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Abstract: Aiming at the impact of heat generation and temperature rise on the driving performance
of a permanent magnet (PM) motor, taking the PM in-wheel motor (IWM) for electric vehicles as
an object, research is conducted into the temperature distribution of the electromagnetic–thermal
effect and cooling structure optimization. Firstly, the electromagnetic–thermal coupling model
considering electromagnetic harmonics is established using the subdomain model and Bertotti’s
iron loss separation theory. Combined with the finite element (FE) simulation model established by
Ansoft Maxwell software platform, the winding copper loss, stator core loss and PM eddy current loss
under the action of complex magnetic flux are analyzed, and the transient temperature distribution of
each component is obtained through coupling. Secondarily, the influence of the waterway structure
parameters on the heat dissipation effect of the PM-IWM is analyzed by the thermal-fluid coupled
relationship. On the basis, the optimization design of waterway structure parameters is carried out to
improve the heat dissipation effect of the cooling system based on the proposed chaotic mapping ant
colony algorithm with metropolis criterion. The comparison before and after optimization shows that
the temperature of key components is significantly improved, the average convection heat transfer
coefficient (CHTC) is increased by 23.57%, the peak temperature of stator is reduced from 95.47 ◦C to
82.73 ◦C, and the peak temperature of PM is decreased by 14.26%, thus the demagnetization risk in
the PM is improved comprehensively. The research results can provide some theoretical and technical
support for the structural optimization of water-cooled dissipation in the PM motor.

Keywords: in-wheel motor; electromagnetic-thermal coupling; temperature field; convection heat
transfer coefficient; cooling structure optimization

1. Introduction

In recent years, new-energy vehicles have been widely promoted, and the PM syn-
chronous motor has been widely used in the development of IWM driving system for
electric vehicles due to its high specific power, compact structure, strong overload capacity
and other outstanding advantages. However, most of the IWM are highly integrated with
the structure of motor, controller, brake, etc., and are directly introduced into the hub. Then
the narrow assembly space and complex operating conditions will lead to more prominent
heat generation, and the resulting high temperature will cause thermal demagnetization of
the PM motor, which will affect the driving performance of the PM-IWM. Therefore, the
accurate prediction of the temperature field and the optimization of the cooling system are
of great significance to the design and control of the PM-IWM.

The importance of electromagnetic loss and thermal analysis has been discussed
by many references in recent years. Above all, scholars have conducted a lot of work
on electromagnetic field distribution by using the relative magnetic conductivity [1,2],
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Schwarz-Christoffel mapping [3,4], subdomain technique [5–7], FE analysis and so on, and
the magnetic flux and non-uniformity distribution of stator core under no-load and on-load
conditions are given [8,9]. On this basis, Liang et al. [10] analyzed the stator core loss under
no-load and on-load conditions according to the Bertotti model considering magnetic field
harmonics. Tao et al. [11] utilized the time stepping FE method to reveal the variation in
stator core loss of the PM motor under multi-load conditions. Ni et al. [12] investigated the
variation of PM eddy current loss under the action of high-frequency magnetic harmonics.
As a main reason for motor temperature rise, the change of heat source directly affects the
temperature field distribution, Li et al. [13] clarified the coupled relationship between heat
source location and node temperature by using the improved equivalent thermal-network
model, and the peak temperature distribution of the U-type core was obtained. Chen
et al. [14] introduced the temperature distribution of stator core, winding copper and PM
under different heat transfer conditions by the equivalent thermal-circuit model. Tong
et al. [15] calculated the iron loss and temperature rise of PM motor under rated load
and different power supply conditions through electromagnetic-thermal coupling three-
dimensional (3-D) FE model. Chai et al. [16] discussed the temperature field distribution
under the heat conduction and convection of windings copper based on the established
3-D multi-block model of windings in slots and end windings. Hu et al. [17] further
investigated the temperature field distribution of the motor according to the established
bidirectional coupling model of multi-physical field. Although the above method clarified
the temperature field distribution under the balance of heat generation and heat dissipation
to a certain extent, the transient temperature field considering electromagnetic harmonics
had not been paid enough attention. Therefore, enlightened by the basic theory of the
above research, it is necessary to further discuss the transient and stable distribution of the
temperature field incorporating electromagnetic harmonics.

As the main part affecting heat dissipation of PM motor, a reasonable design of cool-
ing structure has rapidly attracted the widespread attention of scholars. Chen et al. [18]
utilized the FE simulation model to calculate the temperature field distribution of stator
core, winding copper, PM and other components under the action of the cooling system.
Yu et al. [19] clarified the temperature distribution of the winding copper according to the
established 3-D electromagnetic-simplified fluid-thermal coupled model. Chang et al. [20]
introduced the heat dissipation performance of the IWM under different cooling config-
urations through the coupling effect between thermal, fluid and solid. Liang et al. [21]
comparative analyzed the influence of the circumferential and axial water jackets configu-
ration on the heat dissipation effect. References [22,23] discussed the influence of different
flow velocity, cooling channel configuration and number of channels on the CHTC and
stator temperature rise. To further improve the heat dissipation performance of the cooling
structure, Chen et al. [24] presented the response surface method to optimize the channel
diameter and channel spacing of the cooling structure. Li et al. [25] applied the Taguchi
method to optimize the axial and radial width of the self-circulated cooling channel. Roy
et al. [26] optimized the section width, number and layout of cooling channels by using the
cyclic iterative optimization method. Li et al. [27] proposed the back propagation neural
network model and multi-objective particle swarm optimization algorithm to optimize
the waterway width, connection angle, spoiler size and water velocity of the PM motor
cooling system. Although the above optimization design method has improved the heat
dissipation performance of PM motor to a certain extent, it takes the coupling of water
pressure loss, CHTC and temperature distribution as the objective, and the specific research
combined with optimization model and algorithm still needs to be further discussed.

The main contributions of this paper are as follows. Firstly, the magnetic flux densities
of the integrated PM-IWM are calculated by using the subdomain model and FE numerical
model. Secondly, an electromagnetic-thermal bi-directional coupling analytical model is
established according to Bertotti’s iron loss separation theory, and the time-varying charac-
teristics of stator core loss, winding copper loss and PM eddy current loss under the action
of complex electromagnetic harmonics are explored. Then, combined with the FE model,
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the temperature distribution of each key component is investigated. Furthermore, the
influence of waterway structure parameters on the convection heat transfer characteristics
and heat dissipation effect are explored based on the established thermal–fluid coupled
model. Finally, the multi-objective optimization design of waterway structure parameters is
carried out by using the improved chaotic mapping ant colony algorithm with metropolis
criterion, and the heat dissipation effect of the cooling system before and after optimization
is compared.

2. Temperature Field Analysis of Integrated PM In-Wheel Motor
2.1. Prototype

The physical model of the integrated PM-IWM studied in this paper is shown in
Figure 1. It is mainly composed of IWM, special hub, suspending sleeve, bearing, brake
disc assembly, and so on. Notably, the hub, rotor housing and brake disc are designed in an
integrated way. The stator is flexibly connected to the wheel shaft by using the suspending
sleeve and annular rubber bushing, and the integrated rotor is supported on the wheel shaft
through the suspending sleeve and bearing. Moreover, the U-type circulating waterway
connected with the external cooling system is added inside the stator.
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Figure 1. Structure of the integrated PM-IWM prototype.

2.2. Magnetic Field Prediction

To more accurately simulate the actual operating conditions of PM-IWM, the collabo-
rative simulation technology is used to calculate and analyze the electromagnetic field, loss
distribution and temperature distribution in this paper, and the temperature rise of each
component is obtained by the sequential coupling. Firstly, the magnetic density of air-gap
and stator core are calculated by sub-domain model and FE simulation. The equivalent
schematic diagram of the PM motor is shown in Figure 2. The model is divided into
4-region in the 2-D polar coordinate system, namely the PM region (Region 1), air-gap
region (Region 2), slot region (Region 3) and slot opening region (Region 4), as shown in
Figure 2a. Then, to further describe the magnetic field inside the stator core, the stator is
divided into three parts: tooth, tip and yoke, as shown in Figure 2b. In the armature circuit,
the insulated gate bipolar transistor is used as the power switch, and the upper and lower
switch signals of the same bridge arm are complementary. The three bridge arms of the
inverter are respectively connected to the three-phase windings of the PM motor, and the
three-phase symmetrical current output is achieved through the resistance inductance unit,
it is shown in Figure 2c.
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Figure 2. Subdomain model of magnetic field: (a) Subdomain distribution; (b) Stator structure;
(c) Inverter circuit.

Where αi is the position of the i-th slot, Rm, Rr and Rs are the radius of the magnet, rotor
yoke surfaces and stator bore, respectively. Rsb and Rst are the radius of the slot bottom
and top, respectively. lsa and loa are the width angle of slot and slot opening, respectively,
and the prototype parameters of the PM-IWM are shown in Table 1.

Table 1. Main parameters of the integrated PM motor.

Parameters Symbol Values Parameters Symbol Values

Pole/Slot number 2p/Ns 20/24 Stator bore radius Rs 145 mm
Magnet thickness hm 12 mm Slot top radius Rst 140 mm

Active length la 110 mm Slot bottom radius Rsb 115 mm
Rated current I 14 A Slot width angle lsa 8.5◦

Pole-arc/pole-pitch σp 0.86 Slot opening width angle loa 2.7◦

Inner rotor radius Rm 146.5 mm Magnet remanence Br 0.96 T

According to Maxwell’s theory, the vector potential equation of each subdomain can
be obtained for the radial magnetization as follows [5–7]:

∂2 Azη

∂r2 +
1
r

∂Azη

∂r
+

1
r2

∂2 Azη

∂α2 =


µo∂Mr

r∂α η = 1
0 η = 2
−µ0 J η = 3

0 η = 4

(1)

with 
Mr =

∞
∑

k=1,3,5,...

[
4pBr
kπµ0

sin kπαp
2p cos(kα− kωrt− kα0)

]
J = 2(Ji1−Ji2)

nπ sin(nπ/2) + Ji1+Ji2
2 ∑

n
cos
[

nπ
lsa
(α + lsa/2− αi)

] (2)

Where r and α are the radial and circumferential positions, η is the number of each
region (η = 1, 2, 3, 4), Br is the remanence of magnet, αp is the pole-arc ratio, ωr is the
rotor rotational speed, α0 is the rotor initial position, p is the number of pole pairs, Ji1 and
Ji2 are the current density amplitudes on both sides of the i-th slot, respectively, µ0 is the
permeability of vacuum.
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The general expressions of the vector potential distributions of each subdomain are
obtained by separating variables method, which can be expressed by:

Azη = ∑
n=1,2,3,···

[
κ1ηrζη + κ2ηr−ζη

]
cos
(
ζηα
)
+ ∑

n=1,2,3,···

[
κ3ηrζη + κ4ηr−ζη

]
sin
(
ζηα
)
+ Apη (3)

where

ζη =


n η = 1, 2

nπ/lsa η = 3
nπ/loa η = 4

(4)

where κ1η , κ2η , κ3η and κ4η are coefficients to be determined, Apη is the special solution,
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According to the continuity of radial and tangential flux density, the interface condi-
tions between subdomains can be obtained, as shown in Table 2.

Table 2. Interface conditions between different subdomains.

Boundary Location Constraint Equation

Rotor yoke surface 1
µ0µr

B1α|r=Rr
− 1

µr
Mα = 0

Interface between PM and air-gap B1r = B2r|r=Rm
; H1α = H2α|r=Rm

Interface between air-gap and slot opening B2α|r=Rs
= B4α|r=Rs

; Az4i|r=Rs
= Az2|r=Rs

Interface between slot opening and slot B4α|r=Rst
= B3α|r=Rst

; Az3i|r=Rst
= Az4i|r=Rst

Bottom surface of slot Bα|r=Rsb
= 0

According to the vector potential of adjacent slots, the magnetic field distribution
around the stator core can be obtained, where the magnetic flux density function of the
stator tooth can be expressed as:

Bt =
Φt

lawt
(6)

where Φt is the magnetic flux of stator tooth, wt is the width of the stator tooth:

Φt =
R2

sb − R2
s

2
(Bz3i − Bz3i+1) (7)

where {
Bz3i =

∫ Rsb
Rs

∫ Si
Si−c Az3i(r, α)rdrdα

Bz3i+1 =
∫ Rsb

Rs

∫ Si+1
Si+1−c Az3i+1(r, α)rdrdα

(8)

The yoke’s magnetic flux can be calculated as a function of the magnetic flux in a pole
pitch, and the expression is:

By =
Rs

2ty

∫ αp

0
B2r(Rs, α)dα (9)

where ty is the thickness of the stator yoke.
Combined with the above analytical model and the prototype parameters of the PM-

IWM in Table 1, the 3-D FE model is established by using the Ansoft Maxwell software
(ANSYS, Inc., version 2021R1, Canonsburg, PA, USA) [9,18], and the meshing in the area
with larger magnetic density has been carefully adjusted before satisfactory results, the
number of generated elements is 148283. The magnetic flux density of the PM motor under
on-load condition can be obtained through simulation calculation, and its contour is shown
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in Figure 3. It can be seen from the analysis that the magnetic flux lines distribution in the
PMs and stator slot is roughly symmetrical, and the maximum point is located at the stator
tooth tip.
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Figure 3. Magnetic flux density distribution contour of PM-IWM under on-load condition.

Figure 4 shows the radial and tangential flux density waveforms at the center of the
air-gap with rated on-load. Obviously, the comparison shows a good agreement between
the analytical and FE calculation results. It can be seen that the radial and tangential peak
values of air-gap magnetic density are 1.27 T and 0.57 T, respectively, and at the junction of
N-S pole, the radial magnetic density is relatively smaller, the amplitude is close to zero,
the tangential magnetic density is relatively larger, the amplitude is about 0.3 T.
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Figure 5 shows the time-varying waveform of magnetic flux density at the center
point of stator tooth, tip and yoke. It can be seen that the magnetic flux density at the
three representative points is sinusoidal in the time-domain, and the peak of magnetic
flux density in the radial direction are 0.90 T, 0.87 T and 0.32 T, respectively, the maximum
magnetic flux densities of stator tooth and yoke in the tangential direction are relatively
close, 0.14 T and 0.11 T, respectively, and the magnetic flux density of tooth tip is relatively
larger. Its peak value is 1.10 T.
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2.3. Loss Computation

As the main reason for PM motor temperature rise, the iron loss is mainly reflected in
the coupling of hysteresis loss and eddy current loss according to the description of classical
Bertotti’s iron loss separation theory [28]. There are not only rotating electromagnetic fields
but also alternating electromagnetic fields in the stator iron-core position. In the process of
operation, the high-order harmonic excitation current and magnetic density waveform with
time-space harmonics is considered to be the important factors affecting the motor iron
loss. According to the location of loss, it mainly includes stator core loss, winding copper
loss, PM eddy current loss and mechanical loss. According to relevant literature [9,13],
its mechanical loss accounts for a small proportion of iron loss, which can be neglected.
Therefore, the above first three losses are mainly considered in this paper, that is, the total
loss PZ can be expressed as:

Pz = PCu + PFe + Pme (10)

where 
PFe =

(
Kh f Bn

m + Kc f 2B2
m + Ke f 1.5B1.5

m
)
Viron

PCu = mI2R[1 + θ(Tw − Tw0)]

Pme =
LaVk2

me f 2
meB2

me L2
b

12ρp(La+Lb)

(11)

where PFe, PCu, and Pme are the iron-core loss, winding copper loss and PM eddy current
loss, respectively. Kh, Kc and Ke are the coefficient of hysteresis loss, eddy current loss and
abnormal loss, respectively. F is the current frequency, Bm is the magnetic amplitude of
PM motor components, Viron is the iron core volume, m is the current phase number, I is
the effective value of the current per unit period, R is the winding resistance value at the
current temperature, Tw is the temperature of windings, and Tw0 is the initial winding
temperature, θ is the temperature coefficient of resistance. La, Lb and V are the axial length,
width and volume of PM, respectively. Kme is the proportional constant of electromotance,
fme is the alternating frequency of magnetic field. Bme and ρp are the maximum magnetic
flux density and resistivity of PM, respectively.

According to the established 3-D transient FE model, the spatial distribution of sta-
tor core loss, winding copper loss and PM eddy current loss in the axial central section
can be calculated, as shown in Figure 6. It can be seen that the above three losses are
roughly symmetrical, with the peak values of 3.4465 × 105 W/m3, 8.0069 × 105 W/m3 and
1.5707 × 105 W/m3, respectively. The core loss is mainly concentrated in the position be-
tween stator tooth, and the distribution of instantaneous copper loss is basically consistent
with the winding layout. Some PMs corresponding to the main loss positions of the iron
core and winding copper have concentrated eddy current losses.



Energies 2023, 16, 1527 8 of 18

Energies 2022, 15, x FOR PEER REVIEW 8 of 19 

According to the established 3-D transient FE model, the spatial distribution of sta-
tor core loss, winding copper loss and PM eddy current loss in the axial central section 
can be calculated, as shown in Figure 6. It can be seen that the above three losses are 
roughly symmetrical, with the peak values of 3.4465 × 105 W/m3, 8.0069 × 105 W/m3 and 
1.5707 × 105 W/m3, respectively. The core loss is mainly concentrated in the position be-
tween stator tooth, and the distribution of instantaneous copper loss is basically con-
sistent with the winding layout. Some PMs corresponding to the main loss positions of 
the iron core and winding copper have concentrated eddy current losses. 

(a)                   (b)   (c)

Figure 6. Iron loss distribution contour of PM motor during on-load condition: (a) Stator core loss; 
(b) Winding copper loss; (c) PM eddy current loss.

Figure 7 shows the steady-state time-varying curves of the above three lost power.
The winding copper loss is the largest, and the peak loss power and effective output 
value are 256.76 W and 247.66 W, respectively. The stator core loss is lower than the 
winding copper loss, the peak loss power is 142.23 W, and the effective output value is 
104.64 W. The PM eddy current loss is the lowest, with the peak loss power and effective 
output value are 68.96 W and 39.11 W, respectively. 

Figure 7. Loss power time-varying curves of PM-IWM during on-load condition. 

2.4. Temperature Field Analysis 
The skin effect and thermal radiation effect of windings are ignored in the temper-

ature field calculation. The ambient temperature and initial temperature are maintained 
at 25 °C in the solution process, and only the heat conduction and convection process are 
considered. The transient temperature field of anisotropic medium can be obtained by 
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Figure 6. Iron loss distribution contour of PM motor during on-load condition: (a) Stator core loss;
(b) Winding copper loss; (c) PM eddy current loss.

Figure 7 shows the steady-state time-varying curves of the above three lost power. The
winding copper loss is the largest, and the peak loss power and effective output value are
256.76 W and 247.66 W, respectively. The stator core loss is lower than the winding copper
loss, the peak loss power is 142.23 W, and the effective output value is 104.64 W. The PM
eddy current loss is the lowest, with the peak loss power and effective output value are
68.96 W and 39.11 W, respectively.
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2.4. Temperature Field Analysis

The skin effect and thermal radiation effect of windings are ignored in the temperature
field calculation. The ambient temperature and initial temperature are maintained at 25 ◦C
in the solution process, and only the heat conduction and convection process are considered.
The transient temperature field of anisotropic medium can be obtained by using the heat
conduction control differential equation, and its expression is:

∇(λi∇Ts) + qi = 0 (12)

where λi is the thermal conductivity of each component, which is determined by the
material properties. Ts is the instantaneous temperature value, and qi is the heat generation
rate.

The heat balance equation of the fluid-solid coupling interface is expressed as:

− λi

(
∂Ts

∂n

)
= ai

(
Ts − Tf

)
(13)

where n is the normal direction of the coupling surface, ai is the CHTC of each coupling
surface, and Tf is the temperature of the cooling medium.
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The equivalent thermal conductivity of the insulation layer is generally calculated by
using the following formula:

λe =
∑n

i=1 δi

∑n
i=1(δi/λci)

(14)

where δi and λci are the thickness and thermal conductivity of each heat conducting body.
The air disturbance on the stator surface will be caused by the during rotation, which

will strengthen the convection and heat dissipation of the end winding, and the CHTC of
the stator end surface is:

a1 =
1 + 0.04vt

0.045
(15)

where vt is the wind speed of the stator end surface.
In view of the integrated design of rotor shell, the rotor can be regarded as natural

cooling when the wind speed is about zero, and its surface CHTC can be expressed as:

a2 = 14 3

√
Tc

25
(16)

where Tc is the external ambient temperature.
The heat transfer in the air-gap can be equivalent to the heat conduction of static fluid,

and its thermal conductivity can be expressed as [18]:

λ1 =
19
104

(
Rs

Rm

)−2.9084(ωrRsδ

60vr

)0.46141ln(3.331−Rs/Rm)

(17)

where δ = Rm − Rs, δ is the air-gap length.
According to the above boundary conditions and the established 3-D temperature field

simulation model, the thermal flux vector distribution of the PM motor can be calculated,
as shown in Figure 8. It can be seen from the analysis that part of the heat is dissipated to
outside of the body through the rotor housing, while the rest of heat is accumulated in the
stator teeth and yoke positions instantaneously, which further aggravates the continuous
rise of stator temperature.
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Figure 9 shows the temperature distribution contour of main components of the PM-
IWM under on-load condition. The winding copper loss is relatively larger, the upper
surface temperature is higher than the lower surface, and the overall distribution is approx-
imately symmetrical in the middle, the maximum temperature is 131.24 ◦C, and the stator
core temperature is close to the winding, with the peak temperature of 130.14 ◦C, as shown
in Figure 9a,b. It can be seen from Figure 9c,d that the PM temperature mainly depends
on the winding temperature and internal eddy current loss, and the peak temperature is
88.01 ◦C. Since the rotor yoke is closest to the outside, the temperature is relatively lower,
and the peak temperature is 87.55 ◦C.
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whole, the winding temperature is the largest, followed by the stator core temperature, 
and the PM temperature is close to the rotor yoke, which is relatively lower. The 
time-varying curves of temperature rise of the stator tooth, tip and yoke shows an ap-
proximate logarithmic trend, as shown in Figure 10b, and the silicon steel sheet is a ma-
terial with good thermal conductivity, which makes the temperature difference between 
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Figure 9. Temperature distribution contour of PM-IWM components under on-load condition:
(a) Winding; (b) Stator core; (c) PM; (d) Rotor yoke.

Figure 10a shows the time-varying curves of temperature rise of the PM-IWM com-
ponents. Before 2409s, the overall temperature increases approximately logarithmically,
and after 5398s, the temperature of each component tends to be stable. On the whole, the
winding temperature is the largest, followed by the stator core temperature, and the PM
temperature is close to the rotor yoke, which is relatively lower. The time-varying curves
of temperature rise of the stator tooth, tip and yoke shows an approximate logarithmic
trend, as shown in Figure 10b, and the silicon steel sheet is a material with good thermal
conductivity, which makes the temperature difference between the three parts of the stator
smaller. Its peak temperatures are 130.14 ◦C, 128.92 ◦C and 127.53 ◦C, respectively.
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where Rer is the Rayleigh number, Dw is the hydraulic diameter, vf is the kinematic vis-
cosity of coolant, Pr is the Prandtl number, Nur is the Nusselt number, hf is the CHTC of 
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3. Impact of Cooling Structure on Heat Dissipation of PM In-Wheel Motor

The heat generated during operation of the PM motor is mainly dissipated by the
cooling medium. In the calculation process, it is usually assumed that the cooling medium
is incompressible fluid, and the standard k-ε model should be used to describe the turbu-
lent effect of coolant [26]. Meanwhile, the speed of the cooling medium should also be
continuous under steady flow, and the conversion process between momentum and energy
can be expressed as: 

∇ · v = 0
ρ f

dv
dt = −∇p + µ∇2v

∇ ·
(

λ f∇Tf

)
= ρ f C f

∂Tf
∂t +∇ ·

(
ρ f C f vTf

) (18)

where v, µ and p are the fluid velocity, dynamic viscosity and pressure of the cooling
medium, respectively. ρf, Cf and λf are the density, specific heat capacity and thermal
conductivity of the cooling medium, respectively.

According to the similarity criterion of fluids, the CHTC of the flow channel can be
derived from the following equation [29]:

Rer =
vDw
v f

Pr =
µC f
λ f

Nur = 0.023Re0.8
r P0.4

r

h f =
Nurλ f

Dw

(19)

where Rer is the Rayleigh number, Dw is the hydraulic diameter, vf is the kinematic viscosity
of coolant, Pr is the Prandtl number, Nur is the Nusselt number, hf is the CHTC of the
channel.

According to the initial design analysis and relevant literature statement, the parame-
ters that affect the equivalent heat dissipation performance mainly include the number of
waterways, inlet flow velocity, aspect ratio of the waterway section, fillet radii of U-type, etc.
For the U-type waterway selected in this paper, its specific structure and design parameters
are shown in Figure 11.
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Figure 11. Configuration and main parameters of U-type waterways.

Assume that the initial coolant temperature is 25 ◦C and the inlet fluid velocity is
0.50 m/s. The coolant flow velocity, pressure and CHTC of waterway are calculated
according to the established 3-D simulation model of thermal-fluid coupling, and the stator
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temperature field distribution under this condition is obtained, as shown in Figure 12. As
shown in Figure 12a, the CHTC decreases gradually from inlet to outlet, which is due to
the low temperature of the coolant entering waterway. At the section, the CHTC gradually
increases from inside to outside, and the maximum is 651.21 W/(m2·K). Figure 12b shows
the velocity streamline of waterway with elbows, and the vortex and backflow exist in the
elbows, which causes a different velocity distribution, and the minimum flow velocity is
about 0.13 m/s. The pressure in the waterway gradually decreases from inlet to outlet, with
a minimum of about 2.54 × 102 Pa, as shown in Figure 12c. Based on the above conditions,
the stator temperature decreases significantly, and the overall distribution is relatively
uniform, with a peak of 95.47 ◦C, as shown in Figure 12d.
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Figure 13 shows the influence of the number of waterways nw, flow velocity vin, section
width of waterway bw and fillet radii of U-type structure Rc on the CHTC and the peak
temperature of stator. The CHTC is proportional to nw and vin, when nw is larger than 22, it
rises gently. The peak temperature of stator decreases with the increase of nw and vin, when
vin is greater than 0.8 m/s, it decreases slowly, as shown in Figure 13a,b. Figure 13c shows
the CHTC changes linearly with bw, and the peak temperature of stator decreases with the
increase of bw. When the width is 11 mm, a turning point appears, and then it falls gently.
The CHTC rises rapidly and then decreases slightly with the increase of Rc, and the peak
temperature of stator decreases rapidly and then rises slowly, as shown in Figure 13d. It
can be seen from the analysis that the CHTC increases in varying degrees with the increase
of the main parameters, which makes the peak temperature of stator decrease, thereby
improving the heat dissipation performance of the cooling system to a certain extent.
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4. Optimization Design of Waterway Structure Parameters
4.1. Chaotic Mapping Ant Colony Algorithm Based on Metropolis Criterion

Ant colony algorithms analogize the social behavior of ant colonies, they are a class
of meta-heuristics which are inspired from that real ants can find the shortest path from
a good source to nest. It uses ants’ walking path to represent the feasible solution of the
problem to be optimized. All paths of the entire ant colony constitute the solution space
of the problem to be optimized. Among them, the primary means for ants to form and
maintain the line is a pheromone. Ants deposit a certain amount of pheromone while
walking, and each ant probabilistically prefers to follow a direction rich in pheromone.
Thus, the shorter path will receive a greater amount of pheromone per time unit and in
turn a larger number of ants will choose the shorter path. Due to this positive feedback
(autocatalytic) process, all the ants will rapidly choose the shorter path. At this time, the
path can be regarded as the optimal solution of the problem to be optimized [30].

The search process of the ant colony algorithm mainly uses two types of rules, which
determine the moving rules of the next location and pheromone update rules. Under the
guidance of pheromone, the ant walks in the best direction, assuming that an ant currently
at the position x0 chooses to move to the next position xi by applying the following
probabilistic transition rule:

px0i = cα
0iτ

β
0i (20)

After normalization, it can be expressed as:

p′x0i
=

cα
0iτ

β
0i

ni
∑

i=1
cα

0iτ
β
0i

(21)

where c0i is the pheromone level between position 0 and position i, τ0i is the inverse of the
distance between position 0 and position i, ni is the set of positions which remain to be
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visited when the ant is at position i, α and β are two adjustable positive parameters that
control the relative weights of the pheromone trail and heuristic visibility.

After each ant completes its tour, the pheromone amount on each path will be adjusted,
σ is the pheromone decay parameter (σ ∈ (0, 1)) where it represents the trail evaporation
when the ant chooses a position and decides to move, and the update equation is:

τ′ i = (1− σ)(τi + ∆τ) (22)

where τi is the pheromone level before position update, ∆τ is the increased pheromone.
The CHTC, pressure loss and peak temperature of stator are taken as the optimization

target in this paper, the parameters of nw, vin, bw, and Rc are optimized. The optimization
problem can be described as:

minF(X) = [ f1(X), f2(X), f3(X)]

s.t.
{

X = [X1, X2, X3, X4] = [Rc, nw, vin, bw]
Xmin

i ≤ Xi ≤ Xmax
i , i = 1, 2, 3, 4

(23)

where F(X) is the fitness function of the optimization target, f1(X), f2(X), and f3(X) are the
reciprocal of CHTC (1/h), the pressure loss (∆p) and the peak temperature of stator (Tm),
respectively, Xi is the design variable, Xmin

i and Xmax
i are the upper and lower boundary

values of the design variable, respectively. The initial value and preset ranges of the design
variable, as shown in Table 3.

Table 3. Preset ranges of design variables.

Design Variable Symbol Initial Value Constraint
Condition

Number of waterways nw 20 16 < nw < 26
Coolant flow velocity vin 0.50 m/s 0.20 < vin < 1.20

section width of waterway bw 14.67 mm 10 < bw < 18
fillet radii of U-type Rc 2 mm 0 < Rw < 8

To solve the problems of large randomness and small coverage of the initial popula-
tion generated in the traditional ant colony algorithm. According to the ergodicity and
randomness of chaotic motion, as well as the uniform probability density of Tent mapping,
the Tent chaotic-map is used to generate the initial population Xi in this paper, and to
improve the convergence speed and accuracy of the algorithm. The initial random position
of the ant colony can be expressed as:

Xi = Xmin + x∆X (24)

with

xi+1 =

{
2xi 0 ≤ xi ≤ 0.5

2(1− xi) 0.5 ≤ xi ≤ 1
(25)

where Xmin is the lower boundary position, ∆X is the moving range of ant colony, x is the
random sequence generated by iteration of Tent chaotic-map.

In the process of accepting new paths, the traditional ant colony algorithm is selected
according to the density of pheromones, which will eliminate the potential paths prema-
turely, resulting in too fast convergence in the early stage of the algorithm, thus causing
local optimization problems. In order to make more ants search carefully in the neigh-
borhood of high-quality path and improve the accuracy of optimization, and this paper
proposes an improved ant colony path selection method based on the Metropolis criterion.
The selection probability of the ants from the current path to the next path is:

pi =

{
1 τi+1 ≥ τi

1− exp
(

τi+1−τi
kgE

)
τi+1 < τi

(26)
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where E is the control coefficient of the acceptance probability, pi is the probability of ants
moving from the current path i to the next path i + 1. When the pheromone density of the
new path is lower than the current path, there is a certain probability of ants moving to the
new path, the probability decreases with the increase of iteration number kg.

4.2. Optimization Results and Analysis

The multi-objective optimization design of waterway structure parameters is carried
out by using the improved chaotic mapping ant colony algorithm with the Metropolis
criterion, and the pareto frontier distribution of the obtained optimization target is shown
in Figure 14. Combined with the influence of waterway structure on heat dissipation effect,
each objective function is weighted through the Pareto solution of the dominated domain
formed by iteration. Namely, f f itness = ∑3

i=1 φi fi, wherein ϕ1 = 0.4, ϕ2 = 0.2 and ϕ3 = 0.4.
The multi-objective function is reduced to a single objective, and then the optimal solution
of structure parameters is obtained.
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Figure 15 shows the changes of waterway structure parameters and design targets
before and after optimization. The waterway structure parameters have changed to varying
degrees after optimization. The number of waterways has increased to 24 after rounding,
the coolant flow velocity is increased from 0.50 m/s to 0.86 m/s, which is 72.00% higher,
the section width of waterway is reduced from 14.47 mm to 11.02 mm, and the fillet radii
of U-type is increased from 2 mm to 5 mm after optimization and rounding, as shown
in Figure 15a. Figure 15b shows the waterway pressure loss is reduced from 2.87 kPa
to 2.62 kPa, a decrease of 8.71%, the peak temperature of the stator has decreased from
95.47 ◦C to 82.73 ◦C by 13.34%, and the average CHTC is increased from 563.75 W/(m2·K)
to 696.62 W/(m2·K), increasing by 23.57%.

Figure 16 shows the rise and peak temperature of the stator, winding, PM and rotor
have decreased to varying degrees after the optimization of the waterway structure. Among
them, the peak temperature change of winding copper is close to that of the stator, and the
temperature decreases from 95.97 ◦C to 83.51 ◦C, reducing by 12.98%. The change of stator
temperature has an obvious effect on air-gap heat conduction and PM heat radiation. The
peak temperature of PM decreases from 65.81 ◦C to 56.42 ◦C, a decrease of 14.26%, and the
peak temperature of rotor is reduced from 62.68 ◦C to 54.86 ◦C by 12.47%. Furthermore,
the heat dissipation performance of PM-IWM and the demagnetization risk in the PM are
improved comprehensively.
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5. Conclusions

(1) The heat generation, temperature field distribution and cooling structure optimization
of the integrated PM-IWM are researched in this paper. Firstly, the magnetic flux
density distribution of the PM, air-gap and stator core are compared and calculated by
using the subdomain model and FE numerical model. The space-time distribution of
stator core loss, winding copper loss and PM eddy current loss is obtained according to
the Bertotti’s iron loss separation theory. The core loss is mainly concentrated between
the stator teeth, the distribution of instantaneous copper loss is basically consistent
with the winding layout, and there is a certain concentration of eddy current loss
in some corresponding PM. Combined with the 3-D temperature simulation model,
the temperature rise process and distribution of the main components are calculated.
After the temperature rise tends to be stable, it can be seen that the winding copper is
the largest, followed by the stator core, the PM and rotor yoke are relatively lower, and
the peak temperatures are 131.24 ◦C, 130.14 ◦C, 88.01 ◦C and 87.55 ◦C, respectively.

(2) The coolant flow velocity, pressure, CHTC and stator temperature distribution are
analyzed based on the thermal-fluid coupled model and Ansoft Maxwell software
simulation platform. The effects of the waterway structure parameters on the CHTC,
pressure loss and peak temperature of stator are also clarified. It can be concluded that
the CHTC is approximately proportional to the number of waterways, flow velocity
and section width of waterway, and with the increase of the U-type fillet radii, it rises
rapidly and then decreases slightly. The peak temperature of the stator decreases with
the increase of number of waterways, flow velocity and section width of waterway,
and decreases rapidly and then rises slowly with the increase of the U-type fillet radii.
The comparison results show that the change of waterway structure parameters has a
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significant impact on the heat dissipation performance of IWM, in which the effect
results also provide some guidance for its optimal design.

(3) Taking the number of waterways, flow velocity, section width of waterway and
fillet radii of U-type as design variables, the heat dissipation effect of the cooling
system is optimized based on the proposed chaotic mapping ant colony algorithm
with metropolis criterion. Moreover, the Pareto frontier distribution of the optimiza-
tion target is obtained. After optimization, the waterway pressure loss decreases
from 2.87 kPa to 2.62 kPa, reducing by 8.71%. The average CHTC is increased from
563.75 W/(m2·K) to 696.62 W/(m2·K), increasing by 23.57%. The peak temperature
of the stator has decreased from 95.47 ◦C to 82.73 ◦C by 13.34%. In addition, the rise
and peak temperature of key components such as winding copper, PM and rotor are
reduced to varying degrees. The optimized waterway structure comprehensively
improves the heat dissipation effect of the motor and the demagnetization risk in
the PM. The research results can provide some theoretical and technical support for
design and control of the integrated PM-IWM.
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