in each iteration
r1, r2, and r3 are the random variables between (0,1)
kmax is the total number of iterations
Dij is the distance between two members
u1 and u2 are the random vectors between (−1, 1)

A and ε are the fluctuation and vibration coefficients, respectively
wmax and wmin are the maximum and minimum inertia weights, respectively
z is the current iteration
w is the inertia weight
Vmax

gi and Vmin
gi are the maximum and minimum of the generator voltage, respectively

Qmax
gi and Qmin

gi are the maximum and minimum of the reactive power generated, respectively
Pmax

gi and Pmin
gi are the maximum and minimum active power generated, respectively

Qmax
ci and Qmin

ci are the maximum and minimum of the reactive power compensation, respectively
Tmax

k and Tmin
k are the maximum and minimum of the transformer tabs setting, respectively

Vmax
ki and Vmin

ki are the maximum and minimum of the load bus voltage, respectively
Sk is the apparent line flow
Smax

k is the maximum apparent line flow
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