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Abstract: The pressure drop for air-water two-phase flow in pipeline systems with S-shaped and
vertical risers at various inclinations (−1◦, −2◦, −4◦, −5◦ and −7◦ from horizontal) was predicted
using an artificial neural network (ANN). In the designing of the ANN model, the superficial velocity
of gas and liquid as well as the inclination of the downcomer were used as input variables, while
pressure drop values of two-phase flows were determined as the output. An ANN network with a
hidden layer containing 14 neurons was developed based on a trial-and-error method. A sigmoid
function was chosen as the transfer function for the hidden layer, while a linear function was used in
the output layer. The Levenberg-Marquardt algorithm was used for the training of the model. A total
of 415 experimental data points reported in the literature were collected and used for the creation of
the networks. The statistical results showed that the proposed network is capable of calculating the
experimental pressure drop dataset with low average absolute percent error (AAPE) of 3.35% and
high determination coefficient (R2) of 0.995.

Keywords: pipeline-riser; gas-liquid; pressure drop; artificial neural network (ANN)

1. Introduction

Gas and liquid two-phase flow is frequently encountered in many processes including
petrochemical, chemical, pharmaceutical, power and nuclear engineering. In offshore
petroleum fields, the mixture of oil and gas from production wells is usually transported to
floating platforms through a pipeline-riser system [1]. Pressure drop is a critical parameter
for gas-liquid flows since it is of great importance for the design and operation of pipelines.
The subsea pipeline transportation system generally consists of a long-distance pipeline
of several kilometers on the seabed, and a riser to the platforms with a length depending
on the depth of the water [2]. As a result of the uneven sea bed, the production pipeline
transporting oil and gas simultaneously is usually not straight and can vary approximately
−10◦ from the horizontal [3]. A review study by Shao et al. [4] on adiabatic two-phase
flows in tubes with different orientations showed that the flow pattern, pressure drop and
void fraction are greatly affected by the inclination angle. It is well known that the power
consumption costs of pumps constitute a substantial portion of the operational costs for the
overall pipeline transportation. Considering the length of the pipeline, the over-estimation
of the pressure gradient leads to a huge amount of power being consumed by the pumps.
Therefore, a method for the accurate prediction of the pressure drop is required to optimize
operational conditions.

It is known that the morphology of the gas-liquid flow greatly effects pressure drop
and liquid-holdup [5–7]. A great number of investigations have been performed, and
are still ongoing, to gain a better understanding of the flow patterns. The most common
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flow regimes found in vertical gas-liquid flows are bubbly flow, churn flow, slug flow,
and annular flow [8–11]. To this day, many studies related to the flow patterns of gas-
liquid two-phase flow in pipeline-risers have been published. Severe slugging is a typical
multiphase flow generated in a pipeline-riser system. Schmidt et al. [12] presented the
flow regime diagram of oil and air flowing in the pipeline of 50 mm I.D. Taitel et al. [13]
investigated the transition of flow patterns of gas-liquid in pipeline systems with a vertical
riser. Based on visual observation and pressure drop over the riser, Malekzadeh et al. [14]
observed five typical flow patterns in a long pipeline-riser system. They classified the
flow regimes into three types, i.e., unstable oscillating flow, severe slug flow and normal
stable flow. As offshore petroleum exploration heads to deep-water, S-shaped risers have
been used more and more widely. Tin [15] was the first author to report the results of an
experimental investigation on severe slugging occurred in risers with an S-shaped geometry.
Five types of unstable flows, including severe slug flow, were recognized in their work.
Montgomery [16] performed investigations on air and water in risers with an S-shaped
configuration and reported three kinds of unstable flows. Li et al. [17] and, more recently,
Li et al. [2] from Xi’an Jiaotong University studied the air-water two-phase flow in an
S-shaped flexible riser affected by a long-distance pipeline with 114 m and 1000 m in length,
respectively. The flow patterns were classified into two types of severe slug flow and
stable flow, which includes normal slug, bubbly and annular flow. Theoretical transition
criteria for each flow pattern were also proposed. Based on the current understanding,
two-phase flow in complex piping has been paid more and more attention, and studies
on the identification of local flow patterns formed in pipeline-risers have been performed
by Blaney and Yeung [18] from Cranfield University, and Ye et al. [19], Zou et al. [20] and
Xu et al. [21] from Xi’an Jiaotong University. It is evident from the above statement that due
to the existence of elbow-connecting pipelines and risers, flow patterns in pipeline-risers
are different in comparison with those in tubes with one orientation.

The total pressure drop of gas and liquid flowing in piping generally contains hydro-
static, accelerational, local and frictional pressure drop, among which frictional pressure
drop is the most complex term. During the past few decades, much attention has been paid
to calculating the two-phase frictional pressure gradient, and many correlations have been
proposed. Generally, these models can be regarded as two types, i.e., separated [22–27] and
homogeneous flow approaches [28–33]. However, most of these pressure drop prediction
models were generated for vertical or horizontal pipes. Therefore, the application of these
models is doubtful when they are used for pipeline-riser systems, in which the flow pat-
terns are quite different from those in straight pipes. In addition, the correlations giving
satisfactory performance and suitable for estimating the pressure in straight two-phase
flows are quite limited. In addition to this, each correlation has its own limitations. For
example, some correlations are only applicable to a certain flow regime or a pipe inclination.
Spedding and Benard [34] conducted an experimental investigation on the pressure drop of
air and water through the 90◦ bend. It was found that as a result of partial choking by the
elbow, the structure of the flow patterns in the upstream vertical tube was quite different to
those in straight vertical tubes. Liu et al. [35] studied the fluctuating force induced by a
two-phase flow through a 90◦ elbow with 52.5 mm I.D. and 76.2 mm radius. Kim et al. [36]
also conducted a two-phase flow experiment in a horizontal to upwardly vertical pipe
connected by a 90-degree bend. The geometric effects of a 90 degrees bend on the pressure
drop was investigated. It was found that the conventional Lockhart-Martinelli correlation
cannot accurately predict the pressure loss across the elbow due to the fact that the ad-
ditional loss caused by the flow restrictions was not taken into consideration. They also
proposed a new frictional pressure drop correlation by introducing a parameter accounting
for the flow restriction configuration into the correlation suggested by Chisholm [23]. More
recently, flow patterns and pressure drop of air-water through a complex piping network
were experimentally studied by Dang et al. [37]. The piping system of 152.4 mm inner
diameter included a horizontal section followed by a downwardly inclined vertical tube
of 15.09 m in length and finally ended at a horizontal pipe. Two 90-degree elbows were
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used for the connection of pipes with a different orientation. They found that flow restric-
tion geometry notably influences the frictional pressure drop, and the results agree with
Kim et al.’s correlation.

The above review indicates that many studies of the two-phase flow in a complex
piping system have been conducted and positive results have been obtained. However,
only a few results focus on the pressure drop with a flow direction change. It is difficult
to predict the pressure drop precisely as a result of the inherent complexity associated
with flows having several different phases, especially in piping networks with different
inclinations. In offshore petroleum industrial applications, where processes involving
gas-liquid two-phase and even gas-liquid-liquid three-phase flows are often formed, the
determination of the pressure drop at a specified operating condition is urgently needed for
pumping, gathering and transporting oil and gas mixtures. In order to facilitate the design
and scale-up of pipelines transporting oil and gas simultaneously, a model that can predict
pressure drop with substantial accuracy over a wide range of properties of the working
fluid and operating conditions is needed.

Recently, many researchers have demonstrated the successful application of machine
learning techniques to overcome the considerable complexity of multiphase flows [38].
ANN is a kind of non-linear and brain-inspired system which tends to behave like a human
being [39]. It is suitable for the rapid estimation of process parameters as long as the
network is properly trained [39]. Thanks to the advantages of machine learning, one can
develop an ANN model even without any knowledge of the process phenomenology [40].
Therefore, ANNs have been used more and more widely for investigating the correlation
between processing parameters and final properties [41]. The ability of ANN network to
provide accurate results and the requirement for the accurate prediction of pressure drop
in complex pipelines inspired this research. The main objective of this study is to develop
an ANN model to obtain a sufficiently better prediction of the pressure drop in pipeline
conveying gas-liquid with a flow direction change.

2. ANN Model
2.1. Fundamentals of ANN

ANN is a nonlinear tool imitating the human brain. The main features of ANNs are
learning adaptation, generalization, massive parallelism, robustness and abstraction. Its
abilities for solving complex problems make it a powerful tool for engineering in various
applications, including multiphase flow dynamics [42].

The most commonly used is the multi-layer perceptron (MLP), which is composed
of input, hidden and output layers. A typical ANN usually consists of input variables,
weights, weighted summation and a transfer function, as well as outputs [43]. Input
variables are information received by elements in the subsequent layer from the preceding
layer. When all inputs are directly obtained through experimental measurement, the ANN
is regarded as empirical. If inputs are associated with physical principles, the ANN is
semi-empirical. The inputs are multiplied by weights connecting the nodes in adjacent
layer. The value of weights is calculated using a fitting procedure. The weighted values
of inputs are fed to the summing junction and are summed with the bias of the elements.
The summation of the weighted inputs and bias of each element passes through a transfer
function and yields output. For a detailed introduction of ANN, the reader might consult
references [44].

In practical use, the feed-forward neural network consisting of three layers is the most
commonly used network structure [38]. This type of network generally includes an input
layer, a hidden layer and an output layer. The first layer of the network acts as a receiver
of the input variables from the external environment, while the output of the network
is provided by the third layer. Between the input and output layers, there is/are one or
more layers named hidden layers. Each of the neurons in the input layer is linked to all
of the neurons in the hidden layer, which are also connected to the output neuron. Input
variables introduced into the first layer was scaled and propagated to the hidden layer,
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where the nodes combine the input from the previous layer and transfer the summation to
the output layer.

2.2. ANN Architecture

It is reported that a neural network with one hidden layer is sufficient to produce a
satisfactory estimation in most cases [45]. Thus, a three-layer network structure is suggested
in the design of a practical feed-forward network. In the present study, a back-propagation
network containing one input layer, one hidden layer and one output layer is developed
for the prediction of pressure drop over the riser. The structure of the model is illustrated
in Figure 1.
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Physics mechanisms and flow charts are often used for selecting the inputs. More
details about the procedure for selecting the input parameters can be found in [46,47]. The
input layer has four elements: superficial liquid velocity (USL), superficial gas velocity
(USG), riser diameter (D) and inclination of downcomer (β). The output of the ANN model
has only one variable, i.e., the pressure drop over the riser (∆p). The data in the hidden
layer and outlet layer is transferred by a sigmoid function, shown in Equation (1) as follows:

zj =
1

1 + e−yj
(1)

zj is the output of jth neuron.
Every single neuron in both the hidden layer and the output layer essentially carries

out two tasks: (1) combines all process inputs from the previous layer; and (2) transfers the
weighted summation to produce the output to the neurons in the next layer, as is shown in
Figure 2.
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In both the hidden layer and the output layer, a weighted summation of all process
inputs from the previous layer is produced by each neuron, based on the method given as:

yi = ∑ xiwji + θj (2)

where yj is the weighted summation of all the inputs of the jth node, xi represents the
output provided by the neuron in the previous layer, the weight between the two linked
neurons is w, and θ denotes a threshold value.

The transformation of the weighted summation is accomplished by the activation
function. The most frequently used transfer functions in the hidden and output layers
are sigmoid and linear. In the present work, Levenberg–Marquardt feed-forward back-
propagation algorithms with sigmoid tangent function were used for training the data.

2.3. Training

Before prediction, the ANN needs to be trained on test data to obtain weights that can
be used with the same network. In this study, the networks were designed and trained
using experimental data points reported by Li et al. [2], Luo et al. [48] and Zhou et al. [49].
A total of three available experimental data sources from a literature search are listed in
Table 1, which contains 415 data points and covers both vertical and S-shaped riser flows
with a wide range of pipeline inclinations varying from −1◦ to −7◦. Details for the dataset,
including minimum, maximum, mean and standard deviation, are given in Table 2.

Table 1. Conditions of experimental data collected.

Literature D
(mm) β (◦) Working

Fluids
Riser

Hight (m)
Riser
Type

USG
(m/s)

USL
(m/s)

Data
Point

Li et al. [2] 46 −7 Air, water 11.2 S-shaped 0.06–9.9 0.02–1.0 158
Luo et al. [48] 51 −1, −2, −4 Air, water 4.1 Vertical 0.02–1.0 0.02–1.0 225

Zhou et al. [49] 46 −5 Air, water 16.3 Vertical 0.19–2.5 0.03–1.8 32
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Table 2. Details of the entire dataset.

Literature β (◦) Min (Pa) Max (Pa) Mean (Pa) STD (Pa)

Li et al. [2] −7 219.5 6347.3 2659.4 1615.2

Luo et al. [48]
−1 243.9 6829.3 3521.9 2028.3
−2 245.1 7073.2 3480.8 2013.7
−4 487.1 11,703.3 4452.9 2490.3

Zhou et al. [49] −5 4192.6 9045.5 7279.1 1452.5

The network training or learning procedure is a process containing iterative calculation
in which the network is given the desired inputs along with the correct outputs for specified
inputs. During this process, the weights are determined by adjusting itself during each
iteration through the training set until the network produces output within a reasonable
error margin. The training of the ANN model was performed by using the Levenberg-
Marquardt algorithm, which is characterized by fast convergence. The ANN model was
trained by the following steps: (1) initialize the weights and calculate the output through
the network for a pair of training data chosen randomly; (2) compute the prediction error by
the root mean squared (RMS) function; (3) adjust network connection weights and threshold
if the error between the predicted and expected output cannot reach a desired value.

The performance of the model is sensitive to the number of neurons designed in
the hidden layer. Based on a trial-and-error method, the number of neurons n in the
hidden layer can be determined by investigating the behavior of the network through mean
squared error (MSE), defined as follows:

MSE =
1
m∑m

i=1

(
∆PExp,i − ∆PCal,i

)2
(3)

in which m denotes the total number of data points, ∆PExp is the pressure drop obtained
by means of experiment, ∆Pcal is the neural network output representing the predicted
pressure drop.

In this study, the range of the number of hidden neurons was tentatively set between 1
and 20. For each number of neurons in the hidden layer, the training process of ANN was
performed for 100 times at least, and each case of training cycle produces a training set.
Nevertheless, only the ANN model showing the best behavior was chosen as the optimal
network with the optimal number of hidden neurons. Thus, the connection weights and
biases of each neurons can be determined. The behavior of the network as a function of the
neuron number in the hidden layer is shown in Figure 3. It can be observed that the MSE
decreases sharply for n < 5 and finally stays almost constant at about 0.0005 for n higher
than 14. Therefore, the revised number of hidden neurons was determined as 14.

The database of 415 data points was divided into training, validation and testing
sets randomly. These three sets account for 70%, 15% and 15% of the entire data points,
respectively. The variations of MSE value versus epochs in the process of training of the
network with 14 hidden neurons is presented in Figure 4. Curves in blue and red indicate
MSE value during training and validation datasets, respectively.

As is seen from Figure 4, a sharp reduction in MSE can be found when epoch is less
than 10. For the testing dataset, the best behavior is MSE of 0.0005 at epoch 59, while
for training and validation, the MSE value at the same epoch is about 0.0002 and 0.0004,
respectively.
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3. Results and Discussion

Based on the software MATLAB, a three-layer network was developed in which the
four inputs are linked to each of the 14 neurons in the hidden layer. A sigmoid function
was designed as a transfer function of the hidden layer, while in the output layer a linear
function was used. Figures 5–7 compare the ANN output value with training, validation,
testing datasets; it is evident that the developed ANN model is able to predict the pressure
drop well. The proposed model is valid within the ranges of variables used for training.
Comparison of the prediction by the ANN model with experimental pressure drop value
of the entire datasets is given in Figure 8. As can be seen, the network model developed in
this study yields a good agreement with the datasets of 415 points consisting of the five
inclination angles and the two types of riser layout studied.
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Determination coefficient of (R2) as well as mean absolute percent error (AAPE) were
calculated to evaluate the optimal network performance. R2 is defined as:

R2= 1−
∑m

i=1
(
∆PExp,i − ∆PCal,i

)2

∑m
i=1
(
∆PExp,i − ∆PCal

)2 (4)
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AAPE is determined according to:

AAPE =

[
1
m∑m

i=1

∣∣∣∣∣∆PExp,i − ∆PCal,i

∆PExp,i

∣∣∣∣∣
]
× 100 (5)

R2 and AAPE for training, validation, test and all datasets studied in this work were
calculated and the result is illustrated in Table 3. As seen, the neural network performs
well, with high R2 and low AAPE. For the training dataset, AAPE is 2.81% and R2 is 0.996,
while for all the datasets, AAPE and R2 are 3.35% and 0.995, respectively.

Table 3. Evaluation of the prediction performance of the ANN model developed.

Datasets R2 MSE AAPE (%) Data Point

Training 0.996 0.00022 2.81 270
Validation 0.991 0.00039 4.08 62

Testing 0.994 0.00031 3.87 83
All 0.995 0.00026 3.35 415

The flow patterns in riser with S-shaped configuration reported by Li et al. [2] were
severe slugging, oscillation flow, bubbly flow, churn flow, slug flow and annular flow,
covering all the possible flow regimes which occurred in the pipeline-riser system. The
flow patterns in vertical risers observed by Luo et al. [48] and Zhou et al. [49] were severe
slug flow and transitional severe slug flow. Table 4 compares the results produced by
ANN model with the experimental data against different flow regimes. It shows that the
results agree with experimental values for most flow patterns in both vertical and S-shaped
risers. The highest errors obtained were 5.56% and 7.22% for churn flow and annular flow
patterns, respectively, and 4.77% for bubbly flow. Again, an AAPE of 3.35% of the network
for all the data points investigated is shown.

Table 4. Performance evaluation of the ANN model prediction against different flow regimes.

Flow Pattern USG (m/s) USL (m/s) AAPE (%) Data Points

Severe slugging 0.02–1.0 0.02–1.0 3.41 290
Transitional flow 0.368–2.46 0.042–0.855 2.32 20
Oscillation flow 0.401 0.794 0.91 31

Bubbly flow 0.062–0.299 0.799–2.1 4.77 9
Slug flow 0.23–1.67 0.79–2.1 3.86 13

Churn flow 1.3–10 0.12–2.1 5.56 43
Annular flow 6.99–10 0.21–0.16 7.22 9

Total 0.02–10 0.022.1 3.35 415

The comparison was made by sorting the data of the experimental pressure drop
according to the flow pattern it belongs to. It is also noted that the points for flow patterns
are unequal. This is because severe slugging is the most frequent flow patterns. In addition,
points for annular flow and bubbly flow are very limited, which might be one of the reasons
for the large AAPEs of annular and bubbly flow. The results in Table 4 also indicate that
there is a need for more data points, particularly for flow patterns in stable regions.

4. Conclusions

This study presents an accurate artificial neural network (ANN) model for the pre-
diction of pressure drop in pipeline-riser systems. The developed ANN model mainly
includes the effects of the inclination angle of downcomer as well as superficial velocities
of both liquid and gas phase.

A total of 415 experimental pressure drop data points collected from the literature
presented by Li et al. [2] for S-shaped risers and Luo et al. [48] and Zhou et al. [49] for
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vertical risers were used for training, validation and testing of the ANN model. All of the
data collected were obtained based on experiments performed with air and water. Average
absolute percent error (AAPE) as well as determination coefficient (R2) were calculated
to evaluate the performance of the network. The results showed that the ANN model is
capable of predicting the data points with a low AAPE of 3.87% and a high R2 of 0.994
for the testing dataset, and AAPE of 3.35% and R2 of 0.995 for the entire database. It
was demonstrated in this study that the air and water two-phase flow pressure drop in
pipeline-risers can be precisely predicted by using artificial neural networks provided the
values of the downcomer inclination angle and superficial velocity of gas and liquid phase
are determined. In general, the ANN model proposed in the present study has a sufficient
accuracy. It is also expected that this trained network has the capability to predict the void
fraction for gas-liquid flows in pipeline-riser systems.
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