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Abstract: Condition monitoring and preventative maintenance are essential for reliable and efficient
operation of permanent magnet synchronous machines driven by inverters. There are two types of in-
dustrial inverter drives available: field oriented control and direct torque control. Their compensation
nature and control structure are distinct and, therefore, the condition monitoring approach designed
for the former control may not be applicable to the latter one. In this paper, we investigate the Motor
Voltage Signature Analysis approach for both inverter drives under healthy and faulty conditions.
Four typical fault conditions are addressed: turn-to-turn short circuit, high resistance contact, static
eccentricity, and local demagnetization. High fidelity cosimulation is developed by coupling the finite
element machine model with both control drives. The spectral elements of the commanded stator
voltage are utilized as indicators for supervised classification to identify, categorize, and estimate the
severity of faults. Linear discriminate analysis, k-nearest neighbor, and support vector machines are
the classification techniques used. Results indicate that the condition monitoring based on the Motor
Voltage Signature Analysis performs adequately in field oriented control. Nevertheless, the utilized
monitoring scheme does not exhibit satisfactory performance in direct torque control owing to the
nonlinear characteristics and tolerance nature of this drive.

Keywords: condition monitoring; demagnetization; direct torque control; eccentricity; fault diagnosis;
field oriented control; high resistance connection; turn-to-turn short circuit; permanent magnet
synchronous machine; supervised classification

1. Introduction

The use of Permanent Magnet Synchronous Machines (PMSMs) has increased dra-
matically during the last three decades. This is due to the development of new magnets
with high residual flux density, high energy product, and considerable demagnetization
resilience, such as the Neodymium-Iron-Boron (NdFeB) magnet [1]. Therefore, PMSMs
outperform induction machines in terms of efficiency, rotor mass, and torque density [2,3].
Such advantages make PMSMs more prevalent in different critical industries such as au-
tomotive, aerospace, and renewable energy applications [4]. In these critical applications,
where safety is a must, highly reliable and efficient electricity-driven PMSMs systems are
required. However, a failure may occur unexpectedly due to material aging, assembly
defects, poor installation, or inappropriate operation, all of which may result in costly
shutdowns and tragic loss of human lives [5–7]. Therefore, inverter-driven PMSMs systems
necessitate health monitoring and fault diagnosis algorithms to guarantee the highest level
of safety and reliability.

Fault diagnosis is considerably demanding and challenging in inverter-driven PMSMs
as compared to the line-fed ones. This is evidenced by the fact that fault detectability in
inverter-driven PMSM systems is diminished by the compensatory capability of the drive
system [8]. The two most common drives for PMSMs are Field Oriented Control (FOC)
and Direct Torque Control (DTC). FOC was introduced in the late 1960s for alternating
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current machines and then first adopted by the Toshiba industry a decade later. The main
concept of FOC is to control the stator current vector in the rotor flux linkage frame at
fixed switching frequency [9,10]. DTC, on the other hand, aims to directly control the
stator flux linkage and the electromagnetic torque through hysteresis comparators. Thus,
the switching frequency is variable and a position sensor is not necessary to achieve the
complex current orientation into the rotor flux linkage frame [11]. It was proposed in the
early 1970s and then commercialized by the ABB industry two decades later [12,13]. Both
control schemes have a simple structure and provide satisfactory performance with better
steady-state behavior in the case of FOC and faster torque dynamics in DTC. However, one
control scheme can be more appropriate than the other based on the drive requirements of
the application.

Intensive research on fault diagnosis has been conducted in the literature for FOC-
driven PMSMs under different faults [14–16]. For the most precise fault detection in various
operating conditions, the Machine Voltage or Current Signature Approach (MVSA/MCSA)
has been commonly used at high loads. This method allows remote machine monitoring
through the Motor Control Center (MCC) with no extra hardware for implementation.
Turn-to-Turn Short Circuit (TTSC) and eccentricity faults cause changes in the sideband
harmonics of the stator current; therefore, they could be used as features for fault pres-
ence [17,18]. As the Signal-to-Noise Ratio (SNR) of the utilized features drops in the
presence of increasing noise levels, so does the reliability of the detection method. There-
fore, the main spectral elements in the stator current or voltage have been considered
because of their higher SNR for identifying and classifying TTSC, eccentricity, and demag-
netization faults using Linear Discriminate Analysis (LDA) classifier [19]. Harmonics in
the stator current or voltage waveforms, however, are sensitive to the bandwidth of the
controller. Thus, it is recommended that the harmonics in the voltage waveform be used for
fault diagnosis since they are prominent when a high bandwidth is utilized to obtain better
control performance [20]. Despite the fact that the MVSA method has had widespread
use in the research community for FOC drives, it has not been examined for DTC-driven
PMSMs.

The change in commanded voltages in the rotor flux linkage frame, according to [14],
may be utilized to identify and discriminate eccentricity, demagnetization, and TTSC
faults. Monitoring magnitude variations of these voltage signals present in the FOC drives
allows for nonintrusive fault detection. Due to the DTC drive being executed in the
stationary reference frame, where these voltages are not accessible and the position sensor
is unnecessary, this method could not be extended for DTC.

Few contemporary studies examine condition monitoring for DTC-driven PMSMs [20–24].
Zero-sequence voltage component (ZSVC) magnitude and its initial phase have been proposed
by authors in [21] for TTSC fault detection. The negative influence of TTSC on DTC performance
is then compensated by using torque injection and an enhanced flux observer. To calculate the
zero-sequence network, however, neutral point access is required by paralleling a balanced
three-phase resistive load with the machine. In [22], the High Resistance Contact (HRC) fault
has been investigated by including a fixed flux deviation in the stator flux linkage estimate
necessary for DTC drive operation. However, further analysis is needed to ensure reliable DTC
operation considering the importance of accurate flux estimation to DTC. To accommodate
PMSM drives with open phase fault, recent research adapted the DTC system for use as a fault
tolerant control [25–27].

Fault identification is required to enhance drive performance considering multiple
faults to avoid false alarms. Fault diagnosis methods of PMSMs that exist in the literature
based on the FOC scheme are not suitable for DTC-driven PMSMs as they have a different
nature of compensation, a different structure, and a different regulation principle. There is a
clear gap in the research on the reliability of DTC-driven PMSMs. The major contributions of
this work are: (1) Reliable multiple fault detection and separation is introduced by adopting
multifeature analysis to avoid misclassification and false alarms, as the vast majority of
the existing detection methods in the literature consider single fault. (2) Evaluating the
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supervised learning techniques in fault diagnosis for both FOC and DTC-driven PMSMs.
(3) Reducing the research gap in the reliability of DTC-driven PMSMs by addressing the
MVSA approach and examining its performance in detecting and discriminating faults
for DTC-driven PMSMs. (4) The challenges in fault diagnosis for DTC-driven PMSMs are
highlighted in order to pave the path for further development in monitoring approaches
that suit the DTC scheme.

2. Theoretical Background
2.1. PMSM Faults and MVSA Approach

Stator faults are most commonplace in low and medium power machines [28]. They
could be TTSC due to the degradation in winding insulation or HRC due to the loose
connection between the machine and inverter terminals. Machine overloading in harsh
environments and electric stress from switching devices lead to electrical stator faults even-
tually. TTSC fault propagates faster than the other faults and results in further insulation
degradation and motor outage in the end [29]. HRC results in excessive heat at the motor–
inverter joints and can lead to open phase fault if left unaddressed [22]. Therefore, stator
fault detection and discrimination help in reducing the risk of motor outage, reducing the
maintenance cost, and selecting the proper mitigation scheme.

Rotor faults occur more commonly in high power machines; they are 49% of failure
distribution [30]. Eccentricity faults are an example of the mechanical rotor failures that in-
herently exist at the manufacturing phase. It increases the Noise, Vibration, and Harshness
(NVH) and can lead to rotor rubbing the stator laminations [18]. Additionally, demagnetiza-
tion is another rotor fault that could take place within driven PMSMs if the electromagnetic
constraints are exceeded by improper operation in the field weakening region or due to the
severe TTSC fault occurrence [31]. As a result, the rotor magnets get demagnetized causing
asymmetric flux distribution in the air gap. Reduction in the average torque and increase
in the torque ripple are the main consequences of the demagnetization fault. Therefore,
rotor fault detection is crucial to avoid any damage to the machine structure and improve
the drive performance.

Stator and rotor faults manifest themselves in the spectrum of the machine voltage
signal and leave either distinct or similar trends. Proper utilization of these trends, which
is known as MVSA, does not help only in identifying whether the PMSM is healthy or
faulty but also helps in fault classification and severity estimation. Several signal processing
techniques are available to obtain the frequency spectrum of the machine voltage signal [32].
The spectrum is obtained at a steady state using Fast Fourier Transform (FFT), or under
nonstationary conditions using time–frequency analysis methods like Short Time Fourier
transform (STFT). Variations in magnitude and/or phase of the obtained spectral elements
could be utilized as features for supervised classifiers to detect faults.

2.2. PMSM Drives
2.2.1. Field Oriented Control

Magnetizing and torque current components in the direct and quadrature axes (id and
iq) of the rotor flux linkage frame are regulated separately using a proportional–integral
(PI) controllers in FOC so that the output torque is regulated indirectly. Hence, FOC is also
called indirect torque control. Figure 1 depicts the implementation of FOC-driven PMSM,
where an encoder is needed to estimate the rotor position (θr) required for current vector
decoupling. The widely applied modulation technique to control the inverter switching
scheme in FOC is the Space Vector Pulse Width Modulation (SVPWM) due to its high
utilization of the DC link and low harmonic distortion [33]. The principle behind SVPWM
is to synthesize a reference space voltage vector using timely applied active and zero
voltage vectors at a fixed switching frequency.
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Figure 1. Stator current regulation loop in FOC drive.

The expressions of dq currents and the corresponding machine torque as a function of
both currents are shown in (1) and (2), respectively.

iq = |is|cos(β)

id = −|is|sin(β)
(1)

te =
3Pn

4
iq

[
λPM + (Ld − Lq)id

]
(2)

where |is| and β are the stator current magnitude and angle measured from the q-axis,
respectively. te is the machine electromagnetic torque. Pn is the number of rotor poles in
PMSM. Ld and Lq are the inductance of the direct and quadrature axes. λPM is the magnet
flux linkage.

By controlling |is| and β, different (id,iq) combinations can be generated and different
control modes can be achieved as follows: Maximum Torque Per Ampere (MTPA), field
weakening, maximum torque per voltage, and unity power factor [34]. The control mode
selection is based on the PMSM type and operating speed. Below the base speed, the MTPA
control is utilized to generate the maximum torque for a given current in order to minimize
the copper losses [35,36]. The excitation angle in MTPA region (βTmax ) is expressed in (3).
PMSM control in MTPA region is used in this work. Here, the excitation angle (β), to get
the optimum dq currents, for a given torque is found.

βTmax = sin−1

[√
8(Lq − Ld)2|is|2 + λ2

PM − λPM

4|is|(Lq − Ld)

]
(3)

PMSM control in MTPA region is used in this work. Here, the excitation angle (β), to
get the optimum dq currents, for a given torque is found.

2.2.2. Direct Torque Control

The nonlinear form of DTC drive, which employs hysteresis comparators, was first
presented for PMSMs in [37]. Figure 2 depicts the basic block diagram utilized for DTC
implementation where δte and δλs are the outputs of hysteresis comparators.
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Figure 2. Torque and flux regulation loop in DTC drive.

The amplitude of the torque output (te) and the stator flux linkage (λs) are both
adjusted by using two hysteresis comparators. Thus, the feedback loop needs flux and
torque estimates. These estimates are typically computed in the stationary (αβ) frame, as
explained in (4) and (5), to obviate the requirement for a position sensor.

λαβ = λα0β0 +
∫
(vαβ − rsiαβ)dt (4)

te =
3Pn(iβλα − iαλβ)

4
(5)

where iα and iβ are the currents in the stationary frame. rs is the stator phase resistance.
λα0 and λβ0 represent the initial flux linkage estimates based on the frame alignment. The
voltages vα and vβ in stationary frame are calculated as in (6) where (swA, swB, swC) are the
switching signals to the inverter legs and (vlink) is the bus link voltage.

vα =
vlink[2swA − swB − swC]

3

vβ =
vlink[swB − swC]√

3

(6)

2.3. Supervised Classification

The method of developing a prediction model using specified data input is known as
supervised machine learning [38]. A class may be anticipated for a sample that has not yet
been classified using this data-driven method. Three classification methods are utilized in
this paper: LDA, k-nearest neighbor (k-NN), and support vector machines (SVM).

The training data in LDA are assumed to have a normal distribution with a fixed class-
independent covariance matrix. The decision border partitioning classes in a two-indicator
situation is linear using LDA. Nevertheless, this discriminant technique is highly biased
if the assumption of normal data distribution is violated [39]. Here, the dataset is split to
(K) classes, with every class containing a number of samples belonging to the same class.
Each class is associated with weighting factors that are used to determine the discriminant
function for that class. The discriminant function (Υk) for kth class is calculated as following:

Υk(X) = α1kx1 + α2kx2 + · · ·+ αNkxN (7)

where X = [x1, x2, . . . , xN ] is the N dimensional observation vector and [α1k, α2k, . . . , αNk] is
the matrix of weighting elements of the kth group. A sample will be placed in a given class
if and only if its discriminant function is greater than those of other classes. For example,
an unidentified sample Xa will be assigned to a class b if

Υb(Xa) ≥ Υk(Xa), ∀b 6= k (8)
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Both k-NN and SVM may be used to eliminate the reliance on the assumption of
normal data distribution, but their classification capability is proportional to the amount of
training data provided. An assessment of k-NN and SVM classifiers is carried out in [40]
for the purpose of identifying bearing and uneven shaft rotation failures in directly line
connected induction motors. The k-NN method classifies an unidentified sample according
to the majority vote of its closest neighbors. Its performance is determined by the distance
measure being used to locate the neighbors and the number of these neighbors. The
Euclidean distance measure and the closest four neighbors demonstrate the highest level
of classification accuracy for this work when employing k-NN. The Euclidean distance is
given by:

DXY =

√
n

∑
i=1

(xmi − ypi)2 (9)

where X = [xm1, . . . , xmn] is the tested samples vector, Y = [yp1, . . . , ypn] is the vector of
training data, p = 1, . . . , l is the sample counter for unidentified samples and m = 1, . . . , j
is the sample counter for labeled samples.

Another type of supervised machine learning is SVM, which is notable for its resistance
to any bias or noise in the training sample space [41]. The aim of the SVM classification
model is to generate the optimal hyperplane using support vectors that results in the
best discrimination between two distinct data sets. Support vectors are the outlying
samples closest to the discrimination boundary. The optimal hyperplane obtained by
SVM is used to classify an unidentified sample by measuring the perpendicular distance
between the sample and the hyperplane. SVM training will be a constrained optimization
problem in which the weighting vector η(X) is minimized so that every sample satisfies
the following criteria:

η(X) = ηo + υTX ≥ 0 (10)

where υ is the vector containing each class weight and ηo is a threshold setpoint for classifier
modeling. SVM incorporates kernel functions if the data classification cannot be achieved
linearly in the original dimensional space of the training data. As a consequence, SVM
turns the training data into higher-dimensional spaces where it may be separated linearly.
It is possible that the SVM classification model might be modified to handle situations
involving more than one class by pitting one class against all of the other classes or by
pitting one class against another class at a time. The latter method is the one that is used to
investigate the various fault classes in this research.

One way to evaluate the effectiveness of the abovementioned classifiers is by using
the leave-one-out method, in which a selected sample from the training dataset is removed
and thereafter treated as an unidentified sample to be predicted. This procedure is repeated
until all samples in all classes have been processed. The classifier accuracy is then evaluated
as follows:

Λ = (
Nlabeled
Ntotal

)× 100% (11)

where Λ represents classifier accuracy and Nlabeled represents the number of properly
labeled samples out of the total samples count in the training pool Ntotal .

3. Finite Element Analysis Simulations

Coupling the finite element model (FEM) of an electric machine with a control circuit
demonstrates the capability of simulating the machine harmonics due to the slotting,
saturation, and switching frequency. Such a model would allow the efficient representation
of the PMSM, considering the aforementioned faults, at different operating states. Besides
that, this high-fidelity simulation would allow the maintenance and reliability engineers
to study the extreme fault severities on the machine without destructive or dangerous
experimentation. PMSM modeling, control, and fault implementation are discussed in this
section. FOC- and DTC-driven PMSM are assessed in both healthy and faulty situations
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by integrating the control circuit of FOC or DTC in SIMPLORER simulator with the FEM
model of the studied PMSM in MAXWELL simulator within the ANSYS software. Four
faulty situations are considered: TTSC, HRC, static eccentricity, and local demagnetization.

3.1. Healthy Machine Modeling and Control

To develop a fault diagnosis approach, it is necessary to model the PMSM in the
healthy case and use the obtained measurement as a reference in case of fault occurs. Any
deviation from the processed healthy data could be considered as fault symptoms. In order
to implement the aforementioned faults in the FEM of the studied PMSM, geometric and
electrical modifications should be made. Table 1 lists the main electric and geometrical
parameters of the investigated PMSM.

Table 1. Nameplate data of the studied PMSM.

Machine Specification Symbol Value Machine Specification Symbol Value

Pole pairs Pn 5 d-axis inductance Ld 31.3 mH
Slots Q 12 q-axis inductance Lq 62.4 mH
Turns per slot Ns 150 Mutual inductance Ms ≈0 H
Air gap length g 1 mm Rated phase current Irms 18 A
Residual flux density Br 1.2 T Rated line voltage Vrms 480 V
Magnet flux linkage λPM 287 mWb Rated torque Te 65 N·m
Phase resistance rs 1.5 Ω Rated speed nm 800 rpm

The FEM of the simulated PMSM in ANSYS MAXWELL software is depicted in
Figure 3. It could be observed that the machine winding of each phase are wound around
one slot. This winding configuration is referred as concentrated winding machine where
the winding are physically isolated and, therefore, the mutual inductance is negligible.

(a) (b)

Figure 3. The electromagnetic simulation of studied PMSM machine: (a) FEM of the studied machine
and (b) Mesh of the machine model.

The MTPA profile was first obtained by characterizing the PMSM using the approach
described in [35]. Figure 4a depicts the MTPA profile for various operating currents. For
FOC-driven PMSM, it can be noticed that the excitation angle should be βTmax = 30◦ to
get the MTPA operation below the rated speed. For DTC, the stator flux linkage (λs) was
changed in step of 0.25 Wb from the permanent magnet flux linkage to the rated one at
different operating torque levels. A look-up table stores the stator flux linkage that yields
the minimal current for different torque levels. Figure 4b shows the machine MTPA profile
for the operating torque range.
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(a) (b)

Figure 4. The MTPA profile of the driven PMSM: (a) In FOC drives and (b) In DTC drives.

3.2. Turn-to-Turn Short Circuit Fault Implementation

The implementation of TTSC fault requires modification to the geometrical model in
MAXWELL by dividing the coil region into two: (1) a region reflecting the healthy turns
and (2) one proportional to the faulty turns. Figure 5 depicts the PMSM model as well as
the phase A circuit with a TTSC fault, assuming that phase A is the one that is faulty. After
splitting the coil region of the faulty phase in MAXWELL, additional terminals appear
in the PMSM model in SIMPLORER to provide access to the shorted turns, as shown in
Figure 5b. Consequently, the electric circuit in SIMPLORER has been modified by inserting
a short circuit path with fault resistance (R f ) over the shorted turns of the faulted phase.

(a) Electrical model of phase A with TTSC fault.

(b) External coupling circuit of the geometrical model of phase A with TTSC.

Figure 5. TTSC fault simulation in the PMSM model.

where rsh , Lsh , and esh are the resistance, inductance, and back-EMF of the healthy
turns. rs f , Ls f , and es f are the resistance, inductance, and back-EMF of the shorted turns.
Lh f is the mutual inductance between healthy and faulty turns of the faulted phase. i f
is the fault circulating current in the short circuit path between the healthy and faulted
turns. Early detection of an incipient TTSC fault enables better treatment and prevents
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total machine failure. The worst-case scenario for a TTSC fault is a bold short circuit with
almost zero fault resistance while an incipient short circuit fault is represented with higher
fault resistances [42]. As indicated in Table 2, different severities of incipient TTSC fault are
examined by adjusting the faulted turns N f and the resistance shorting them R f . The fault
resistance R f is selected high, in this work, to mimic incipient stages of TTSC fault.

Table 2. Severity levels of TTSC fault.

Case N f R f

SC1 15 0.5 Ω
SC2 15 0.25 Ω
SC3 30 0.5 Ω
SC4 30 0.25 Ω

3.3. High Resistance Contact Fault Implementation

The implementation of the HRC fault involves simply a change to the SIMPLORER
circuit in which the affected phase circuit is linked in series with an adjustable fault
resistance (∆rs) proportional to the fault severity. The extreme case of HRC fault is when
a relatively large fault resistance is used with the faulted phase circuit. This situation is
considered as an open phase fault. Figure 6 depicts the HRC fault implementation in phase
B circuit of the faulted driven PMSM.

Figure 6. Electrical model of inverter-driven PMSM with HRC fault in phase B.

Three different fault severity levels of HRC are analyzed as given in Table 3, all based
on the assumption that the fault occurred in the phase B circuit.

Table 3. Severity levels of HRC fault.

Case ∆rs
rs

%

HRC1 50%
HRC2 100%
HRC3 150%

3.4. Static Eccentricity Fault Implementation

The machine is considered healthy if the stator and rotor geometrical centers are
concentric with the rotational axis. If the rotor center and rotational axis are shifted from
the stator center by a constant value, the machine is considered faulty with static eccentricity.
The coordinate center of the stator remains unchanged while the rotor and its axis of rotation
move in the direction of the fault as shown in Figure 7.
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Figure 7. Shift direction of the static eccentricity fault.

The fault is simulated along the positive Y-axis by modifying the shift (ε) value, taking
the three severities shown in Table 4 into account. Since the eccentricity fault is inherently
available during the manufacturing process, the machine is considered healthy if the
severity level of static eccentricity is below than 10%.

Table 4. Severity levels of static eccentricity fault.

Case ε
g %

ECC1 10%
ECC2 40%
ECC3 60%
ECC4 80%

3.5. Local Demagnetization Fault Implementation

The demagnetization fault is applied in FEM by lowering the density of the remnant
flux in the affected magnets. This could be uniform demagnetization in all magnets or
locally in some magnets. Three magnets have their top corners (near to the air gap)
replaced with an identical material with flux density reduced to 1 T. This is the most
prevalent case for demagnetization failures in PMSM. Figure 8 shows the affected magnets
by demagnetization fault.

Figure 8. Demagnetized magnets.

Changes in the number of demagnetized magnets in the modeled machine provide
different fault severities, as shown in Table 5. The local demagnetization fault is considered
in this study as some magnets get demagnetized in the machine model.
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Table 5. Severity levels of demagnetization fault.

Case Severity

Demag1 One Magnet
Demag2 Two Adjacent Magnets
Demag3 Three Nonadjacent Magnets

4. Numerical Results
4.1. Analysis in FOC-Driven PMSM

The spectral domain of the commanded phase A voltage is obtained using FFT for
different machine health conditions. The sampling period is set to 400 µs. The fundamental,
5th, and 7th harmonics are used here to show the fault effect on the voltage spectrum at
different severity levels. For FOC, the results are shown for the considered PMSM when
it is loaded with (I = 10 A). The machine is running at 600 rpm; therefore, the electrical
frequency of the machine is (50 Hz). Figure 9 shows the commanded voltage of phase A in
FOC drive for the healthy case.

Figure 9. The commanded voltage of phase A in FOC drive.

The stator voltage spectrum is shown in Figure 10 for healthy and faulty machine
under different severity levels of TTSC fault.

Figure 10. Variations in the harmonic content of stator voltage spectrum for healthy and faulty
machine under TTSC fault in FOC drive.

It could be observed that the magnitude of the fundamental, 5th, and 7th harmonics
in the voltage spectrum is reduced when TTSC fault is present and becomes more severe.
The magnitude changes in the spectrum are significant to distinguish between the healthy
case and TTSC fault. Besides that, it has been noticed that there is an increase in the
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2nd harmonic when TTSC is present. However, this analysis will show the fault effect
on the fundamental, 5th, and 7th harmonics in the voltage spectrum. Nevertheless, the
first eight harmonics will be used as features for diagnosis, as will be described in the
following section.

The stator voltage spectrum is shown in Figure 11 for healthy and faulty machine
under different severity levels of HRC fault.

Figure 11. Variations in the harmonic content of stator voltage spectrum for healthy and faulty
machine under HRC fault in FOC drive.

It could be observed that the magnitude of the fundamental harmonic in the voltage
spectrum is increasing significantly when HRC fault is present and become more severe. On
the other hand, the magnitude of the 5th and 7th harmonics is reduced, but these magnitude
changes might be too small to distinguish between the healthy case and the HRC fault.
However, the considered severity levels of HRC are relatively low, and this would justify
the insignificant changes in the magnitude of the 5th and 7th harmonics. Nevertheless,
these changes would be higher once the fault was present at a higher severity level.

The stator voltage spectrum is shown in Figure 12 for healthy and faulty machine
under different severity levels of eccentricity fault.

Figure 12. Variations in the harmonic content of stator voltage spectrum for healthy and faulty
machine under eccentricity fault in FOC drive.

It could be observed that the magnitudes of the fundamental and seventh harmonics
in the voltage spectrum are increasing when the eccentricity fault is present and becoming
more severe, while the magnitude of the fifth harmonic is significantly reduced. These
magnitude changes are significant to distinguish between the healthy case and eccentricity
fault. Besides that, these magnitude changes due to eccentricity faults are different from
those for TTSC and HRC faults. This would help in fault classification later on.
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The stator voltage spectrum is shown in Figure 13 for healthy and faulty machine
under different severity levels of demagnetization fault.

Figure 13. Variations in the harmonic content of stator voltage spectrum for healthy and faulty
machine under demagnetization fault in FOC drive.

It could be observed that the magnitude of the fundamental and 5th harmonics in the
voltage spectrum is increasing when demagnetization fault is present and becoming more
severe, while the magnitude of the 7th harmonic is reduced. These magnitude changes
could be used to distinguish between the healthy case and demagnetization fault. It is worth
mentioning that the considered severity levels of demagnetization fault are relatively low
as the outer corners of selected magnets get demagnetized only from 1.2 T to 1 T. Besides
that, the trend in magnitude change of the fundamental harmonic due to demagnetization
fault is similar to the trend due to HRC and eccentricity faults, while it is the opposite in
case of the 5th harmonic. This would help the classifier in discriminating between these
three faults, for instance.

4.2. Analysis in DTC-Driven PMSM

The spectral domain of the commanded phase A voltage is obtained using FFT for
different machine health conditions under DTC drive. The sampling period is set to 100 µs;
DTC requires a high sampling frequency to function properly. The fundamental, 5th, and
7th harmonics are also used here to show the fault effect on the voltage spectrum at different
severity levels. For DTC, the results are shown for the considered PMSM when it is loaded
with (T = 20 N·m). The machine is running at 600 rpm; therefore, the electrical frequency
of the machine is (50 Hz). Figure 14 shows the commanded voltage of phase A in DTC
drive for the healthy case.

Figure 14. The commanded voltage of phase A in DTC drive.
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The stator voltage spectrum is shown in Figure 15 for healthy and faulty machine
under different severity levels of TTSC fault when the machine is driven by DTC.

Figure 15. Variations in the harmonic content of stator voltage spectrum for healthy and faulty
machine under TTSC fault in DTC drive.

It could be observed that the magnitude of the fundamental, 5th, and 7th harmonics
in the voltage spectrum is reduced when TTSC fault is present, similar to the fault effect
in the FOC drive. However, it could be noticed that the magnitude of the 7th harmonic is
increased from SC1 to SC2 and from SC3 to SC4, where the number of shorted turns is the
same but different fault resistance is used. This is the same case for the 5th harmonic from
SC1 to SC2 but it is not from SC3 to SC4. Additionally, the magnitude of the 7th harmonic
is increased from SC1 to SC3 and from SC2 to SC4, where the number of shorted turns
is different but with the same fault resistance. This is the same case for the 5th harmonic
from SC1 to SC3, but it is not from SC2 to SC4. If these harmonics are used as features
for diagnosis approach, the classifier will be overwhelmed since the changes in the used
harmonics due to different TTSC severity levels are not consistent with an increase in the
fault severity.

The stator voltage spectrum is shown in Figure 16 for healthy and faulty machine
under different severity levels of HRC fault when the machine is driven by DTC.

Figure 16. Variations in the harmonic content of stator voltage spectrum for healthy and faulty
machine under HRC fault in DTC drive.

It could be observed that the magnitude of the fundamental harmonic in the voltage
spectrum is increasing significantly when HRC fault is present and become more severe. On
the other hand, the magnitude of the 5th has inconsistent change, where it does not change
significantly at HRC1 but it increases at HRC2 and then decreases at HRC3. Similarly, the
magnitude of the 7th starts decreasing at HRC1 but then starts increasing at HRC2 and
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HRC3. Once again, these inconsistent changes in the voltage spectrum due to different
HRC severity levels will result in high false classification results.

The stator voltage spectrum is shown in Figure 17 for healthy and faulty machine
under different severity levels of eccentricity fault when the machine is driven by DTC.

Figure 17. Variations in the harmonic content of stator voltage spectrum for healthy and faulty
machine under eccentricity fault in DTC drive.

It could be observed that the magnitude of the fundamental harmonic in the voltage
spectrum has inconsistent changes due to different severity levels of the eccentricity fault,
where it is reducing at ECC1 and ECC2 while it is increasing at ECC3 and ECC4. Similarly,
the magnitude of the 5th harmonic reduces at all eccentricity severity levels. However,
it decreases from healthy case to ECC1 and ECC2, increases from ECC2 to ECC3, and
then decreases from ECC3 to ECC4. It could be also noticed a similar inconsistent pattern
happens with the 7th harmonic. These irregular changes in the spectrum will result a
difficulty in performing fault detection and separation in DTC drives.

The stator voltage spectrum is shown in Figure 18 for healthy and faulty machine
under different severity levels of demagnetization fault when the machine is driven by DTC.

Figure 18. Variations in the harmonic content of stator voltage spectrum for healthy and faulty
machine under demagnetization fault in DTC drive.

It could be noticed that the magnitude of the fundamental harmonic in the voltage
spectrum has inconsistent changes due to different severity levels of demagnetization fault
where it is increasing at Demag1 and Demag2 but then reducing at Demag3. Similarly,
the magnitude of the 5th and 7th harmonics have inconsistent changes with increasing
the demagnetization fault severity. In comparison with applying FOC drives, the changes
in the voltage spectrum would not help the classifier in identifying fault, discriminating
between them, and estimating their severity.
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5. Diagnosis Approach

The spectrum of the commanded phase A voltage was obtained using the FFT method
in MATLAB, and the amplitude of the first eight harmonics was then extracted. The
inclusion of additional harmonics allows fault identification, categorization and estimate
for TTSC, HRC, static eccentricity and local demagnetization without the need for extra
sensors. This limits possible false indication using the proposed detection methods in the
literature that rely on using only single feature for fault diagnosis.

In this section, supervised classification algorithms (LDA, k-NN, and SVM) are com-
pared in regards to their capability in identifying faulty cases, discriminating them, and
evaluating their severity. Figure 19 shows the flowchart of the fault detection, separation,
and severity estimation algorithm.

In the stage of classification, the amplitude of considered harmonics serves as features
for fault occurrence and its severity increase. The number of samples for each machine
condition should be greater than the number of features that are utilized for detection in
order to ensure that the training of the classifier will eventually converge to a representative
classification model [43]. In this work, eight features are used for detection; therefore, ten
samples are utilized. Therefore, the speed is adjusted in FEM from 250 rpm up to 700 rpm in
50 rpm increments to obtain representative samples for healthy and faulty conditions. For
FOC, the magnitude of the stator current is set to be 10 A at β = 30◦, while the commanded
torque in DTC is set at 20 N·m at 0.57 Wb to get the MTPA operation for both controllers.
The numerical setup generates from each drive system a total of 140 data samples: 10 for a
healthy case, 40 for all severity levels of TTSC fault, 30 for all severity levels of HRC fault,
40 for all severity levels of static eccentricity fault, and 30 for all severity levels of local
demagnetization fault.

Figure 19. Flowchart of fault detection, separation, and severity estimation algorithm.

The first stage of the classification approach is aimed at identifying the fault type at
its early level, allowing for the application of appropriate mitigation techniques to avoid
any further damage, if possible. The fault severity is monitored using the second stage
of the classifiers and the severity estimation could be used to determine remedial actions.
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Therefore, samples of the faulty cases at the lowest severity are considered only in the
training pool to perform fault detection and separation in the first stage. The overall
detection accuracy may be determined by averaging the sum of the accuracy of each
individual case as the sample size is ten for each case. Table 6 displays the accuracy of
identifying and classifying the faults using the classifiers under consideration.

Table 6. Detection accuracy using MVSA approach for FOC- and DTC-driven PMSM.

FOC DTC
Case LDA k-NN SVM LDA k-NN SVM

Healthy 100% 100% 97.5% 0% 0% 50%
TTSC 100% 100% 100% 80% 70% 75%
HRC 70% 100% 80% 40% 40% 67.5%
Eccentricity 70% 100% 97.5% 30% 50% 57.5%
Demagnetization 80% 70% 87.5% 70% 40% 80%

Overall 84% 94% 92.5% 44% 42% 66%

It is clear that the considered classifiers are capable of fault detection and separation
using the MVSA approach in FOC-driven PMSM while their overall performance is signifi-
cantly degraded in case of DTC-driven PMSM. Moreover, in contrast to FOC drives, it can
be observed that all classifiers achieve reduced detection accuracy of the healthy machine
status in DTC drives. This results in a high number of erroneous indications in DTC drives
and unneeded drive shutdowns. Furthermore, in both drives, the SVM classifier has the
best detection and separation accuracy. Therefore, it is demonstrated that relying on the
MVSA approach for fault diagnosis in DTC drives would result in poor performance and
significant amount of false alarms.

Figure 20 provides the confusion matrix of LDA classifier for fault diagnosis to show
the false alarms and incorrect classification in FOC and DTC drives.

(a) (b)

Figure 20. Confusion matrix of LDA classifier for fault diagnosis for: (a) FOC drives and (b) DTC
drives.

The accuracy of the fault severity estimation using the LDA and SVM classifiers is
shown in Table 7. Once the faulty operation is indicated and fault type is detected from
the first stage of the supervised classification, then the second classification stage will be
dedicated for severity estimation of the detected fault. Therefore, samples of the detected
fault at each severity level are considered in the training pool to perform fault severity
estimation.
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Table 7. The accuracy of fault severity estimation using MVSA approach for FOC- and DTC-
driven PMSM.

FOC DTC
Fault Type LDA SVM LDA SVM

TTSC 85% 97.5% 42.5% 64.167%

SC1 100% 100% 50% 63.333%
SC2 100% 100% 40% 66.667%
SC3 80% 93.333% 30% 66.667%
SC4 60% 96.667% 50% 60%

HRC 96.667% 86.667% 30% 38.333%

HRC1 100% 100% 30% 35%
HRC2 90% 80% 20% 30%
HRC3 100% 100% 40% 50%

Eccentricity 100% 100% 30% 62.5%

ECC1 100% 100% 20% 53.333%
ECC2 100% 100% 20% 53.333%
ECC3 100% 100% 40% 70%
ECC4 100% 100% 40% 73.333%

Demagnetization 86.667% 71.667% 46.667% 56.667%

Demag1 100% 100% 80% 75%
Demag2 90% 50% 20% 55%
Demag3 70% 60% 40% 40%

It can be observed from Table 7 the degradation in the performance of LDA and
SVM classifiers for the fault severity estimation when DTC is applied in comparison
with FOC. This is related to the earlier mentioned fact of inconsistent changes in the
voltage spectrum due to different severity levels of each fault in case of DTC drives.
Therefore, further investigation for reliable fault diagnosis is required in DTC-driven
PMSMS. It is also important to note that the classification accuracy of the studied approach
is directly impacted by the density of the supervised learning. Accuracy may be enhanced
by collecting more samples. Furthermore, the investigated method is appropriate for
steady-state PMSM operations. Different signal processing techniques may be incorporated
to study the PMSM during nonstationary operation. Nevertheless, the incorporation of
extra harmonics enables fault recognition, classification, and estimation for TTSC, HRC,
static eccentricity, and local demagnetization without the need for additional sensors. This
reduces the likelihood of false indication utilizing detection techniques presented in the
literature that depend on a single feature for fault diagnosis.

6. Conclusions

The accuracy of the MVSA approach and three supervised classifiers (LDA, k-NN,
and SVM) for fault identification and severity estimation in inverter-driven PMSM was
investigated. Features used for classifier training to identify fault type and severity were
the amplitudes of harmonics in the phase voltage signal. Four faults were addressed: TTSC,
HRC, static eccentricity, and local demagnetization. The results show that the studied
MVSA diagnostic strategy worked well in FOC-driven PMSM while deteriorating in DTC-
driven PMSM. This is due to the compensatory nature of each controller. When FOC drive
is applied, there is a consistent correlation between the magnitude variations in the voltage
spectrum that are caused by the incidence of faults and the rise in the severity of faults.
The utilization of hysteresis comparators and variable switching frequency cause these
variations to be inconsistent in the case of DTC-driven PMSM, despite the fact that these
features are present. The vast majority of the existing detection and separation methods in
the literature for inverter-driven PMSMs were developed either for FOC drives or without
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addressing the controller type. As a result, when developing fault diagnosis algorithms,
the controller type and its impact on fault detectability should be addressed.
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The following abbreviations are used in this manuscript:

DTC Direct Torque Control
FEM Finite Element Model
FFT Fast Fourier Transform
FOC Field Oriented Control
HRC High Resistance Contact
k-NN K-Nearest Neighbor
LDA Linear Discriminate Analysis
MCC Motor Control Center
MTPA Maximum Torque Per Amperes
MVSA/MCSA Machine Voltage or Current Signature Analysis
NdFeB Neodymium-Iron-Boron Magnet
NVH Noise, Vibration, and Harshness
PMSM Permanent Magnet Synchronous Machine
SNR Signal-to-Noise Ratio
STFT Short Time Fourier transform
SVM Support Vector Machines
SVPWM Space Vector Pulse Width Modulation
TTSC Turn-to-Turn Short Circuit
VFD Variable Frequency Drives
ZSVC Zero-Sequence Voltage Component
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